
Proc. Assoc. Advmt. Anim. Breed. Genet. 22:1-8 

1 

FUNCTIONAL ANNOTATION OF ANIMAL GENOMES 

 

E.L. Clark, S. Bush, R. Young, J.K. Baillie, L. Lefevre, P. Dutta, C. Muriuki, M. McCulloch, T.C. 

Freeman, D.W. Burt, L. Freem, C.B.A.Whitelaw, K.M. Summers, A.L. Archibald & D.A. Hume 

 
The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter 

Bush, Midlothian EH25 9RG, UK 

 

SUMMARY 

With the advent of long-read sequencing technologies, and the rapid drop in the cost of short-read 

sequencing, livestock geneticists have access to almost completely contiguous reference genome 

sequences of similar quality to human and model organisms, and massive sequence level data on 

variation amongst breeds and adapted populations. In livestock genomes, many protein-coding genes 

are marked with placeholder names, their functional orthology to human or mouse genes is ambiguous 

and the annotation of transcript diversity is sparse. Non-coding regulatory elements (promoters, 

enhancers etc) and non-coding RNAs are even less well characterised, yet available evidence from 

human genetics indicates that variants in these elements are enriched for trait associations. The 

international FAANG (Functional Annotation of Animal Genomes, www.faang.org) consortium aims 

to coordinate efforts to address the information gap (L. Andersson et al. 2015).  Gene-editing 

technologies, combined with sequence information, offers the promise of accelerated genetic gain 

(Hickey et al. 2016).  In this review, we consider some of our approaches to livestock genome 

annotation. 

   

INTRODUCTION 

At the previous meeting of AAABG, Perez-Enciso et al. (2015) (Perez-Encisco et al. 2015) 

reviewed the potential applications of sequence data to animal breeding; and talked of “biology-

informed sequence exploitation”.   Since 2015, the cost of generating whole genome shotgun sequence 

data has continued to fall. Thus, with the most recent genotyping platforms, the $1000 genome at 30X 

genome coverage is not far from reality, and we and others are sequencing hundreds, and even 

thousands, of animals from different breeds and different adapted populations in every livestock 

species. The increased sequence depth increases the reliability of variant calling, including variants 

that impact on the function of protein-coding genes such as indels, stop gains and severely disruptive 
mutations (Boschiero et al. 2015, Telenti et al. 2016).  These mutations are more prevalent in 

populations than might be expected. In a remarkable study of human populations with high levels of 

consanguinity, Saleheen et al. (Saleheen et al. 2017) reported exome sequencing of >10,000 

individuals, and identified 49,000 rare predicted loss-of-function mutations of which 1317 were 

homozygous in at least one individual.  A subset was confirmed to cause functional changes in the 

encoded protein, albeit clearly not lethal. An exome sequencing platform has been developed for pigs, 

and its application similarly predicts significant prevalence of loss-of-function alleles (Robert et al. 

2014). This is a potential resource for functional genomics, as well as animal breeding, since the 

impact of such alleles can be confirmed by brother-sister mating or from prohibited homozygosity in 

populations (if the impact is severe).  We have initiated such as backcross project in chickens, where 

we identified candidate loss-of-function alleles in a set of 10 founder pairs, and then mated their F1 
offspring to expose homozygotes.  However, even high impact functional variants are not necessarily 

coding.  Hoff et al. (Hoff et al. 2017) identified seven haplotypes that were relatively prevalent in 

registered US Angus cattle, but were not observed as homozygotes, and used deep sequencing of >100 

individuals to identify common variants within these haplotypes.  None of the candidate causal 

variants identified was present within exons.   
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Another of the major impacts of deep sequencing is the improved detection of copy-number 

variants and sequences that are not present in the reference genome. This is somewhat constrained by 

the quality of the genome assembly (Couldrey et al. 2017) but the rapid improvement of livestock 

genomes, driven by the FAANG consortium, will address this issue.  Indeed, the contiguity of the new 

goat genome, released earlier this year (Bickhart et al. 2017, Worley 2017), is approaching that of the 
completed human and mouse genomes. The recent sequencing of 10,000 human genomes at 30-40x 

coverage identified on average 0.7 Mb of sequence that was not present in the human reference 

genome (Telenti et al. 2016). Copy number and structural (e.g. inversions/translocations) variants are 

commonly associated with trait variation in all species. A recent study, which also reviewed some of 

the earlier literature, identified multiple copy number variants associated with domestication and high 

altitude adaptation in the Chinese Yak (Zhang et al. 2016).  Long read sequencing provides an 

additional potential step-change in detection of structural variants, with an incomplete overlap between 

the outcomes from short-read technologies (Couldrey et al. 2017). With all of this sequence/genomic 

information, we have the potential to reverse the traditional information flow, and link sequence to 

consequence.  However, there are several major challenges to overcome.   

Firstly, we need much more information about the function of individual genes and regulatory 

sequences in a wider range of species.  It is certainly the case that some functions are conserved across 

species.  The phenotypes associated with knockouts of protein-coding genes in mice can give insights 

into likely functions and phenotypic consequences of loss-of-function in other species.  Similarly, 

detailed analysis of promoter and enhancer landscapes in the liver across 20 mammalian species 

revealed substantial conservation of both regulatory elements and transcriptional outputs (Villar et al. 
2015). Arguably, the liver has a rather generic “housekeeping” function in mammals that is not subject 

to rigorous selection.  By contrast, there are radical differences between mice, pigs and humans in the 

response of innate immune cells to bacterial lipopolysaccharide (LPS)  (Kapetanovic et al. 2012, 

Schroder et al. 2012) or to glucocorticoids (Jubb et al. 2015), associated with gain and loss of 

promoter and enhancer elements.  It is these differences between species, and between individuals, that 

are of particular interest to geneticists and developmental biologists.   

Secondly, we need to find a way to take account of epistasis, which manifests as variable 

penetrance.  There are few knockout mutations in mice, or human genetic diseases, that do not exhibit 

some measure of phenotypic variation that is apparently a consequence of gene-gene interactions, or 

genetic background (Phillips 2008, Mackay 2014).  Sometimes the mechanism can be disentangled 

based upon biological knowledge. For example, the knockout of the macrophage-specific transcription 

factor, PU.1, is mid-gestation lethal in homozygous PU.1 knockout inbred C57Bl/6 mice, but when the 

knockout allele is present in the homozygous state on a different genetic background, produces viable 

offspring with a neutrophil deficiency.  The PU.1 protein interacts with another transcription factor, 

MITF, and a compound heterozygote (PU.1 +/-, MITF mi/+) phenocopies the PU.1 knockout (Luchin 
et al. 2001).  Efforts to model the impact of epistasis in GWAS analysis and genomic selection have 

had limited success, in part due to the computational challenges (Stanislas et al. 2017).  A subset of 

variable penetrance results from genomic imprinting in mammals, where the apparent heritability of a 

trait depends upon the parent of origin and reciprocal crosses do not produce the same outcome. The 

analysis of the contribution of imprinting to estimated breeding values is also computationally 

challenging (Nishio and Satoh 2015), but would be significantly less so if the set of imprinted loci and 

their functions was known in each species.    

Identification of causal variants has been described as the “holy grail” for quantitative genetics 

(Perez-Encisco et al. 2015).  Increased density of markers derived from sequence information, without 

functional annotation, simply approaches the tyranny of statistics.  The challenge is to develop strong 

biological “priors” to prioritise variants that are more likely to be functionally associated with a trait.  

Inclusion of such biological priors clearly has the potential to enhance the power of genomic prediction 
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in complex traits (MacLeod et al. 2016).   So, how far have we come since 2015 in generating useful 

prior knowledge?   

 

 
 

Figure 1.  The transcriptional network of the sheep gene expression atlas dataset. Each node 

represents a single transcript, the lines between them represent correlations (edges) and the 

colours are shared by nodes that have correlated expression across the network (The graph is 

comprised of 15,192 nodes (genes) and 811,213 edges, r = 0.75, MCLi = 2.2).  
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TRANSCRIPTIONAL ATLAS PROJECTS   

All of the processes that underpin development, growth, physiology and productivity depend upon 

the functions of numerous gene products that act together to generate pathways, macromolecular 

complexes, organelles, cells, organs and systems   The set of genes required to deliver a cell-type, an 

organelle or a functional complex must share transcriptional regulation, so that their products are 

available in the correct place at the right time. If one samples the transcriptome of many different 

organ and cellular systems that differ from each other, the levels of transcripts encoding products that 

function together must be correlated with each other.  The more physiological states that one samples, 

the more stringently one can determine that a pair of genes shares strict coexpression.  Since the 
pioneering efforts that produced the Symatlas (now BioGPS, http://biogps.org) from sets of 

microarray data from mouse and human cells and tissues, there has been an explosion of gene 

expression “atlases” across multiple tissues in a number of species and within tissues across cell types 

and developmental time in humans and mice. The principal of guilt by association, namely that one 

can infer a great deal about the likely function of a gene product from its transcriptional neighbours, 

was clearly fulfilled in analysis of the mouse BioGPS dataset (Hume et al. 2010). For example, the 

entire set of genes encoding the lysosome was co-expressed, and specifically elevated in phagocytes.  

Similarly, genes involved in the cell cycle, in protein synthesis, or in extracellular matrix, clearly 

formed co-expression clusters because they are regulated activities and different cells and tissues 

engage these pathways to different extents.  The exception is the set of genes that is relatively 

ubiquitously-expressed: the house-keeping genes.  The housekeeping gene set also contains the 

highest proportion of genes that lack informative annotation, a reflection of the focus of biologists on 
differential expression.  To identify and visualise transcriptional clusters in very large datasets, we 

utilized the network-clustering tool Biolayout Express3D, now developed as Miru 

(http://www.kajeka.com). One advantage of the consistency of commercial microarray platforms was 

that it was possible to consolidate and integrate data from multiple laboratories, for example to 

generate an atlas of gene expression in human cells (Mabbott et al. 2013), also available as a default 

set on BioGPS. 

The generation of transcriptional atlases for livestock species is more recent.  We utilized 

extensive EST data to design a comprehensive microarray for the pig, and created a transcriptional 

atlas (Freeman et al. 2012).  One example of the principal of guilt-by-association was the 

identification of a comprehensive set of transcripts associated with mitochondrial oxidative 

phosphorylation, and separation of the nuclear and mitochondrial-encoded transcripts (indicating that 

their transcription is not perfectly correlated).  A bovine expression atlas was generated based upon 

tag sequencing of tissue from adult, juvenile and fetal tissues (Harhay et al. 2010) and subsequently 

extended in a set of 18 tissues from a single animal by RNAseq (Chamberlain et al. 2015).   More 

recently, we have produced an extensive transcriptional atlas based upon direct sequencing of mRNA 
from six adult sheep as well as embryos and juveniles at various developmental ages 

(bioRxiv132696).   The animals were deliberately chosen as cross breeds between the reference Texel 

(Jiang et al. 2014) and the Scottish Blackface.  Figure 1 shows the overview of the transcriptional 

network, which clearly segregates the transcripts into tissue, cell-type and process-specific clusters. 

The latter clusters include a comprehensive set of genes involved in the cell cycle, protein synthesis, 

oxidative phosphorylation and motile cilia. Note also the close proximity of liver and kidney cortex in 

the network, indicating their similar expression profiles.  We identified many transcripts encoding 

enzymes associated with gluconeogenesis and amino acid metabolism that are shared between the 

two organs.   These data have also been made available on Biogps (biogps.org/sheepatlas). We are 

also currently analyzing similar projects, albeit on a smaller scale (guided by transcript diversity 

observed in the sheep) in commercial cross-bred goats, Indian and Mediterranean (the reference breed 
for the current assembly of a water buffalo genome) water buffalo and broiler and layer chickens.  

http://www.biogps.org/
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These data together will produce a quantum leap in the analysis of transcript variants in each of the 

species and have contributed to the various genome projects to support improved annotation.   

The next phase of genome/transcriptome annotation is the identification of regulatory elements.  

Several of the authors have had a long-term association with the FANTOM Consortium.  The 

consortium utilized Cap Analysis of Gene Expression (CAGE) to generate a promoter-based atlas of 

gene expression in humans and mice (Consortium et al. 2014).  CAGE, which is essentially genome-

scale 5’RACE, also detects the short transcripts that are produced by active enhancers (R. Andersson 

et al. 2014) and the integration of information derived from detected promoter and enhancer activity 

can be used to infer the relationship between the two.  Enhancers and promoters generated by CAGE 
sequencing were strongly correlated with similar elements detected by ChIP-seq analysis of the 

location of acetylated and methylated histones including data from the ENCODE consortium.  In the 

analysis of a diversity of time courses of cell activation or differentiation, the transcriptional activity 

of enhancers in the vicinity of inducible genes was increased transiently in advance of detectable 

promoter activation (Arner et al. 2015, Baillie et al. 2017).  The most recent FANTOM publication 

integrated CAGE and RNAseq data to identify 27,000 long non-coding RNAs encoded by the human 

genome, and to demonstrate that these transcripts derive primarily from enhancers.  They further 

demonstrated that the lncRNAs that overlap trait-associated SNPs are expressed in cell types that are 

relevant to the trait in humans.  The RNAseq data we have obtained from livestock species also 

greatly expands the diversity of lncRNAs identified and by inference, will contribute to the location 

of likely trait-associated regulatory elements.  The FANTOM5 data from humans and mice can be 

usefully mapped across to other large animals such as pigs to identify conserved promoters and 
enhancers (Robert et al. 2015), in the process supporting other evidence that the transcriptome of pigs 

is substantially more human-like than that of mice.    

 

APPLICATIONS OF TRANSCRIPTOMIC DATA IN GENETICS 

SNPs associated with enhancers and promoters detected by the FANTOM5 consortium were more 

likely even than exonic SNPs to be associated with human disease susceptibilities (R. Andersson et al. 

2014), mirroring evidence based upon identification of open chromatin detected as DNase1 

hypersensitive sites (Maurano et al. 2012).  More recently, genome-wide analysis of long range 

interactions between distal enhancers and promoters in multiple human cell types provided further 

links between regulatory variants and disease susceptibility traits (Javierre et al. 2016).  The principle 

can be extended further.  Regulatory variation in sets of genes that each contribute independently to a 
common pathway are likely to each contribute to a trait that depends upon that pathway. Consistent 

with the proposal, it is possible to identify and quantify co-expression of RNAs from trait-associated 

regions (bioRxiv, 095349) and from that information, to draw inferences about the likely underlying 

biology and to identify additional candidate susceptibility loci.   Based upon that principle, we formed 

the hypothesis that genes involved in susceptibility to inflammatory bowel disease (IBD) were co-

expressed specifically in monocytes and regulated during their differentiation. We identified a set of 

promoters that fulfilled that criterion and which were strongly enriched for associations with IBD, 

including >100 novel loci (Baillie et al. 2017).  

The link between SNPs in regulatory regions and complex traits, of course has an intermediate 

phenotype in the form of heritable variation in the level of the regulated transcript, so-called 

expression quantitative trait loci (eQTL). Variation within such loci may act in cis or trans to produce 

differences in transcript abundance.  Most evidence of eQTL to date has relied on microarray profiling 

of the same tissue or cell type from large numbers of individuals and conventional GWAS, or in 

defined crosses, an approach that has been called “genetical genomics” (de Koning et al. 2007, 

Martinez-Montes et al. 2017).  Studies of human leukocytes have revealed that the large majority of 
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transcripts detected on a microarray display detectable and heritable variation in expression (Fairfax et 

al. 2014, Westra et al. 2015).   

Sequence-based analysis of the expression of each allele in individual animals has the potential to 

massively increase the power of detection of eQTL (Almlof et al. 2012), and this approach has 

become substantially more straightforward with the feasibility of obtaining high depth coverage of 

DNA and RNA sequences from the same animal(s).  Chamberlain et al (Chamberlain et al. 2015) 

utilized RNAseq data to demonstrate the pervasive allele-specific expression of genes in 18 tissues of 

a single cow, including a surprising level of mono-allelic or parent of origin-specific expression and 

tissue-specificity. The sheep genome consortium also noted pervasive mono-allelic expression in 
transcriptome analysis of the pure-bred Texels (Jiang et al. 2014).  In our own RNAseq data from 

multiple species, we have deliberately chosen to analyse cross-bred animals, and sequenced a wider 

diversity of tissues at greater depth than previous studies.  One of the advantages of deep sequencing 

is that unprocessed nuclear RNAs, and lncRNA are covered at sufficient depth to detect variation in 

expression, and these non-coding regions have much higher density of SNVs (Barreiro et al. 2008). 

The MBASED algorithm (Mayba et al. 2014) can be used to integrate expression estimates from 

multiple SNV level RNAseq counts, to integrate allele specific expression (ASE) detection across a 

locus. With sufficient sequencing depth, the analysis can extend into neighbouring regulatory regions 

without the requirement for phasing information.   We are currently utilizing this approach to identify 

ASE in sheep, water buffalo, pig and chicken RNAseq datasets. 

 One of the applications of particular interest is to begin to understand the benefits of cross-

breeding or heterosis.  The molecular basis for the benefits of cross-breeding is relatively poorly 

understood, and much of the analysis comes from plants, rather than animals (Chen 2013).  In the 

sheep transcriptional atlas, we were able to integrate data from a smaller RNA-seq atlas derived from 

pure-bred Texels, produced in association with the release of the sheep genome (Jiang et al. 2014).  A 
subset of transcripts was much more highly-expressed in the muscle and brain in the cross-bred 

animals than in the pure Texel animals.  If most trait variation is associated with transcriptional 

regulation, heterosis presumably derives from some form of optimal contribution of the variant 

expression alleles of each parent within the cell and tissues that control the trait.  Combining data from 

transcriptional networks and allele-specific transcription in cross-bred animals may eventually 

underpin the prediction of cross-bred animal performance.   

 

GENOME EDITING 

Alongside the revolution in genome sequencing, genome editing technologies provide a second 

revolution; the capacity to confirm predictive functions by altering the genome in model organism or 

in the species of interest.  However, genome editing is more likely to be deployed in farmed animal 

species to modify or delete protein coding genes in order to generate animals with desirable genotypes 
that cannot readily be established by conventional selective breeding. A couple of recent examples of 

such desirable traits are resistance to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) 

and germline ablated male pigs that can serve as vehicles to increase the delivery of gametes from 

elite males (Burkard et al. 2017, Park et al. 2017).  The use of primordial germ cells has expedited the 

application of germ-editing in poultry (Taylor et al. 2017).  Perhaps more challenging is the prospect 

of accelerating genetic gain in breeding programmes by multiplex editing of functional variants in a 

single generation (Hickey et al. 2016), or even the application of so-called “gene drives” (Gonen et al. 

2017). That prospect is certainly on the horizon, but the consequences of editing enhancer elements in 

mice have not been entirely predictable.  Most genomic loci contain numerous apparently conserved 

and functional enhancers, and many others that are gained and lost between species (Villar et al. 2015). 

There is still some way to go before we can predict consequence from sequence in regulatory elements.   
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CONCLUSIONS 

The availability of high throughput sequencing and its decreasing cost combined with 

development of new methods for modifying animal genomes has opened a wide range of approaches 

that will enhance genome annotation in livestock animals and lead to greater understanding of 

important production traits and processes such as heterosis. 
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FROM BREEDING TO MARKET: OPPORTUNITIES WITHIN A DISRUPTED 

FOOD CHAIN 

A.W. Campbell and P.R Amer 

AbacusBio Ltd., Dunedin, New Zealand 

 

SUMMARY 

Food production and traditional agricultural systems are in a state of change due to increasing 

consumer demands and technological advances.  In this paper, we outline international food trends 

as a background for creating discussion for supporting the positioning of future animal breeding 

programmes.  We then present at a high-level, two case studies of programmes where breeding 

indexes could, or have been altered, to achieve changes in traits previously unselected for.  We 

complete the paper with some discussion on the challenges of being closely aligned with industry 

and what that means for developing capabilities of young scientists. 

 

THE FAST CHANGING WORLD WE LIVE IN 

“Beware of the incumbent’s chortle” was a line given in response to a discussion about 

disruption.  It is of course, quite probable that the Blockbuster’s former CEO chortled at the concept 
of live-streaming, when they turned down the opportunity to buy Netflix.   

Disruption is a term in regular use and the food industry is not immune.  Insect-based proteins, 

synthetic and plant-based meat and milk products, greenhouse gas (GHG) minimisation and 

consumer beliefs associated with animal welfare are challenging traditional agriculture food 

production systems.  So too are these challenges creating opportunities and we, as scientists and 

technologists, have an important role to play in working closer with industry to take full advantage 

of them. 

 

INTERNATIONAL FOOD TRENDS 

Consumer power. Food brands have long-been established through clever marketing 

campaigns and product positioning.  However, consumers’ rising distrust of the food industry and 
their ability to promote or undermine companies via social media has led to a change in the balance 

of power.  Because of this, consumers need to be at the forefront of research and development 

strategies of companies and industries.   

For companies and industries striving to differentiate themselves from commodity producers, a 

sticker or label on packaging is not enough to denote where a product is from and how it has been 

produced.  Layers of evidence as to how food has been grown and produced, fulfilling ethical, 

welfare and environmental considerations, and a connected value chain are critical for commanding 

premium food prices.   

Food and health. A significant international food trend is the relationship between food and 

health.  This is led by Chinese consumers who have been described as “the world’s most health 

conscious,” based on a long tradition of food-based medicines.  In China, 73% of consumers are 

willing to pay a premium for healthier products (12 points higher than the global average), preferring 
products which treat common ailments, boost energy and strengthen immune systems (Boston 

Consulting Group 2014).   

Aligned with the food and health trend is an increasing interest in the concept of personalised-

food, and not just for humans.  “Just Right by Purina” allows dog owners to order personalised-food 

formulations for their dogs.  The formulations are derived according to the dog’s breed, activity 

levels, coat and skin condition and the state of their stools.  Similarly, for humans, Soylent is an 
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example of formulated foods designed for specific human nutritional needs.  Large food companies, 

such as Nestle with their “Choose Wellness,” programme, are investing significantly into this area. 

The changing face of food retail. The way we buy food is changing which is important for the 

delivery of foods in a personalised form.  Factories and big companies are out of vogue.  Consumers 

want to feel a connection to growers and the rise in popularity of Farmers’ Markets is testament to 
this.  There are increased quantities of high-end food products being sold on-line directly, or via 

meal-kit companies such as Blue Apron (United States) and My Food Bag (New Zealand).  This 

ability to directly market and sell to consumers means that smaller companies can offer niche 

products profitably, opening-up opportunities for artisan growers. 

Food as an experience. Younger consumers are increasingly seeking authentic and novel food 

experiences, in preference to more traditionally sought fine-dining experiences.  This creates 

opportunities for producing novel food products derived from less traditional livestock cuts, such as 

offals and from other species such as crickets.  It is worth noting that Acheta domesticus -the humble 

domestic cricket, is far better at converting ingested food into protein than cattle and crickets also 

have far greater fecundity (1,200–1,500 offspring per female).   

The concept of food as an experience, also generates opportunities associated with food-tourism, 

of relevance to both Australia and New Zealand’s significant tourism industries which are connected 
to our landscapes.    

“You know things are changing in the food sector when you get gourmet nosh from a food truck, 

when your beer comes bolstered with protein, and McDonald’s introduces a kale-enhanced 

breakfast” (Keown and Brendish, 2015). 

 

LIVESTOCK AS A SOURCE OF PROTEIN 

Protein consumption is rising internationally, especially in emerging economies.  Annual meat 

production is projected to increase from 218 million tonnes in 1997-1999 to 376 million tonnes by 

2030 (World Health Organisation).  In response, emerging economies are fast-developing their own 

sources of protein with livestock production programmes growing in efficiency and volume 

throughout Asia and Africa.   
In parallel, the role of ruminants in the food chain is increasingly being questioned as awareness 

around climate change grows.  In the future, we may see political trade ramifications for high-carbon 

products (Ciochetto, 2016) and food producers will become more vulnerable to negative campaigns, 

be they political or social.   

Thirty per cent of Earth's land surface is already devoted to livestock production, a practice that 

accounts for nearly 15% of global greenhouse-gas emissions (reviewed in Heffernan, 2017). Cows 

are the seen as the worst environmental culprits, not only because they emit a lot of methane, but 

because the production of beef uses vast quantities of water: 15,415 litres for a kilogram of beef 

(reviewed in Heffernan, 2017). 

Alternate protein may lead to a reduction in protein sourced from livestock but it is unlikely to 

become an either/or situation.  Livestock producers that position their products at the high-value end 

of the spectrum will not be as challenged by alternate proteins as those who operate in the commodity 
space.  Fully-housed livestock, produced in commodity-style with high health and feed inputs, will 

increasingly be shunned by consumers.   

Adding-value to livestock products, should at a very minimum, encapsulate where the product 

is from, how it is produced, and have sales channels which are different to traditional commodity 

channels.  By shifting more of Australasia’s production systems to this minimum value-add form 

we would expect increased prices and reduced volatility of those prices.  This is because consumers 

exhibit a lower price sensitivity to products which are more expensive and further processed (Baiardi 

et al., 2014).  A major challenge in making this shift is to ensure that the increased costs of producing 
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a high-value product are a sound investment in the market, because almost by definition, further 

processing narrows the potential end-use for a product. 

 

WEALTH OF DATA 

Throughout the value chain, increasing amounts of data are being generated.  Consumers are 
wearing devices measuring heart rates and sleep patterns.  At the other end of the value chain, 

devices are under development for livestock to wear or be tracked by, and for land-based activities, 

such as irrigation and nutrient monitoring (reviewed in King 2017). 

We will be moving into an era where what we eat will be defined for us by what we have done 

during the day, informed by internally and externally worn sensors. Similarly, farmers and animal 

breeders will have access to unprecedented amounts of animal performance data to strive for greater 

productivity with less impact on environments and creating connections with consumers.   

Some of these data will have relevance for how we undertake breeding and genetic evaluation.  

Scientists will have access to data from greater numbers of animals and for differing traits.  

Traditional nucleus breeding programmes may be replaced.   

In thinking about the types of capability required for positioning our industries for future success, 

geneticists, as both biologists and mathematicians, are in a prime position to be data integrators: 
adding value to inherently messy data by asking relevant questions and finding smart solutions to 

form the base for new technologies and applications. 

  

CASE STUDY ONE: THE POTENTIAL TO INCLUDE GREENHOUSE GAS 

MITIGATION IN LIVESTOCK BREEDING INDEXES 

Many livestock industries around the world are seeking good-news stories relating to 

environmental impact. An obvious option to reduce absolute GHG levels is to reduce livestock 

numbers, but this has major implications for production and economic well-being and as such, is 

unlikely to be taken up, unless there is considerable compliance pressure and/or economic 

alternatives.   

An alternative is to reduce GHG intensity - GHG per unit of product.  Under current selection 
approaches, the drive to improve production efficiencies indirectly lowers GHG intensity year-on-

year.  So far, modelling data has demonstrated that this is likely to be a positive news story, in that 

current and historic selection efforts improve livestock production efficiency substantially, and this 

reduces emissions intensity (Ludemann et al., 2011; Amer et al., 2017a; Amer et al 2017b; Quinton 

et al., 2017a, Quinton et al. 2017b).   

There is a more aggressive option available for reducing GHG emissions intensity of livestock. 

This involves placing greater than current relative selection pressure on the traits that improve GHG 

emissions intensity (GHG EI) the most, and correspondingly, less relative selection pressure on traits 

that do not tend to improve GHG EI (Quinton et al (paper submitted to Animal) and Ludemann et 

al., 2011).   It turns out that these indexes which extract more GHG EI gains than purely farm profit 

based indexes are typically efficient, in that significant improvements in GHG EI gains can be 

extracted with only modest reductions in the farm profitability gains expected from selecting on the 
modified indexes.  

There is also a challenge in this approach in that placing more emphasis on the traits that reduce 

GHG EI the most (for example litter size in sheep (Ludemann et al., 2011) and milk production in 

dairy (through a dilution of emissions effect) are in reverse (Wall et al., 2010) to a directional shift 

in breeding goals over past decades towards traits that make animals more functional and easy to 

farm.   

Efforts to develop novel selection criteria to improve GHG EI, including feed intake 

measurements, and either methane yield per unit of feed, and/or total methane yield per animal may 

be hampered by genetic antagonisms with functional aspects of animals.  Another challenge is the 
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cost of either trait measurement of selection candidates, or the cost of implementing genomic 

selection schemes, whereby the genotyping costs are more than offset by reductions in phenotyping 

investment.  

Incentives/compliance drivers for uptake. A driver for an increased focus on breeding to 

reduce GHG emissions might come through audited supply chain systems. Auditing is required, 
because of the antagonisms and costs discussed above, so that free-riders benefiting from the supply 

chain story might otherwise skimp on compliance.  

Interestingly, choice of breeding males by commercial farmers is potentially easier to audit than 

many other GHG mitigating technologies and certainly more than any sort of actual farm GHG 

emissions audit. This is because detailed databases already exist containing a substantial proportion 

of breeding sector animals.  If breeders were to record the commercial farm buyers of breeding 

males, and/or semen, and submit these to an auditing body, then the ongoing genetic trend of the 

commercial farm for genetic merit for GHG emissions intensity could be predicted accurately. 

Occasional, or random checking, via DNA verification or genomic relationship predictions, could 

be deployed at low cost to ensure accuracy of the system, and miss-reporting of sire purchases.  The 

steps required to develop such a system are quite feasible when compared with what will be required 

to deploy and incentivise many other GHG mitigating farm technologies.          
There are opportunities to link such GHG reduction genetic programmes with national 

positioning programmes connected to product markets, such as Origin Green.  Origin Green is an 

Irish national sustainability programme implemented by Board Bia, the Irish Food Board and 

supported by Government and private companies.   

Origin Green is ostensibly a marketing effort, but the differentiation comes from the supply chain 

(Shelman, 2016).  The programme so far has seen 90,000 farms audited and carbon footprinted.  At 

manufacturing level, over 470 food and drink manufacturers, which represent almost 95% of their 

total food and drink exports, have registered to take part in Origin Green.  The opportunity therefore, 

is for Irish producers to be incentivised to use GHG reduction indexes as part of a commitment to 

Origin Green, striving for a subsequent value-increase for product off those properties.  

 

CASE STUDY TWO: THE OMEGA LAMB PROJECT 

Worldwide, there is a large (>$20 billion) and rapidly growing market for omega-3 and omega-

3-enhanced products, and a static or declining source of omega-3 from marine fish oils, prompting 

concerns of shortages.  Alternative sources of omega-3s are necessary to meet demand, particularly 

in continental countries, like China, where there are large populations that do not eat fish regularly.  

The European Food Safety Authority recommends a dietary intake of 250mg of EPA plus DHA 

(eicosapentaenoic acid; C20:5n-3, docosahexaenoic acid; C22:6n-3), a day. The estimated average 

daily intake of EPA and DHA in China for example, is just 49mg.  This deficiency has prompted 

the Chinese Nutrition Society to review its dietary guidelines in order to increase the nation’s intake 

of DHA and EPA fatty acids.  As a result, there is now a substantial volume of research investigating 

the enhancement of omega-3 levels in beef, lamb, pork and chicken using alternative feeds and feed-

lot systems. These feed systems use fish, algal or ALA (alpha-linolenic acid; C18:3n-3) rich seed 
supplements to enrich the omega-3 composition and, recently, small volumes of omega-3 enhanced 

beef, pork and chicken products have become available in markets.   

The Omega Lamb project, led by red meat processing company, Alliance Group and sheep 

breeding company, Headwaters, was initiated in 2011, with a view to developing a naturally 

differentiated lamb product.  The aim of the project has been to develop value-added lamb products, 

high in omega-3 and also incorporating other meat quality attributes and environmental-

management philosophies. In the early years of the programme, this involved analysing over 300 

sire lines and 20 forage lines for their impact on fatty acid composition.  
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Enhanced omega-3 levels in lamb have been achieved through a combination of selective 

breeding - using assessment of correlated traits related to intramuscular fat levels - and diet - using 

a chicory-red clover finishing system.  This is the basis for the development of what is now a fully 

commercial pipeline of products.  High-health lamb products are being marketed for their health 

attributes and have been endorsed as high quality by chefs and independent consumer taste panel 
analyses.  These products are currently being sold for a premium in high-end New Zealand 

restaurants and in Hong Kong.  This season, in the first year to market, product from 30,000 lambs 

has been processed, with the target of processing 60,000 lambs in year two.  From here, key 

challenges for the programme are associated with quality control and scaling to a larger volume of 

product. 

A key driver for the success of the Omega Lamb Project has been the early involvement of people 

representing all parts of the value chain.  This included scientists, livestock breeders, commercial 

farmers meat processors and marketers.  Early consumer studies in three markets, the United 

Kingdom, Germany and China, were also important in informing where the value opportunities lay.  

This big picture and value-chain commitment has been challenging to manage, but has been critical 

to the programme’s success, throughout the research and development phases and now the 

commercialisation phase.   

 

CHALLENGES OF MARKET-DRIVEN BREEDING PROGRAMMES 

There are many examples of market-driven breeding programmes, some of which have had 

limited success.  Green-wash, is a term used to describe products taken to market and sold under an 

undeserved environmental banner.  As we stated earlier, consumers have become cynical and will 

question the positioning of products by companies.   Products and companies that are seen as 

inauthentic will be quickly brought-down via social media.  One of the challenges with connecting 

breeding programmes to market is to ensure that there is legitimacy behind market claims, for 

example claims of superior quality.  In breeding terms, such legitimacy will come from a concerted 

and multi-year strategic investment into understanding traits and the time taken in selection to make 

a measurable difference.  When such programmes have failed, a factor has been that the expectations 
of progress have not been managed from breeder to marketer and marketers have gone out too early 

with product claims.  Additional challenges include those of scaling breeding programmes to 

produce enough product for profitability, managing quality throughout the value chain and when 

demand is created in-market, managing year-round supply and or consumer/retailer expectations 

around product availability.   

There are successful programmes that are managing, or in the process of managing these 

challenges, some additional examples include the Ora King programme (premium eating quality 

salmon) and Lanaco (wool-based air filtration face-masks).   In these programmes, as in the Omega 

Project, success is underpinned by a willingness to collaborate by geneticists and industry players 

throughout the value chain. 

 

CAPABILITY 
Scientists need to have a genuine interest in solving industry challenges in order to engage 

successfully with industry.  This requires a deep understanding of company and industry drivers.  It 

is hard to develop this in a purely academic environment and scientists should be encouraged to 

spend considerable time outside of that environment, to the point of spending periods of time 

embedded in companies or industry organisations.  Such time is invaluable for developing 

relationships and understanding why things are never as simple as they seem in terms of 

implementation of longer-term research and development strategies. 
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Performance drivers for scientists within academic environments are often in conflict with such 

an approach and science organisations need to strive to develop new, or align existing performance 

measures with such an approach. 

Finally, in the experience of these authors, there is tremendous satisfaction at playing a role 

bringing science and industry together.  It is our view that this can be done in a way which maintains 
scientific valour and integrity and most importantly, makes a considerable impact in taking 

industries forward in a changing food environment. 
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SUMMARY 

Emerging inherited diseases can cause numerous issues for producers, including productivity 

loss, profit loss and animal welfare problems. Under-reporting of emerging inherited diseases can 
result in difficulties associated with identifying and managing these diseases. The development of 

a research centre between the University of Sydney and Elizabeth Macarthur Agricultural Institute, 

NSW Department of Primary Industries is a current collaborative effort to encourage the 

submission of suspected inherited disease cases. Previous collaboration has resulted in the ongoing 

investigation of 10 inherited diseases using SNP-based homozygosity mapping and next 

generation sequencing to identify positional candidate genes and causal mutations. The long-term 

aim is to formally develop a research centre that allows independent investigation of emerging 

inherited diseases in livestock that builds upon current joint research.  

 

INTRODUCTION 

Emerging inherited diseases within Australian livestock can often go unreported, either 
because they are misdiagnosed as non-inherited diseases or are not reported due to concerns of 

profit loss and reputation damage. Not reporting suspected inherited disease cases can lead to a 

loss of valuable sample resources and a lost opportunity to characterise the phenotype(s), thus 

causing a delay in investigating or monitoring these diseases. Without the assurance of a robust 

genotyping test to identify heterozygous individuals, the management of autosomal recessive 

inherited diseases can become problematic, especially if detailed pedigrees are unknown for at-risk 

populations (Man et al. 2007).  

The under-reporting of suspected recessive inherited diseases can contribute to the inadvertent 

dissemination of deleterious alleles throughout populations. If a deleterious allele can be traced to 

a common ancestor within a prominent sire line, all offspring are at risk of being heterozygous for 

the deleterious allele and only a DNA test will be able to accurately identify true heterozygous 

animals. Emerging inherited disease monitoring and the implementation of management programs 
to avoid carrier by carrier matings are important for reducing the number of affected progeny born, 

as well as mitigating any production and economic losses. The importance of these management 

programs has been shown in the case of brachygnathia, cardiomegaly and renal hypoplasia 

syndrome in Merino sheep (Shariflou et al. 2013), where breeding programs have reduced the 

number of affected progeny born (Shariflou, personal communication). 

Researchers at the University of Sydney and the Elizabeth Macarthur Agricultural Institute, 

NSW Department of Primary Industries (EMAI) each have a longstanding history in investigating 

inherited diseases in Australian livestock and have recently started to collaborate on numerous 

research projects. So far, 10 inherited diseases are being investigated and are likely to be inherited 
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via a recessive mode of inheritance: congenital mandibular prognathia (CMP) in Droughtmaster 

cattle, pulmonary hypoplasia with anasarca (PHA) in Persian sheep, Niemann-Pick type C disease 

(NPC) in Angus cattle, congenital blindness (CB) in white Shorthorn cattle, cervicothoracic 

vertebral subluxation (CVS) in Merino sheep, a new variant of cardiomyopathy woolly haircoat 

syndrome (CWH) in Hereford cattle, new variants of ichthyosis fetalis (IF) in Hereford and 
Shorthorn cattle, suspected cases of congenital contractural arachnodactyly (CCA) in Murray Grey 

cattle, ovine dermatosparaxis (OD) in Merino sheep as well as the previously reported 

brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS) in Merino sheep (Shariflou 

et al. 2013).  

A SNP-chip based homozygosity mapping approach and next generation sequencing is 

described with an aim to identify positional candidate genes, identify causal mutations and develop 

diagnostic DNA tests. The long term aim resulting from these collaborations is to develop an 

independent centre where producers and veterinarians can report and submit samples of suspected 

inherited disease cases. The centre will follow a similar approach to previous studies conducted 

and will benefit the Australian livestock industries through increased awareness and acceptance of 

reporting.  

 

MATERIALS AND METHODS 

In current collaborative research projects, SNP genotyping was performed by the Animal 

Genetics Laboratory (University of Queensland, Gatton, Australia) and Australian Genome 

Research Facility (Westmead, Australia) (Table 1). Sliding windows of 25, 50 and 100 SNPs were 

used to identify runs of homozygosity (ROH) for all affected animals using the bovine UMD3.1 

genome assembly and the ovine Oarv1.0 genome assembly. ROH were analysed using PLINK 

(Purcell et al. 2007) and were considered to be regions of interest if these regions were shared by 

all of the affected animals and not with any of the carrier and control animals. These regions were 

scanned for positional candidate genes based on gene function. 

 

Table 1. Number of affected and carrier DNA samples sent for SNP chip genotyping and 

regions of homozygosity, including species specific OMIA ID 

 

1OMIA http://omia.angis.org.au, - indicates no species specific OMIA ID. 2SNP50 = Illumina® 
OvineSNP50 Genotyping BeadChip (CA, USA). 3SNP80 = GeneSeek® Genomic Profiler Bovine HD Chip 

80K chip (Neogen, NE, USA). 

Disease OMIA ID1  Breed Affected
/Carrier  

SNP 
chip 

Region of interest 

Cervicothoracic 

vertebral sublaxation  

000077-9940 Merino 14/2 SNP502 OAR10 

Pulmonary hypoplasia 
with anasarca 

000493-9940 Persian 5/5 SNP502 OAR1,3,4,6,7,9,17,
25,26  

Cardiomyopathy and 
woolly haircoat 
syndrome 

000161-9913 Poll Hereford 2/0 SNP803 BTA1,4,6,12,15,24,
25  

Congenital blindness - Shorthorn 2/3 SNP803 BTA5,14,16,22,24 

Congenital contractural 
arachnodactyly 

001511-9913 Murray Grey 5/5 SNP803 BTA21  

Congenital mandibular 
prognathia 

- Droughtmaster 9/4 SNP803 BTA26 

Ichthyosis fetalis 000547-9913 Hereford  1/3 SNP803 multiple 

Niemann-Pick disease - Angus 2/2 SNP803 BTA3,4,16,24,29 
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Sanger sequencing of select candidate genes was commenced but was cost and labour 

intensive. Next generation sequencing (NGS) of affected animals for CMP, CVS, PHA and 

BCRHS using the Illumina HiSeqTM X Ten sequencing platform was performed by the Kinghorn 

Centre for Clinical Genomics (Garvan Institute of Medical Research, Darlinghurst, Australia) 

through the Ramaciotti Centre for Genomics (University of New South Wales, Sydney, Australia) 
with 150bp paired-end reads at 30X coverage (Table 2). This NGS data has been aligned to either 

the bosTau8 or oviAri3 reference genome assemblies and will be analysed for genetic variants. 

Samples of affected animals for IF, CWH and OD are undergoing sequencing using an in-house 

Illumina HiSeq® 3000 sequencing platform in Switzerland (Table 2). 

 

Table 2. Number of affected DNA samples for next generation sequencing  

 
Disease Breed Affected Expected 

coverage 
% of sequences with 
mean Q>30  

Brachygnathia, cardiomegaly and renal 
hypoplasia syndrome 

Merino 1 30X 

85.84 

Cardiomyopathy and woolly haircoat 
syndrome 

Poll Hereford 2 20X 
In progress 

Cervicothoracic vertebral sublaxation Merino 2 30X 92.16 

Congenital mandibular prognathia Droughtmaster 2 30X 86.58 

Ichthyosis fetalis Hereford 1 20X In progress 

Ichthyosis fetalis Shorthorn 1 20X In progress 

Ovine dermatosparaxis Merino 2 20X In progress 

Pulmonary hypoplasia with anasarca Persian 2 30X 90.17 

 

RESULTS AND DISCUSSION 

Homozygosity mapping has successfully revealed and/or excluded positional candidate genes 

for all of the inherited diseases currently being investigated (Table 1; Shariflou et al. 2013; 
Tammen et al. 2016). The known mutation for CCA in Angus cattle was confirmed to be present 

in the Murray Grey cattle with suspected CCA. Validation of a genetic variant in a positional 

candidate gene for NPC is ongoing. Partial Sanger sequencing of positional candidate genes for 

CVS, PHA, CMP and CWH did not reveal any disease-causing mutations and affected animals 

were therefore re-sequenced using NGS. Previous mapping of BCRHS did not identify a clear 

positional candidate gene and an affected animal sample was submitted for NGS. Known 

candidate genes for CWH and CB were excluded and alternate candidate genes need to be 

investigated within the regions of interest identified (Table 1). Strong candidate genes exist for IF 

and OD, as these diseases have been previously characterised in different breeds (Charlier et al. 

2008; Zhou et al. 2012). The affected animals tested negative for the known disease causing 

mutations and were re-sequenced due to suspected genetic heterogeneity.  

Preliminary quality control analysis of the NGS data is positive with per base sequence quality 
determined by a Phred score of Q>30 ranging from 85.84% to 92.16% (Table 2) with no over-

represented sequences identified. After aligning data to the bosTau8 or oviAri3 genome 

assemblies, allelic variations including SNPs, indels and structural variants will be identified in the 

regions of interest previously identified, with a focus on positional candidate genes identified by 

homozygosity mapping.  

The results from these studies indicate that SNP genotyping and homozygosity mapping 

methods are highly effective in identifying positional candidate genes for a range of disorders even 
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if sample sizes are small and phenotypes are poorly defined. Genome wide SNP genotyping and 

homozygosity mapping approaches have successfully identified candidate genes and causal 

mutations in a range of recessive inherited diseases in cattle, including ichthyosis fetalis in 

Chianina cattle (Charlier et al. 2008). The inclusion of NGS data to identify allelic variations will 

allow for several runs of homozygosity identified through homozygosity mapping to be further 
investigated.   

 

CENTRE CONCEPT  
The methodology framework and results described in the current research projects between the 

University of Sydney and EMAI demonstrates the success of the working relationship between 

both groups. The concept of an independent research centre geared towards the molecular 

characterisation of emerging inherited diseases in livestock could provide a central point of contact 

for veterinarians, breeders, producers and breed societies. It has the potential to increase 

confidential reporting of suspected cases and provide research services with the aim to rapidly 

develop low-cost diagnostic tests based on frameworks that are already implemented at both 

institutions. The availability of diagnostic DNA tests will allow for informed breeding decisions to 

be made to avoid potentially devastating profit loss and animal welfare issues.  
The centre will aim to publish validated results which will increase awareness for the role of 

emerging inherited diseases within Australian livestock populations. The future development of 

the centre will be focussed on developing a stream-lined research and diagnostic service that may 

involve additional research and industry groups. The key driving factor behind successfully 

developing an independent centre will be the collaborative relationships and shared resources 

between numerous research groups to encourage greater surveillance of emerging inherited disease 

in livestock across NSW and nation-wide. 
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SUMMARY 

One of the barriers to the adoption of Australian Breeding Values (ABVs) is not having 

evidence that high genetic merit dairy cows actually contribute more to farm profit in practice. 

Using historical financial data collected as part of the Dairy Farm Monitor (DFM) Project, and 

historical cow production, health and mating records, a method was developed to compare the 
estimated contribution to farm profit of cows of differing genetic merit. High genetic merit cows 

contributed between $150 and $235 per cow more to farm profit each year without compromising 

their productive life, or incurring higher breeding or mastitis treatment costs. 

  

INTRODUCTION 

Although the Australian dairy industry is making genetic progress, the rate of actual genetic 

gain, $8/year (≈0.1 genetic standard deviations) increase in the Balanced Performance Index (BPI), 

is less than half of what is theoretically feasible. Under optimal conditions, genetic gain is 

projected to increase between 0.21 and 0.5 genetic standard deviations per year for progeny-testing 

and genomic selection respectively (Schaeffer 2006). The ImProving Herds project was 

established with the goal of improving farm profit through demonstrating the value of genetics and 
herd improvement in the dairy industry, a key goal recognised in the national Herd Improvement 

2020 Strategy. Dairy Australia recommended that increased focus be placed on case studies and 

regionally specific extension activities to increase knowledge, trust and use of genetic tools in the 

dairy industry. To incorporate this suggestion, the ImProving Herds project is centred around 34 

focus farms. 

An across herd study of Irish dairy herds (n= 1131) found a 1 unit increase in the Economic 

Breeding Index was associated with a €1.94 (≈ AU$2.76) increase in net margin per cow, after 

adjustment for year, stocking rate, herd size and purchased feed (Ramsbottom et al. 2012). This 

value was very close to the €2 increase in net margin per cow predicted. The Australian dairy 

industry is not suited to an across herd economic analysis due to climatic variability, diverse 

feeding and management practices and variability in milk payment systems which exacerbate 

between herd variation in economic performance. To control for this variability, we elected to 
perform a within herd analysis, with focus farms from the ImProving Herds project as case studies. 

The aims of this study were to 1) develop a method to calculate the contribution an individual 

cow makes to farm profit over her lifetime, and 2) investigate the relationship between cow 

genetic merit, profit and performance at the individual farm level. 

 

MATERIALS AND METHODS 

Two historical and independent databases were used for this study of 3 Victorian dairy farms: 

1) the DFM database; the DFM project is a joint initiative between Agriculture Victoria and Dairy 

Australia which annually collects and analyses detailed financial and farm production data from 
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dairy farms, and 2) DataGene; the national database of cow production, pedigree and ABV 

records. Within-herd long term averages over the 2008 to 2016 financial years, inclusive, were 

calculated for farm financial data, adjusted to present day values, and herd production data. All 

herds had cow lactation, health and mating records and at least 2/3 of cows had ABVs. To be 

included in this analysis, a cow’s entire productive life had to fall within the 2008 to 2016 
financial years, inclusive. 

The individual contribution that each cow made to farm profit over her lifetime (Cow$) was 

calculated using the equation: 

𝐶𝑜𝑤$ = $𝑚𝑖𝑙𝑘 + $𝑐𝑎𝑙𝑓 + $𝑐𝑢𝑙𝑙 − ($𝑟𝑒𝑎𝑟 + $𝑓𝑒𝑒𝑑 + $𝑚𝑎𝑠𝑡𝑖𝑡𝑖𝑠 + $𝑟𝑒𝑝𝑟𝑜 +  $ℎ𝑒𝑟𝑑) 

Lifetime milk income ($milk) was calculated by multiplying total milk solids (MS) by average milk 
price ($/kg MS). Income from calf sales ($calf), and costs of mastitis treatment ($mastitis) and animal 

mating ($repro) were calculated by summing the number of incidences of each event and 

multiplying by the dollar value, in $ per cow, of one occurrence of that event. A cow’s salvage 

value ($cull) was assumed to be the average within-herd cull cow price unless she was recorded as 

dead, then $cull was $0. If more than 12 months had passed since the cow was last seen in the herd 

she was assumed to have been sold. The initial investment in rearing the cow to the point of 

entering the milking herd ($rear) was assumed to be $1606 (Byrne et al. 2016). Feed costs were 

calculated by multiplying the within-herd average cost of feed consumed ($/Megajoule of 

metabolisable energy, $/MJ ME) by each cow’s energy requirements. Cow energy requirements 

were calculated using the equations in CSIRO (2007). They accounted for cow age and breed, 

lactation and pregnancy records and herd level information about distance walked each day, farm 

topography, liveweight and condition score loss during lactation. Dairy and general herd health 
costs ($herd) were assumed to be proportional to the cow’s productive life. Day 1 was taken as the 

date of first calving. To account for discounting over time, all elements of the profit equation were 

calculated in 365 day periods, a 5% discount rate applied and then summed together.  

Cow ABVs are breed specific. The 3 herds had Holstein (Herd C), Jersey (Herd A) and mixed 

Jersey and Holstein (Herd B) cows. DataGene presents breed specific genetic evaluations (with 

different bases for each breed), so the original solutions were obtained (from multi-breed models) 

and rescaled using the Holstein ABV parameters, enabling a within-herd, but across breed analysis 

to be used. The BPI is the Australia dairy industry’s main index. It was developed using a bio-

economic model to balance improvements in longevity, health, type, fertility and production to 

maximise farm profit (Byrne et al. 2016). For this study, within each herd each cow was classified 

into two sub-herds, either low or high BPI based on whether she was below or above the median 
BPI for her contemporary group; herd and year of first calving. A linear model weighted by cow 

productive life (in days) was used to test for differences in annualized physical and financial 

measures of cow performance in the low and high BPI sub-herds. This analysis was performed 

separately for each herd. The results below are presented as the estimate of the difference between 

the two sub-herds within each of the 3 herds from the weighted linear model.  

 

RESULTS AND DISCUSSION 

In all 3 herds, splitting the herd based on median BPI resulted in significant (p<0.05) differences in 

ABV between the high and low BPI sub-herds (Table 1). The difference in BPI between the two sub-

herds ranged from $78 to $116. All high BPI sub-herds had significantly (p<0.001) higher BPI, milk 

production and survival ABVs than the below BPI sub-herds (Table 1). Two out of three high BPI 

sub-herds also had significantly higher cell count ABVs and lower fertility ABVs. 
Cows in the high BPI sub-herds produced significantly (p<0.05) more litres of milk, and kilograms 

of fat and protein each year than their low BPI counterparts (Table 2). All high BPI sub-herds tended 

to have cows with a longer productive life, but this difference was only significant (p<0.05) for 1 herd.  
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Table 1 Estimated difference (s.e) in ABVs between high and low BPI sub-herds from 

weighted linear model. Significance of p-value (NS >0.05,* = <0.05, ** = <0.01, *** = <0.001) 

 

Herd BPI Protein Milk Fat Cell count Fertility Survival 

A 78 (5)*** 10 (1)*** 269 (71)*** 17 (2)*** 3 (2)NS 0 (1)NS 2 (0)*** 

B 94 (6)*** 13 (1)*** 376 (66)*** 18 (2)*** 6 (2)** -1 (1)* 2 (0)*** 

C 116 (4) *** 14 (1)*** 340 (45)*** 21 (2)*** 3 (1)* -1 (0)** 3 (0)*** 

 

Table 2 Estimated difference (s.e) in average physical parameters between cows in high and 

low BPI sub-herds from weighted linear model. Significance of p-value (NS>0.05,* = <0.05, 

** = <0.01, *** = <0.001) 

  

Herd 
Milk 

(L/yr) 

Fat 

(kg/yr) 

Prot 

(kg/yr) 

Productive 

life (months) 

Calving 

interval 

(days) 

Lactation 

length 

(days) 

No. calves 

(calves/yr) 

A 
 

434 (154) 
** 

26 (6) 
*** 

19 (5) 
*** 

4 (3) 
NS 

-11 (10) 
NS 

1 (10) 
NS 

0.0 (0.0) 
NS 

B 
 

411 (131) 
** 

20 (5) 
*** 

19 (4) 
*** 

5 (3) 
NS 

22 (16) 
NS 

19 (14) 
NS 

0.0 (0.0) 
NS 

C 
 

265 (125) 
* 

27 (4) 
*** 

19 (4) 
*** 

4 (2) 
* 

34 (10) 
*** 

25 (8) 
** 

-0.1 (0.0) 
*** 

  

All high BPI sub-herds were significantly (p<0.01) more profitable, with the average difference 

ranging from $150 to $235 per cow/year (Table 3). The main source of this difference was greater 

yearly milk income, with cows in high BPI sub-herds generating on average between $185 and $258 

more income from milk sales each year. Although feed costs were higher in the high BPI sub-herds, 
the extra cost of feed ranged from $30 to $42, which was more than compensated for by additional 

milk income. Increases to milk income were achieved without decreasing ,and in one case 

significantly (p<0.05) increasing, the average productive life of the high BPI sub-herds (Table 2) and 

without significantly (p>0.05) increasing mastitis costs (Table 3). This finding goes some way to 

dispel the widely-held belief that high producing animals break down earlier and are more prone to 

mastitis. Although cows in high BPI sub-herd C had significantly (p<0.001) longer calving intervals 

and fewer calves per year (Table 2), they also had significantly longer lactations (p<0.01) and a 

tendency (p=0.10) for lower AI costs each year. 

 

Table 3 Estimated difference (s.e) in the contribution each cow makes to profit (Cow$) and 

Cow$ components between high and low BPI sub-herds from weighted linear model. 

Significance of p-value (NS >0.05,* = <0.05, ** = <0.01, *** = <0.001) 

 

  Income ($/yr) Costs ($/yr) 

Herd Cow$ 

($/yr) 

Milk Calf  Feed  AI Preg 

test  

Mastitis  Rearing  

A 
 

178 (50) 
*** 

208 (51) 
*** 

-2 (4) 
NS 

-42 (16) 
** 

6 (4) 
NS 

0 (0) 
NS 

-3 (3) 
NS 

52 (44) 
NS 

B 
 

150 (49) 
** 

185 (43) 
*** 

-7 (4) 
NS 

-34 (12) 
** 

-4 (4) 
NS 

0 (0) 
NS 

-3 (3) 
NS 

55 (39) 
NS 

C 
 

235 (40) 

*** 
258 (49) 

*** 
-10 (2) 

*** 
-30 (12) 

* 
6 (3) 

NS 
0 (0) 

NS 
1 (3) 

NS 
31 (29) 

NS 
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At the national level the regression of profit and BPI is expected to be a $1 increase in profit 

for every unit increase in BPI (Byrne et al. 2016). In the three case study herds, the ratio between 

Cow$ and BPI was higher than this at $2.28, $1.60, $2.03 for herds A, B, C respectively. This 

differs from Ramsbottom et al. (2012) whose €1.94 (≈AU$2.76) increase in net margin per cow 

was very close to the expected increase of €2.00. A possible reason is that the Victorian herds in 
our study are not representative of the national average, whereas Ramsbottom et al.’s (2012) larger 

study of 1131 herds better captures the national variation in Irish dairy herds. An indication this 

may be the case is that average feed cost for the herds in our study ranged from $0.016 to $0.022/ 

MJ ME whilst the national average purchased feed cost is $0.025 /MJ ME (Byrne et al. 2016).  

The phenotypic records that were used to calculate Cow$ have also been used in cow ABV 

estimation. An alternate approach that uses ABVs derived from parent average or genomic 

prediction could also be used. A parent average analysis was conducted, with similar results 

obtained. Differences in Cow$ between the sub-herds selected based on parent average BPI were 

significant (p<0.05) in two herds and approached significance (p<0.1) in the third herd. In 

choosing which set of results to present, the end goal of the ImProving Herds project needs to be 

considered. The goal of the ImProving Herds project is to increase knowledge, trust and usage of 

genetic tools, such as ABVs and the BPI index, in the Australian dairy industry. For the purposes 
of demonstrating that ABVs “work” to farmers it is therefore most relevant to use the ABVs in the 

format they appear in existing industry tools. 

This analysis required in depth historical financial, pedigree, performance and management 

information from the case study herds which is not available on all focus farms to such a high level 

of detail. A simplified approach using regional historical financial information will enable a 

similar analysis of the project’s 34 focus farms, and potentially other dairy farms, who have cow 

ABVs and accurate lactation records. The transferability of the approach used here to other 

livestock species will be determined by the availability of detailed phenotypes for key contributors 

to farm profit and validated financial records. 

 

CONCLUSION 
Using an independent financial data source, the DFM project, it was successfully shown that 

the assumption made at the national level about the positive relationship between cow genetic 

merit and cow contribution to farm profit holds true at the individual farm level. Although high 

genetic merit animals have higher feed costs, these are more than compensated for by greater milk 

income. Furthermore, our analysis indicates that high BPI cows do not have a shorter productive 

life, nor higher mastitis incidence or mating costs. These case studies provide the opportunity to 

contribute to localised extension activities and help build the dairy industry’s trust, knowledge and 

use of ABVs.  

 

ACKNOWLEDGEMENTS  

The authors gratefully acknowledge the farmers who provided access to their data and Bill 

Malcolm, University of Melbourne, for providing feedback during method development. 
ImProving Herds is funded by the Gardiner Foundation and Dairy Australia through collaborative 

support from the Department of Economic Development, Jobs, Transport and Resources, Victoria, 

DataGene Ltd., Holstein Australia and the National Herd Improvement Association of Australia. 

 

REFERENCES 
Byrne T.J., et al. (2016) J. Dairy Sci. 99:8146 

CSIRO (2007) ‘Nutrient requirements of domesticated ruminants.’ CSIRO Publishing, Melbourne 

Ramsbottom G., Cromie, A.R., Horan, B. and Berry, D.P. (2012) Anim. 6:1031 

Schaeffer L.R. (2006), J. Anim Breed Genet 123:218 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:23-26 

23 

THERE IS NOTHING ROUTINE ABOUT ROUTINE TESTING. A PERSPECTIVE 

FROM THE UNIVERSITY OF QUEENSLAND’S ANIMAL GENETICS LABORATORY 

 

R.E. Lyons1 and S. Buttsworth1 

 
1The University of Queensland, School of Veterinary Sciences, Gatton, QLD 4343, Australia. 

 

SUMMARY 

The following article is a reflection on current trends and challenges in genetic testing across the 

livestock sector, particularly the cattle industry, from the perspective of a significant genetic testing 

laboratory based at The University of Queensland.  

 

INTRODUCTION 

Much has changed in genotyping technologies since The University of Queensland’s Animal 

Genetics Laboratory (AGL) was first established in 1985. While cattle makes up the single largest 

species tested at AGL, we also cater for sheep, alpaca, goat and pigs, as well as services and research 

for the aquaculture industry, fisheries and wildlife ecology research groups.   Below are insights into 
the operations of a successful genetics laboratory. 

 

AGL DOES MUCH MORE THAN SIMPLY GENOTYPE CATTLE. 

AGL serves a very wide client base, ranging from research organisations to breed societies, 

pastoral companies and small to medium-sized livestock producers. Additionally we provide support 

to the Gatton-based research communities, state police services and others. Hence, it is a requirement 

for AGL to be both nimble and adaptable. Australian farmers are a unique clientele operating a range 

of diverse production systems in different terrains and producing cattle for various markets, all 

whom have specialised requirements and expectations.  

Therefore the range of services provided needs to be multi-faceted. While for some clients the 

experience may be purely transactional (samples in, results reported), many others are looking for a 
more personalised & ongoing service. AGL’s clients are country people that appreciate the ability 

to discuss testing options and interpretations. In many cases AGL staff have built both rapport and 

understanding of the herds of many clients, Genotyping results are often merely the beginning, or 

continuation of, a long and prosperous relationship. In many cases, AGL retains critical herd-specific 

knowledge that spans many years, and many property managers’ tenures. 

 

GROWTH/MARKET TRENDS 

The number of samples AGL receives has grown considerably (Figure 1). Looking at the last 5 

years (2011-2016) alone, the growth in cattle samples, as measured by case numbers assigned per 

annum, has averaged 13.4% per annum. This is actually an underestimate of testing volumes given 

that in the last year or 2 there has been significant client-driven demand for retesting of animals 

already in the system, and these are not captured in Figure 1.  
It is also instructive to look at testing trends over this period. From 2012 - 2016 the number of 

samples processed on microsatellites (MiP) has remained relatively stable at AGL, excluding a 

larger than normal demand in 2012 (Figure 2). During this time there has been a rapid increase in 

the use of genomics and SNP-base parentage (SEQ) requests. In the case of the GeneSeek Genomic 

Profiler low-density BeadChip (GGPLD), usage was initially for research projects, but the steadily 

increasing demand for the assay in 2015 and 2016 is primarily due to increased demand from 

livestock producers. 
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Figure 1. Cattle samples received per full year 1993 – 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Count of parentage and genomic testing at AGL 2012-2016.  

 

THE CSI EFFECT 

The Crime Scene Investigation (CSI) effect is any way in which the exaggerated portrayal of 

forensic science on crime television shows influences public perception (Cole and Dioso-Villa 

2007). It is very relevant to those working in customer-facing roles within the scientific profession.  

The CSI effect manifests itself in a multitude of ways at AGL but most commonly in regards to 

unrealistic expectations of turnaround time or the amount and quality of sample that is required. 

When parentage does not immediately resolve, it is often assumed that AGL can simply run it against 

everything in the database to identify the correct parent. This not only assumes that the sire or dam 
is ‘in the system”, but also that AGL has the resources to develop the equivalent of a National DNA 

Data Bank for Australian Cattle and that sufficient markers are available to discriminate every 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:23-26 

25 

individual. It is important to get the message out to all users and potential users of genetic and 

genomic testing services that ‘real science’ does not happen this way.  

 

PARENTAGE CHALLENGES 

From the parentage viewpoint, northern herds tend to be more complex than southern herds. This 
is due to a number of factors including sire-only parentage, larger overall herd and parent lists, 

difficulty in providing complete sire lists and a greater chance of uncaptured parents. There are also 

significant logistical challenges in providing resubmissions for samples that fail genotyping or 

produce anomalous results. 

Success rates of northern parentage verification (PV) analyses can still be maximised, despite 

these aforementioned constraints, with open and frequent communication between AGL staff and 

the client. The PV success rate of a large northern herd that used this tactic was considerably 

improved over a 3 year period (Table 1). 

 

Table 1. Parentage verification success rates for a large Northern herd 

  
Analysis 1 Analysis 2 Analysis 3 

Year 1 46% 71% 89% 

Year 2 61% 89% 97% 

Year 3 95% 97%  

 

FROM MICROSATELLITES TO SNP 

Much has been written about the promises of SNP-based parentage verification (SNP_PV) in 

livestock and animal traceability across the supply chain (Heaton et al. 2002, Van Eenennaam et al. 

2007, Baruch and Weller 2008). However, costs associated with moving a breed from PV using MiP 

to SNP_PV are substantial, as are the logistical challenges. Retaining unused samples (with greater 
than 500,000 hair samples archived) at AGL has helped significantly reduce time spent sourcing 

new samples for animals, especially when animals are deceased. Once the decision is made to 

transition across to SNP_PV, experience shows us that very clear communications is essential to 

avoid issue of incompatible profiles between sires, dams and progeny. For smaller breeds, where 

there remains a lack of incentive to use genomics, then the change to SNP_PV is uneconomical and 

PV using MiP will probably remain part of the AGL offerings for many years to come. However as 

price per SNP test falls, the move to SNP will likely become attractive to even the smaller breeds. 

 

CHALLENGES OF SNP REVOLUTION 

The challenge in context of the Australian market has been trying to find the sweet spot of 

sufficient markers for accurate parentage at a price deemed acceptable. In an industry as diverse as 
the Australian cattle industry this has proven to be no simple task. AGL currently offers 2 SNP-

based parentage assays: SEQ1 iPLEX panels contained a total of 138 SNP including 95 ISAG core 

plus 4 ISAG additional SNP, or SEQ2 consisted of 59 additional SNP for a combined total of 197 

markers genotyped and total of 97 ISAG core SNP. These extra markers were developed to be 

informative in Brahman and Tropical Composite breeds. As reported previously (Lyons et al, 2013), 

we demonstrated that the ISAG-recommended core bovine SNP parentage panel is not sufficient to 

provide accurate parentage verification in many common Australia production systems. Further, we 

acknowledged that these panels were less than ideal. A number of publications over recent years has 

highlighted the advantage of larger numbers of SNP for parentage (Strucken et al. 2014; McClure 

et al., 2015), but these rarely take into account the economic reality of the market and current 

technologies.  
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PRICING CHALLENGES 

Price expectations of the livestock industry do not necessarily align with commercial realities of 

test prices. Unlike supermarkets or other commodity-based services, and perhaps unlike standard 

R&D within research organisations, there is much more to be considered than the consumables’ 

cost. Significant challenges and considerations in development and implementation of testing need 
to be both understood and appropriately costed. For any test performed at AGL, the samples will 

pass through up to 6 hands from arrival to reporting and beyond. In simple terms, there is reception, 

cataloguing, sample preparation, DNA extraction and QC, pre-PCR, post-PCR, data analysis and 

reporting data in a multitude of different formats prone to change regularly. Standardisation of 

reporting remains a challenge across the industry.. As already discussed, AGL prides itself on doing 

more than simply churning out data. AGL liaises with clients regularly and has intimate knowledge 

of herds and breeding regimes based on prior testing. The labour costs at AGL associated with pre- 

and post-testing consultations and follow-up discussions with are significant. 

Other factors often overlooked, but of critical importance to the feasibility of genetic diagnostic 

labs include: patent and licensing considerations or costs, maintenance and depreciation costs for 

equipment, newer technology upgrades necessary to remain competitive, the additional costs of 

validation of novel platforms or assays, data and sample storage, informatics for interpretation of 
genomic variation, volume discounting options and commercial risk mitigation.  

 

THE FUTURE 
Much has been written about the decreasing cost per marker for genotyping and/or sequencing. 

The large number of high-throughput SNP genotyping technologies available are growing, but this 

in itself offers many challenges. Capital investments previously made will largely dictate services 

offered, and at AGL the reliability and reproducibility of the fixed Illumina Infinium platform has 

been very successful. Minimizing turnaround times and throughput variability remain important 

factors that have influenced AGL’s model of developing in-house facilities rather than outsourcing. 

Genotype-By-Sequence (GBS) is often suggested as the way of the future, and certainly has a role 

in R&D or where flexibility is required. However, one major challenge with GBS approaches, 
especially for high-throughput genotyping facilities, is the considerable investment needed for 

bioinformatics support to properly analyse, curate and store the massive amounts of sequence data 

obtained from running GBS.  

At the end of the day producer uptake of these technologies is not driven by cost-per-marker 

statistics. Producers are seeking a reproducible, highly accurate and informative result that can be 

translated into achieving their breeding objectives and/or a more saleable item. Reduced costs will 

be welcomed, but only if there is no compromise to results, and to date that has been the challenge. 

Attaining the ‘holy grail’ of 1 test per sample for everything you could need including Parentage, 

Recessives, Trait markers, EBVs, and ultimately the ability to make early selection decisions, is 

becoming a more realistic goal. 
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SUMMARY 

In sheep, genetic correlations between purebred and crossbred performance have not been 

studied extensively. The availability of genomic data on both purebreds and crossbreds makes it 

possible to estimate these genetic correlations for Merinos. Data of ~5000 purebred Merinos and ~ 

5000 crossbred Merinos (sired by White Suffolk, Poll Dorset or Border Leicester) was used and the 

animals were genotyped with the Ovine 50K and phenotyped for three weight traits; weaning weight 

(WWT), post-weaning weight (PWWT) and carcass weight (CWT). Results showed a significant 

deviation from 1 for PWWT namely 0.61. While the correlation for WWT and CWT were not 
significant at 0.96 and 0.69 respectively. For a Merino breeding programs where emphasize is on 

increasing crossbred performance for PWWT (and CWT), purebred and crossbred performance 

should be combined in the genetic evaluation to achieve a good response to selection.   

 

INTRODUCTION 

Routine genetic evaluation of sheep in Australia is generally based on purebred performance. 

However, most lambs are produced as crossbreds For optimal ranking of breeding animals it is 

important to know whether breeding values predicted based on purebred performance, are also good 

predictors for crossbred performance. For example, a genetic correlation between purebred and 

crossbred performance (rpc) of 0.8 (accurately estimated) will result in a loss in response of 20% in 

crossbreds when selection is based on purebred performance (Bijma et al. 2014). Some studies have 
identified moderate to high estimates for rpc in Australian sheep (Ingham et al. 2005, Banks et al. 

2009, Brown et al. 2015). These studies were all based on terminal sires having both purebred and 

crossbred offspring. The estimate of rpc could in these cases be confounded with a potential 

genotype-by-environment interaction effect. It has been hard to estimate rpc for Merinos as Merinos 

rams are rarely mated to other breeds. However, since the availability of genomic data, new 

opportunities arise as genetic parameters can be estimated even without structured family designs. 

For example, rpc can be estimated through genomic relationships between purebred Merinos and 

crossbreds where the dam is a Merino. Such data exists abundantly in the Sheep CRC information 

Nucleus.  

The aim of our study is to estimate rpc for three weight traits, using genomic and phenotypic data 

on purebred Merinos and crosses between sires from terminal and maternal breeds and Merino dams. 

 

MATERIALS AND METHODS 

Animals, phenotypic and genotypic data. Data was extracted from two research datasets 

known as the Information Nucleus Flock (INF, (Van der Werf et al. 2010)) and the Sheep Genomics 

Flock (SGF, (White et al. 2012)). The data consisted of purebred Merinos (~40%) and crosses of 

terminal and maternal sires with Merino dams. Assigned genetic groups of base animals alongside 

pedigree information was used to determine the breed proportion. The sum of all Merino strains 

(Ultra/Superfine, Fine/Fine-medium, Medium/Strong, or undefined) was used to determine the 

percentage of purebred Merino. For this study, the crossbred animals should be at least 45% Merino 

and 45% from either Border Leicester (BL), Poll Dorset (PD) or White Suffolk (WS). The purebred 
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Merino were >95% Merino. Animals were genotyped using the 50k Illumina-Ovine SNP chip and 

48,371 SNPs were used. Further quality control included Mendelian inconsistencies, plotting of the 

principal components to visually check breed assignment and removal of duplicate samples (off-

diagonal relationship >0.9). To avoid that the covariance between purebred and crossbred offspring 

is confounded with some maternal effects, we randomly removed one of the offspring. In total the 
dataset consisted of 9,126 animals with 5,066 purebred Merino, 1,489 BL x Merino, 1,407 PD x 

Merino and 1,164 White Suffolk x Merino.  

Recorded phenotypes for this study were weaning weight (WWT), post-weaning weight 

(PWWT) and carcass weight (CWT). Table 1 shows the number of phenotypic records for the 

Merino and their crosses with phenotypic information on the weight traits. 

 

 Table 1. Number of observation and phenotypic mean for purebred Merinos and their crosses. 

Breed1 N 

WWT2 

Mean 

WWT 

N 

PWWT3 

Mean 

PWWT 

N 

CWT4 

Mean 

CWT 

Merino 5066 24.43 4623 38.67 1925 21.39 

BL x Merino 1489 27.39 1095 44.24 729 22.07 

PD x Merino 1407 28.47 739 45.85 1361 23.00 

WS x Merino 1164 28.53 613 46.11 1128 22.89 
1BL=Border Leicester, PD=Poll Dorset, WS=White Suffolk. 2WWT=weaning weight. 

3PWWT=Post-weaning weight. 4CWT=carcass weight. 
 

Statistical analysis. Fixed effects fitted were derived from previous studies using similar data 

(Moghaddar et al. 2014) and were; birth type, rearing type, gender, age at measurement, breed and 

contemporary group defines as flock, birth year and management group.  

The relationship matrix was constructed using genotypes to derive the genomic relationship 

matrix (Yang et al. 2010).  

Linear mixed models were used to estimate the variance components and the data was fitted in 

the program MTG2 (Lee et al. 2016). Depending on the trait different random effects were fitted. 

The simplest model was chosen where the Likelihood Ratio Test showed no significant difference 

between including an extra random effect or not (results not shown).   

Model 1 for WWT:  emZaZXbY  21  

Model 2 for PWWT: esfZmZaZXbY  321  

Model 3 for CWT: esfZaZXbY  31  

Where Y is the vector with phenotypes, b is a vector of fixed effects, a is a vector of random 

additive genetic effects, m is the effect the dam, sf is a sire by flock interaction effects and e is a 

vector of random residual effects.  

Bivariate analyses was used for all three traits, where the traits were defined by being measured 

either in purebred or crossbred animals, with the resulting correlation between additive genetic 

effects representing a correlation between purebred and crossbred performance (rpc). Covariance 

between maternal effects in the purebred and crossbred dataset was set to zero, as dams were not 

allowed to have both crossbred and purebred offspring. Similarly, the covariance of the sire by flock 

interaction for purebred and crossbred performance was set to zero.  
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RESULTS  

In Figure 1 the first two principle components (PC) are shown to indicate breed content of the 

dataset. The first PC explained 25.6 % of the genetic variance and the 2nd PC explained 19.7%. The 

first PC separates the Merinos from BL and the second PC separates WS and PD.   

  

 

Figure 1. Plot of principal components (PC) 

1 and 2 with the percentage of variance 

explained in brackets, where MR=Merino, 

BL=Border Leicester, PD=Poll Dorset, and 

WS=White Suffolk. 

 

Figure 2. The genetic correlation between 

purebred (Merino) and crossbred 

performance for three weight traits. WWT= 

Weaning weight, PWWT=Post-weaning 

weight, and CWT=Carcass weight. 

 

Table 2. Additive genetic variance (
2

a ), maternal (
2

m ), sire by flock interaction (
2

sf ) and 

2h  for each trait for purebred (PB) and crossbred (XB) performance. 

    2

a  2

m  
2

sf  2h  

Trait1 PB/XB comp2 se3 comp Se comp se comp se 

WWT PB 2.22 0.27 2.02 0.25 
 

 0.22 0.03  
XB 2.42 0.44 3.53 0.37 

 
 0.19 0.03 

PWWT PB 9.65 0.86 1.57 0.58 1.65 0.34 0.38 0.03  
XB 7.79 1.69 2.44 1.10 3.30 0.73 0.28 0.06 

CWT PB 2.65 0.41 
  

0.60 0.20 0.38 0.05  
XB 1.16 0.24 

  
0.37 0.11 0.20 0.04 

1WWT=weaning weight; PWWT=Post-weaning weight; CWT=carcass weight. 2Estimate of the 

variance component or ratio.3Approximate standard error on the estimate. 

 

The results of the bivariate analyses are shown in Table 2 and the genetic correlation between 

purebred and crossbred performance (rpc) with a 95% confidence interval is shown in Figure 2. The 

trait PWWT had the lowest rpc which was 0.61 and was significantly different from one, while WWT 

was the highest (0.96). The trait CWT had a genetic correlation similar to PWWT (0.69), but due to 

lower number of records, the standard error on the estimate is larger. Results by breed group (WS X 

MR, BL X MR and PD X MR) showed similar trends (rpc
 high for WWT and more variable for 

PWWT and CWT). In general, the rpc for  WS X MR and MR where lower than PD X MR or BL X 
MR, but due to the limited size of the data sets, standard errors were large (>0.20) and clear 

conclusions could not be drawn (results not shown). 
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DISCUSSION AND CONCLUSION 

Results from the bivariate analysis show similar or slightly lower heritabilities based on genomic 

relationships compared to previous studies (Daetwyler et al. 2012, Moghaddar et al. 2014) ranging 

between 0.2 and 0.3. When the genetic correlation between purebred and crossbred performance 

(rpc) was lower (i.e. for PWWT and CWT), the genetic variance as well as the heritability was larger 
in purebred animals than in crossbred animals. Brown et al (2015) found genetic correlations, which 

were not significantly deviating from one for similar weight traits. Their results were based on 

purebred Poll Dorset and their crosses. The current study focussed on a maternal contribution to 

crossbred performance, while other studies have often focussed on the paternal contribution to 

crossbred performance. A study by Moghaddar et al (2014) found a lower prediction accuracy for 

crossbreds for the trait PWWT for a similar dataset (genotyped Merinos including their crossbreds), 

lower than what was expected also after accounting for the number of haplotypes, i.e. twice the 

number of crossbreds gave lower accuracy than purebreds. This result could be partly explained by 

the rpc being lower than 1. The number of studies calculating rpc in sheep are limited. Other studies 

have mainly focused on performance traits in pigs and poultry where results seem to be very diverse 

in estimated rpc also due to a lack of power in the datasets used (personal communication Y.C.J. 

Wientjes).  
Generally the SE on the estimated genetic correlations were large in the current study. The SE 

was larger than expected when using the same size of dataset, but with paternal half sib groups 

(Falconer et al. 1996). This is likely a reflection of the smaller degree of relationship between the 

dam contributions and sire contributions.    

To conclude, both crossbred performance and purebred performance need to be included in the 

estimation of the breeding values to increase crossbred performance of Merino crosses, especially 

for PWWT and CWT. In a Merino breeding program where both wool and meat production are 

selected for, the crossbred performance for production traits is relevant. If selection will be only 

based on purebred performance, a reduced selection response of around 40% can be expected for 

PWWT and CWT in the crossbreds. Therefore, genetic evaluation on traits such as PWWT and 

CWT should be based on both purebred and crossbred performance. 
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SUMMARY 

Data from the Sheep Genetics database was used in investigation of the genetic relationships 

between components of reproduction and traits which may be useful indirect selection criteria for 

reproduction rate in Merino sheep. Pre-joining weight as well as fat and eye muscle depth were 

favourably genetically correlated with all reproduction traits except ewe rearing ability, as were 

more favourable scores for maternal behaviour, wrinkle and face cover. Correlations with pre-

joining condition score were only significant when unadjusted for live weight. Maternal behaviour 

score was favourably correlated with all reproduction traits except ewe rearing ability but the 

standard errors were large, and more data are required to improve the precision of estimates. These 
results suggest that these traits could be recorded by breeders and included in the genetic evaluation 

system to improve the accuracy of selection for reproduction rate in Merino sheep. 

 

INTRODUCTION 

The Sheep Genetics (SG) genetic evaluation system produces Australian Sheep Breeding Values 

(ASBVs) for net reproduction rate with two trait definitions, number of lambs born or weaned per 

ewe joined (nlb and nlw respectively). While this has worked adequately in the past there are a 

number of key benefits from moving towards component trait analyses, including the ability to fit 

different models to each trait, allowing targeted selection for components and optimal use of the 

data available from industry.  

As reproduction traits are lowly heritable, sex-linked and expressed later in life, the accuracy of 
ASBVs, particularly in young animals, can be increased through the use of information on correlated 

traits. To make use of such correlated information, accurate estimates of the genetic and phenotypic 

correlations between key traits are required, many of which are not currently available in the 

literature. Based on the estimates presented by Hatcher et al. (2015), Brown and Swan (2016), 

Brown et al. (2015) and many earlier publications, important relationships exist between production 

and reproduction traits which could contribute to the estimation of breeding values, and the 

development of selection indexes. 

The aim of this paper is to estimate the correlations between some key production traits and 

reproduction traits in Merino sheep. 

 

MATERIALS AND METHODS 

Data. Pedigree and performance data were extracted from the Sheep Genetics MERINOSELECT 
database (Brown et al. 2007). This database consists of pedigree and performance records submitted 

by Australian and New Zealand Merino ram breeders, and is used for genetic evaluation purposes. 

The database also contains information from the Sheep CRC Information Nucleus Flock (INF) and 

the Resource Flock. From these data all animals with at least sire known, born 2000 and later, and 

from flocks with a history of recording reproduction traits were included. Data were extracted for 

all animals with early breech wrinkle (ebwr), late body wrinkle (lbdwr), late face cover (lface), post-

weaning fat and eye muscle depth (pfat and pemd) and yearling fat and eye muscle depth (yfat and 

yemd). Annual ewe records were also extracted for pre-joining weight (pjwt), pre-joining condition 

score (pjcs), number of lambs born and weaned per ewe joined (nlb and nlw), maternal behaviour 
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of the ewe at lambing (mbs, 1 to 6, with 1 being best), ewe fertility (fert, dry or pregnant), litter size 

defined as the number of lambs born per ewe lambing (ls) and ewe rearing ability defined as the 

proportion of lambs weaned to lambs born per ewe lambing (era).  

The pedigree was built using all ancestral information available. This resulted in pedigree files 

comprising between 78,563 and 191,392 animals for the combined dataset depending on the trait 
combination being analysed. A summary of the number of records available for each trait in each 

data set is shown in Table 1. The number of animals with records for two traits ranged from 1479 

for yfat and era to 20,847 for pjwt and nlb. At the sire level, this range corresponded to 226 common 

sires for lface and era to 891 for pjwt and nlb. 

 

Table 1: Summary of raw data used for each trait 
 

Trait Records Animals Sires Flocks Mean SD Min Max 

pjwt 20,847 13,315 891 27 49.97 9.21 24.00 105.50 

pjcs 8,298 4,433 388 17 3.03 0.53 1.00 5.00 

pfat 22,088 22,088 912 46 2.25 0.51 0.60 5.20 

yfat 59,488 59,488 1,919 71 2.50 0.57 0.50 7.60 

yemd 61,986 61,986 2,046 75 23.60 4.32 10.00 45.00 

pemd 22,293 22,293 924 47 22.82 3.82 10.00 41.00 

ebwr 85,779 85,779 1,509 55 2.27 0.99 1.00 5.00 

lbdwr 35,627 35,627 928 28 2.01 0.87 1.00 5.00 

lface 26,572 26,572 776 27 2.52 0.87 1.00 5.00 

mbs 4,769 3,218 333 10 2.19 1.01 1.00 6.00 
nlb 73,227 34,840 2,180 53 1.18 0.65 0.00 4.00 

nlw 60,639 29,693 1,925 49 1.02 0.68 0.00 4.00 

fert 73,227 34,840 2,180 53 0.87 0.33 0.00 1.00 

ls 63,918 31,565 2,113 53 1.35 0.51 1.00 4.00 

era 52,872 26,942 1,851 49 0.87 0.32 0.00 1.00 

 

Models of analysis. Parameters were estimated in bivariate sire model analyses for each trait 

combination using ASReml (Gilmour et al. 2009). For wrinkle, weight, and condition score traits 

the fixed effects of contemporary group, birth type, rearing type, age of dam, and animal’s age at 

measurement were fitted. For the body composition traits the fixed effects of contemporary group 

and the regression on an animal’s live weight at measurement (linear and quadratic) were fitted. 

Contemporary group was defined as flock, year of birth, sex, date of measurement and management 

group subclass. For the reproduction traits the only effect fitted was the reproduction contemporary 
group, based on combinations of flock and year of lambing, management group, conception method 

(AI and Natural) and ewe age class (1, 2, and 3+ years). A random sire term for the direct genetic 

effects was modelled for all traits, including ancestral sire pedigree relationships. A sire model was 

chosen as the data structure did not support the estimation of all parameters using an animal model. 

An additional random term for maternal permanent environment effects was included for ebwr and 

pjwt. For pjcs, pjwt, mbs, and the reproduction traits repeated records were accounted for by 

including an additional random term to model the permanent environment of the animal. Sire by 

flock-year interactions were also fitted as an additional random term for all traits. Genetic groups 

were specified by flock of origin and fitted as random effects (Swan et al. 2014). As genetic groups 

did not significantly improve the fit of the model for mbs and the reproduction traits they were only 

fitted for production traits. As pre-joining weight and condition score are related an additional pre-
joining condition score trait was created which included adjustment for weight at joining (pjcs2) by 

fitting pjwt as an additional covariate in the model. 
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RESULTS AND DISCUSSION 

Large numbers of records were available for most traits (Table 1). The mean of 0.87 for era is 

slightly higher than the value of 0.81 reported by Bunter et al. (2016) derived from three well-

recorded industry Merino flocks, suggesting that the lamb survival data may be biased upwards in 
this study due to incomplete recording. Heritability estimates (Table 2) for most traits were 

consistent with earlier publications based on MERINOSELECT data estimated predominantly using 

animal models. The heritabilities for pjcs and fat depth were slightly lower than previously observed 

as were those for most reproduction traits compared to the earlier estimates reported by Bunter et 

al. (2016). 

 

Table 2: Phenotypic variance (2
p), heritability (h2), repeatability (r), permanent environment 

due to dam (dam PE), and sire by flock interaction (s2) for each trait 
 

Trait σ2
p h2 r dam PE s2 

pjwt 31.31 (2.10) 0.39 (0.11) 0.80 (0.11) 0.10 (0.11) 0.11 (0.11) 

pjcs 0.12 (0.01) 0.11 (0.03) 0.22 (0.03)  0.07 (0.03) 

pjcs2 0.10 (0.01) 0.11 (0.04) 0.22 (0.04)  0.06 (0.04) 

pfat 0.22 (0.04) 0.12 (0.04) .  0.03 (0.04) 

yfat 0.28 (0.02) 0.10 (0.01) . . 0.03 (0.01) 
pemd 3.68 (0.01) 0.21 (0.02) . . 0.04 (0.02) 

yemd 3.98 (0.01) 0.22 (0.01) . . 0.03 (0.01) 

ebwr 0.64 (0.01) 0.35 (0.03) . 0.12 (0.03) 0.05 (0.03) 

lbdwr 0.40 (0.01) 0.37 (0.05) . . 0.03 (0.05) 

lface 0.50 (0.01) 0.35 (0.01) . . 0.04 (0.01) 

mbs 0.81 (0.01) 0.09 (0.02) 0.22 (0.02)  0.05 (0.02) 

nlb 0.33 (0.01) 0.07 (0.01) 0.16 (0.01) . 0.01 (0.01) 

nlw 0.38 (0.01) 0.04 (0.01) 0.12 (0.01) . 0.01 (0.01) 

fert 0.09 (0.01) 0.06 (0.01) 0.16 (0.01) . 0.02 (0.01) 

ls 0.21 (0.01) 0.07 (0.01) 0.16 (0.01) . 0.01 (0.01) 

era 0.09 (0.01) 0.02 (0.01) 0.11 (0.01) . 0.01 (0.01) 

 

Pre-joining weight and condition score were moderately correlated genetically (0.50+0.09) and 
phenotypically (0.29+0.02). Pre-joining weight, early in life fat and eye muscle depth were 

favourably correlated with all reproduction traits except ewe rearing ability (Table 3). These results 

generally agree with the earlier work of Brown and Swan (2016). However, the inconsistent 

correlations of body composition traits with ewe rearing ability are at odds with earlier work and 

may be a reflection of the incomplete recording of lamb survival, as mentioned above. Further 

studies with high quality data to study relationships with era are certainly warranted. Better scores 

for wrinkle and face cover were generally favourably associated with reproduction traits. The lack 

of a correlation between wrinkle and ewe rearing ability is inconsistent with results of Hatcher et al. 

(2015) who estimated significant favourable relationships between these traits in both industry and 

INF data. Correlations of pre-joining condition score with nlb, nlw or fert were only significant when 

unadjusted for live weight. Walkom and Brown (2016) estimated the correlations between these 
traits using just the INF data and found no significant relationship between condition score and 

reproduction traits unless condition score was adjusted for previous reproduction status. These 

results are also at odds with those observed for the fat and eye muscle depth traits which were highly 

genetically correlated with condition score in these data (rg between 0.68 and 0.98 across the 4 
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ultrasound traits) and demonstrated by earlier work of Walkom and Brown (2016). As the results 

for condition score appear quite inconsistent across analyses and data sets more industry data are 

clearly required to confirm the relationships between body composition and reproductive traits.  

Maternal behaviour score was favourably correlated with all reproduction traits in absolute 

terms, except for ewe rearing ability. However, standard errors were large and the number of ewes 
recorded for mbs was relatively low, suggesting that more data are required to confirm these results. 

While this study has not included other weight and wool traits, it is known that significant 

relationships exist between live weight, scrotal circumference, fleece weight, fibre diameter, fibre 

curvature and staple length with the reproductive traits and these should also be considered. 

 

Table 3: Genetic correlations between reproduction traits, and production and visual traits  
 

 pjwt pjcs pjcs2 ebwr lbdwr lface pfat yfat pemd yemd mbs 

nlb 0.51 

(0.09) 

0.40 

(0.16) 

-0.01 

(0.17) 

-0.32 

(0.09) 

-0.46 

(0.10) 

-0.44 

(0.12) 

0.42 

(0.14) 

0.40 

(0.10) 

0.38 

(0.12) 

0.42 

(0.09) 

-0.16 

(0.23) 

nlw 0.50 

(0.11) 

0.41 

(0.19) 

-0.04 

(0.19) 

-0.43 

(0.10) 

-0.50 

(0.12) 

-0.48 

(0.14) 

0.40 

(0.16) 

0.41 

(0.13) 

0.34 

(0.15) 

0.50 

(0.11) 

-0.17 

(0.26) 

fert 0.20 

(0.11) 

0.42 

(0.18) 

0.28 

(0.18) 

-0.31 

(0.10) 

-0.54 

(0.11) 

-0.09 

(0.14) 

0.59 

(0.15) 

0.34 

(0.12) 

0.45 

(0.13) 

0.37 

(0.10) 

-0.22 

(0.26) 
ls 0.56 

(0.08) 

0.27 

(0.17) 

-0.25 

(0.17) 

-0.22 

(0.09) 

-0.28 

(0.10) 

-0.52 

(0.11) 

0.15 

(0.15) 

0.32 

(0.10) 

0.22 

(0.13) 

0.32 

(0.09) 

-0.06 

(0.22) 

Era 0.07 

(0.15) 

0.14 

(0.28) 

0.01 

(0.27) 

-0.10 

(0.15) 

-0.09 

(0.18) 

0.04 

(0.21) 

-0.27 

(0.24) 

-0.00 

(0.00) 

-0.16 

(0.21) 

0.14 

(0.15) 

0.12 

(0.33) 

 

CONCLUSION 

These results suggest that these traits could usefully be recorded more by breeders and included 

in the genetic evaluation system to improve the accuracy of selection for reproduction rate in Merino 

sheep. More high quality data are required for maternal behaviour score, condition score and ewe 

rearing ability to confirm associations between these traits. 
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SUMMARY 

This paper reports body-site specific and overall tick counts as assessed during either spring or 

autumn for Dorper, SA Mutton Merino (SAMM) and Namaqua Afrikaner (NA) ewes maintained on 

natural pasture in an arid area. There seem to be a shift in the tick population challenging the hosts 

from autumn to spring, posing the question whether tick count in spring is genetically the same trait 

as tick count in autumn. The unimproved, fat tailed, indigenous NA breed had lower tick counts on 
all body sites compared to the two commercial breeds, the exception being tick counts on the tail of 

NA ewes. The other breeds have docked tails and could thus not be assessed for this site. All body-

site specific tick counts were heritable, both in autumn (range 0.26-0.42) and spring (range 0.15-

0.41). Ticks counts in autumn and spring were genetically very similar traits (rg>0.88). Overall and 

body-site specific tick counts were heritable and should respond to selection. 

 

INTRODUCTION 

Sheep farming is very important in the South African agrarian landscape since it allows the 

sustainable utilization of arid rural environments (Cloete et al. 2014). Sheep are parasitized by ticks 

throughout the world, with many tick species being of veterinary and economic importance. Some 

ticks introduce toxins that cause paralysis (Fourie et al. 1989); other species can be the cause of 
severe tissue damage, which either results from their longer mouthparts or a tendency to form 

clusters (Cloete et al. 2016). Ticks are also responsible for anemia and production losses (Norval et 

al. 1988). Ticks are also responsible for direct damage, such as skin or hide damage, damage to 

udders, teats and the scrotum of livestock (Norval 1983). A variety of factors such as host type, host 

age or tick inter- and intraspecific interactions can affect the preferential feeding sites of ticks.  

Host resistance to pathogens can be used as a component in integrated pest control programs 

(Walker 2011). However, research on the genetics of tick resistance is very limited in sheep. Van 

Marle-Köster et al. (2015) suggested that adapted, indigenous genetic resources have advantages 

over imported breeds in their response to stressful conditions, including tick infestations. 

The objectives of this paper were: 1) to determine whether the tick challenge of sheep differed 

between seasons (autumn and spring); 2) to derive heritability estimates for body-site specific and 

overall tick counts within seasons; 3) to estimate genetic and phenotypic correlations between body-
sites and overall tick counts; 4) to derive genetic correlations of tick counts in autumn with those in 

spring to determine whether tick infestation in autumn and spring are genetically similar traits.  

 

MATERIALS AND METHODS 

The experiment was carried out at the Nortier Research Farm (32o02’S and 18o20’E) in the West 

Coast Strandveld area of the Western Cape Province of South Africa, using a genetic resource 

population described by Cloete et al. (2013; 2016). Ewes from the indigenous fat-tailed Namaqua 

Afrikaner (NA) sheep breed and two commercial breeds, the Dorper and South African Mutton 

Merino (SAMM), were compared under marginal, extensive conditions. The Dorper is the leading 
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South African meat breed while the SAMM is the leading South African dual-purpose (meat and 

wool) breed and both breeds contribute substantial numbers of weaning weight records to the small 

stock improvement programme (Cloete et al. 2014). The NA, in contrast, is characterised by low 

numbers and is maintained in a few conservation flocks (Qwabe et al. 2012). Previous studies 

suggested that NA ewes were more resistant to ticks than the other breeds (Cloete et al. 2013; 2016).  
The climate of the experimental site is Mediterranean, with 78 % of the total long-term annual 

precipitation of 221 mm being recorded during winter (April–September). Dry, warm summers and 

cool winters with an unpredictable and variable rainfall characterises the study area. The vegetation 

is classified as Strandveld of the West Coast (Acocks 1988). The Dorper and the SAMM were tail 

docked as lambs, while the fat tails of the indigenous NA were left intact. Docking was done with 

rubber rings applied at the third palpable joint when the lambs were approximately three weeks old. 

Ticks were counted in a detailed study involving species during autumn (May) and in spring 

(September) of 2012 (Trial 1). Ewes (n=73) were cast and a total of 2425 ticks were removed from 

these animals. The detached ticks were preserved in 70% ethanol and identified according to species. 

Apart from this detailed study on tick species, ticks were also counted in Trial 2 on all available 

ewes in the autumn of 2012, 2015 and 2016 as well as in the spring of all years from 2012-2016. 

The total number of repeated records amounted to 914 records of 358 ewes in spring and 535 records 
of 341 ewes in autumn. These counts were done without considering the tick species present on the 

animals. Ticks were counted at three locations: the head and front legs (HFL), udder and hind legs 

(UHL) and perineum, including the tail of NA ewes (PT) as was described by Cloete et al. (2013; 

2016). These counts were also summed to obtain a total tick count for each animal (TOT). All ewes 

were maintained in a single flock except for a six week mating period during which the breeds were 

kept separate. Ewes were also randomly divided into smaller groups during lambing. 

The frequencies at which the respective tick species occurred in Trial 1 was compared by Chi²-

procedures. Raw tick counts in Trial 2 were extremely variable (Table 1) and needed to be suitably 

transformed. Individual counts were therefore transformed to square roots after 0.5 were added to 

individual records to reduce the difference between counts to between 0 and 1 (Dickson and Sanford 

2005). ASReml (Gilmour et al. 2015) was used to first identify significant fixed effects (ewe breed 
and ewe age) then to derive genetic parameters by fitting four-trait models to all available data in 

the autumn and spring. The same counts in autumn and spring were then analysed together in two-

trait analyses to derive genetic correlations between seasonal counts. Animal permanent 

environmental effects were initially modeled together with animal additive effects. Based on Log 

likelihood ratios, only direct animal effects were retained in the final analyses. The pedigree file 

contained 2713 animals, the progeny of 40 sires and 596 dams. Ethical clearance was provided by 

the Departmental Ethical Committee for Research on Animals (approval number R13/88).  

 

RESULTS AND DISCUSSION 

Trial 1: Ticks from the three major species differed in proportions in autumn and summer.  When 

expressed relative to the total number of ticks recovered, the contribution of Rhipicephalus evertsi 

evertsi amounted to 0.38 in autumn and 0.44 in spring (Chi²=19.7; degrees of freedom=1; P<0.01). 
R. gertrudae were recovered at a substantially higher proportion in autumn (0.52) than during spring 

(0.19; Chi²=274.1; degrees of freedom=1; P<0.01). Corresponding proportions for Hyalomma 

truncatum amounted to 0.11 and 0.37 respectively (Chi²=249.8; degrees of freedom=1; P<0.01). 

These results suggested that the tick challenge during spring and autumn was different and 

potentially needed different coping strategies by the host animals. 

Trial 2: Raw tick counts on individual ewes were extremely variable with standard deviations 

often exceeding the corresponding means (Table 1). The square root transformation normalised the 

distributions in terms of skewness and kurtosis and reduced the observed coefficients of variation to 

more manageable levels, ranging from 39.5% for TOT in autumn to 66% for HFL in spring. 
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Table 1. Descriptive statistics for the raw and transformed tick counts analysed on ewes in 

autumn (n=535) and spring (n=914), namely head-front leg tick count (HFL), udder-hind leg 

tick count (UHL), perineum-tail tick count (PT) and total tick count (TOT) 

Season  Autumn Spring  

Trait 
Raw mean ± 

s.d. 
Range 

Transformed 

mean ± s.d. 

Raw mean ± 

s.d. 
Range 

Transformed 

mean ± s.d. 

HFL 10.4 ± 11.1 0 – 88 2.96 ± 1.46 5.1 ± 7.4 0 – 54 1.98 ± 1.46 
UHL 11.7 ± 16.0 0 – 112 2.97 ± 1.83 8.6 ± 11.4 0 – 89 2.53 ± 1.64 
PT 6.7 ± 7.6 0 – 50 2.37 ± 1.26 6.8 ± 7.4 0 – 61 2.39 ± 1.27 

TOT 28.8 ± 25.6 0 – 216 5.03 ± 1.98 21.0 ± 17.5 0 – 126 4.23 ± 1.76 

       

Backtransformed means for tick counts at the HFL and UHL sites of the commercial breeds 

exceeded those recorded in their NA contemporaries by at least a factor of 2 (P<0.01), both during 

autumn and spring (Table 2). NA ewes had higher (P<0.01) PT tick counts than the Dorper in both 

seasons, as well as SAMM ewes during spring. Breed differences were previously reported for tick 

count as well as for attachment site in sheep (Fourie and Kok 1995; Cloete et al. 2013; 2016). The 

latter authors attributed the higher tick counts at the PT site in the NA to the fact that their tails were 

left intact. Backtransformed means for TOT in the commercial breeds exceeded those of NA ewes 

by between 43 and 148% (All P<0.01), suggesting a greater resistance in the indigenous breed. 

 

Table 2. Least-squares means (±s.e.) depicting breed1 differences between the breeds assessed 

for head-front leg tick count (HFL), udder-hind leg tick count (UHL), perineum-tail tick count 

(PT) and total tick count (TOT) recorded either in the autumn or spring with backtransformed 

means in brackets 

Season 

and 

breed 

N 

Trait 

HFL UHL PT TOT 

Autumn  ** ** ** ** 

NA 204 2.15 ± 0.09 (4.1) 2.15 ± 0.10 (4.1) 2.79 ± 0.08 (7.3) 4.21 ± 0.10 (17.3) 
Dorper 238 2.96 ± 0.08 (8.3) 3.33 ± 0.09 (10.6) 1.95 ± 0.07 (3.3) 5.03 ± 0.09 (24.8) 
SAMM 76 4.39 ± 0.14 (18.8) 3.88 ± 0.16 (14.5) 2.77 ± 0.12 (7.2) 6.59 ± 0.16 (43.0) 

Spring  ** ** ** ** 

NA 330 1.45 ± 0.07 (1.6) 1.73 ± 0.09 (2.5) 2.88 ± 0.07 (7.8) 3.72 ± 0.09 (13.3) 
Dorper 451 2.46 ± 0.06 (5.6) 3.15 ± 0.08 (9.4) 2.00 ± 0.06 (3.5) 4.69 ± 0.08 (21.5) 
SAMM 133 1.98 ± 0.11 (3.4) 3.32 ± 0.15 (10.5) 2.63 ± 0.11 (6.4) 4.82 ± 0.15 (22.7) 
1 Namaqua Afrikaner (NA), Dorper and South African Mutton Merino (SAMM) 
** P<0.01 

 

Significant genetic variation was detected for all body-site specific tick counts in four-trait 

analyses conducted in autumn and spring (Table 3). Genetic parameters were quite similar across 

seasons, except for PT tick counts, where the heritability was lower in spring. These results 

compared well with previous heritability estimates of 0.26 for HFL, 0.53 for UHL, 0.19 for PT and 

0.43 for TOT (Cloete et al. 2016). Grøva et al. (2014) accordingly reported heritability estimates of 

0.37-0.52 for TOT in Norwegian lambs under conditions where another tick species, namely Ixodes 

ricinus, prevails. HFL and UHL tick counts were highly correlated to TOT on the genetic level, as 
would be expected for traits in a part-whole relationship. These results were also consistent with 

those previously reported by Cloete et al. (2016). Genetic correlations between tick counts recorded 

in autumn and spring approached, and in some cases exceeded, unity for body-site specific values 

(Table 3). These preliminary results suggest that resistance to ticks in autumn and spring are 
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genetically very similar traits. Phenotypic correlations among traits were similar in sign as genetic 

correlations, but generally smaller in magnitude. 

 

Table 3. (Co)variance ratios (± s.e.) for head-front leg tick count (HFL), udder-hind leg tick 

count (UHL), perineum-tail tick count (PT) and total tick count (TOT) recorded either in the 

autumn or spring based on four-trait or two-trait analyses 

Component and trait 
Trait 

HFL UHL PT TOT 

(Co)variance ratios in autumn* 

HFL 0.26 ± 0.07 0.61 ± 0.15 0.17 ± 0.18 0.88 ± 0.08 
UHL 0.20 ± 0.05 0.39 ± 0.06 -0.40 ± 0.14 0.81 ± 0.06 
PT 0.04 ± 0.05 -0.19 ± 0.05 0.30 ± 0.06 0.18 ± 0.14 
TOT 0.68 ± 0.05 0.68 ± 0.03 0.32 ± 0.04 0.42 ± 0.06 

(Co)variance ratios in spring* 

HFL 0.26 ± 0.04 0.28 ± 0.11 0.10 ± 0.16 0.64 ± 0.08 

UHL 0.20 ± 0.04 0.41 ± 0.04 -0.23 ± 0.14 0.85 ± 0.04 

PT 0.07 ± 0.04 -0.11 ± 0.04 0.15 ± 0.04 0.17 ± 0.15 

TOT 0.56 ± 0.03 0.74 ± 0.02 0.42 ± 0.03 0.34 ± 0.04 

Correlations between tick counts in autumn and spring 

Genetic 0.89 ± 0.09 1.01 ± 0.02 1.00 ± 0.08 1.01 ± 0.04 
Phenotypic 0.27 ± 0.05 0.48 ± 0.04 0.24 ± 0.04 0.45 ± 0.04 

* Heritability in bold on the diagonal, genetic correlations above the diagonal and phenotypic correlations 
below the diagonal 

 

CONCLUSIONS 

The species composition of the tick challenge at the experimental site differed appreciably in 

species composition between autumn and spring. Notwithstanding this result, appreciable genetic 

variation in body site specific and total tick counts was present in both seasons. Moreover, genetic 

correlations between autumn and spring tick counts suggested that these traits were likely to be 

controlled by largely the same genes, a finding that needs to be verified in further studies.  
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SUMMARY 

Genomic selection uses genomic information to predict the breeding value of animals and can 
achieve higher prediction accuracy than pedigree based selection. This study aimed to compare the 

accuracy of genomic prediction using a medium-density (50k) SNP panel, as well as an imputed 

high-density (600k) SNP panel, with and without including pre-selected SNPs from QTL regions 

identified by regional heritability mapping (RHM). The proportion of variance explained by the pre-

selected SNPs combined in a genomic relationship matrix (GRM) was considerably smaller than 

that explained by all SNPs from the 600k panel (25% of the genomic heritability).  To obtain a better 

estimate of the variance explained by the pre-selected SNPs, both GRMs from the pre-selected SNPs 

( 𝐺𝑅𝑀𝑠) and their complementary SNPs from the 600k panel ( 𝐺𝑅𝑀𝑐) were fitted in a single model. 

The total heritability explained by both 𝐺𝑅𝑀𝑠 and 𝐺𝑅𝑀𝑐 when fitted together was similar to the 

heritability explained by fitting all SNPs in a single GRM. The  𝐺𝑅𝑀𝑠 explained a smaller proportion 

(18%) of the total heritability, whereas the  𝐺𝑅𝑀𝑐 explained 82%. Fitting either the 50k or the 600k 

SNP panels resulted in similar prediction accuracy for parasite resistance (~0.37). However, when 

both  𝐺𝑅𝑀𝑠 and 𝐺𝑅𝑀𝑐 were fitted together in the prediction model, genomic accuracy was increased 

by 10%. These results indicate that accuracy of genomic prediction can be improved by including 

QTL information explicitly in the prediction models.  

 

INTRODUCTION 

Traditional genetic improvement relies on the use of pedigree information and phenotypic 

records of farm animals to estimate their breeding values. This has led to substantial genetic gain in 
most livestock species, especially for the traits that are easy to measure. However, the process is 

often inefficient for low-heritable, expensive or difficult to measure traits. An example is parasite 

resistance, measured by indicator traits such as worm egg counts (WEC), which is an important 

health issue that affects the sheep industry worldwide. Genomic selection offers an alternative to 

conventional breeding programs and can increase the rate of genetic gain by using genomic 

information to predict the breeding values of selection animals (Hayes et al., 2009).  

In genomic selection, the genomic breeding values (GBV) for selection candidates are predicted 

based on the estimates of marker effects across the whole genome. The accuracy of predicting 

genomic breeding values depends on the heritability of the trait, the size of the reference population 

and the level of relatedness between the reference population and selection candidates (Habier et al., 

2010). Moreover, the accuracy is highly influenced by the level of linkage disequilibrium between 
the SNP markers and the QTL (quantitative trait loci) affecting the trait (Goddard 2009). Depending 

on the genetic architecture of the trait, the chosen statistical method used to build the prediction 

model will have a significant impact on prediction accuracy. Models that incorporate pre-selected 

SNPs from QTL regions have been shown to improve the accuracy of genomic prediction (Brondum 

et al. 2015).   

The objective of this study was to compare the accuracy of genomic prediction based on a 

medium-density (50k) SNP panel, high-density (600k) SNP panel, and including pre-selected SNPs 
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from QTL regions identified by regional heritability mapping for parasite resistance in Australian 

sheep.  

 

MATERIALS AND METHODS 

Animals. Parasite resistance, as measured by WEC, was investigated in a multi-breed sheep 
population from the Sheep Cooperative Research Centre information nucleus flock (INF). A total of 

7,539 animals with both genotype data and WEC phenotypes were included in this analysis. Various 

breeds were represented in the population (Table 1) but with a significant proportion of Merino 

sheep, and only this breed had a substantial proportion of purebred animals. The remaining breeds 

were mainly represented by their crosses with Merino (van der Werf et al. 2010).  

 

Table 1. Proportions of different breeds in the population 

 

Breed BL COR COOP EF WD PD TEX AF PS MER 

Proportion (%) 11.1 0.8 10 0.7 0.4 1.8 2.3 2 1.1 69.8 

Border Leicester: BL, Corriedale: COR, Coopworth: COOP, East Friesian: EF, White 

Dorper:WD,  Poll Dorset: PD, Texel: TEX, Australian Finnsheep: AF, Prime Samm: PS, 

Merino:MER 

 

  Genotypes. Animals were genotyped using the 50k Ovine marker panel (Illumina Inc., 
SanDiego, CA, USA). SNPs were removed if they had a minor allele frequency (MAF) < 1%, an 

Illumina Gentrain score (GC) less than 0.6, a call rate less than 95%, or not in Hardy-Weinberg 

equilibrium. Furthermore, positions of SNPs were obtained from the latest sheep genome 

Ovis_aries_v3.1, and any SNP with unknown position was removed. After applying these quality 

measures, 7,539 animals and 48,198 SNPs were retained. The imputation from the medium-density 

panel to the high-density (HD) SNP panel was performed using the Fimpute algorithm (Sargolzaei 

et al. 2014). 

Cross-validation experimental design.  Animals were randomly split into ten non-overlapping 

subsets (i.e. each subset with ~ 753 animals). For each experiment, one of the ten subsets served as 

a validation population and the remaining of the data served as the training population. The whole 

process was repeated ten times so that each subset served once as the validation population.  
Regional heritability mapping (RHM).  RHM was performed ten times, once for each 

validation set. The input to RHM consists of phenotype and genotype data (600k SNPs) on animals 

in the combined nine training sets. Data on animals in the validation set was not included in the 

RHM input. In RHM, each chromosome was divided into regions of pre-defined number of SNPs, 

and the variance attributable to each region was estimated. Window size of 200 SNPs was used to 

build genomic relationship matrix (GRM) and the window was shifted every 100 SNPs so that each 

two adjacent windows overlap midway. The significance was evaluated by the likelihood ratio test 

(LRT), comparing the RHM model which includes the regional effect with the base model composed 

of mean, fixed effects and random animal and error terms, but without the regional effect. The base 

model (1) and the RHM model (2) fitted to the data were as follows: 

 

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝒆     (1) 

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝒁𝟐𝒈 + 𝒆     (2) 

 

where y is a vector of cube root transformed WEC records; b is a vector of fixed effects; 𝒂 is a 

vector of random additive genetic effects, 𝒈  is a vector of random regional genetic effect estimated 

from SNPs within each region (window), 𝒆 is a vector of residuals which was assumed to be 

distributed as ~𝑁(0, 𝐼𝜎𝑒
2), where 𝝈𝒆

𝟐 is the residual variance.  X, Z and 𝑍2 are incidence matrices 
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relating fixed, additive genetic and regional genetic effects to phenotypes. 𝒂 was assumed to be 

distributed as ~  𝑁(0, 𝐴𝜎𝑎
2) ,  where 𝑨 is the numerator relationship matrix (NRM) calculated from 

deep pedigree records and 𝝈𝒂
𝟐 is the additive genetic variance explained by pedigree; and  𝒈 was 

assumed to be distributed as 𝑁(0, 𝐺𝜎𝑔
2), where  𝐺 is the regional genomic relationship matrix 

constructed from SNPs within each region, and 𝜎𝑔
2 is the regional genomic variance. The fixed 

effects included in the models were breed proportions, age of animals, age of dam, gender, rearing 

type × birth type and contemporary groups (combination of flock site, birth year and management 

group effects).  

Selection of SNP markers. Genomic regions obtained from each of the ten-fold cross-validation 

RHM analyses were ranked based on their LRT and significant regions were selected. For each fold, 

the top five ranked regions across the ten-fold experiments were the same. SNPs located within the 

top five ranked regions were used to build a GRM ( 𝐺𝑅𝑀𝑠) and the proportion of the variance 
explained by these pre-selected SNPs was estimated by replacing the NRM in model (1) by the GRM 

obtained from the pre-selected SNPs. Variance was not only estimated using the GRM for the 

selected SNPs, but also by using a complementary GRM ( 𝐺𝑅𝑀𝑐) based on the remaining SNPs 

from the 600k SNP panel. To obtain a better estimate of the variance explained by the selected SNPs, 

both the   𝐺𝑅𝑀𝑠 and  𝐺𝑅𝑀𝐶 were fitted together in the same model. 

Accuracy of genomic prediction. To evaluate the impact of the selected SNPs on prediction 

accuracy, genomic predictions for the validation animals was calculated and correlated with the 

phenotypes of the same animals. The  𝐺𝑅𝑀𝑠was fitted and the genomic best linear unbiased 

prediction (GBLUP) analysis was performed. The prediction model that includes both  𝐺𝑅𝑀𝑠 and 

 𝐺𝑅𝑀𝑐 was also evaluated. Genomic breeding values (GBV) were calculated following the ten-fold 

cross-validation procedure as described above. Prediction accuracy was calculated as the correlation 

between the predicted GBVs of the validation set and the adjusted phenotypes, which were corrected 

for fixed effects, divided by the square root of the trait heritability. Furthermore, the regression 

coefficient (slope) of the adjusted phenotypes on the GBVs was calculated to assess the bias of 

genomic predictions. 

 

RESULTS AND DISCUSION 
The RHM results for ten-fold experiments are shown in the Manhattan plots in Figure1. The top 

five ranked regions remained consistent across the ten-fold cross-validation experiments. These five 

regions include three windows (107 -108 Mb, 110 -112 Mb, 117 -118 Mb) on OAR2, three 
overlapping windows between 28 to 36 Mb on OAR6, a window between 17 to 18 Mb on OAR18, 

a window between 7.2 to 6.8 Mb on OAR20 and a window between 40 to 41 Mb on OAR24. 1600 

SNPs located within these regions were selected to build a GRM and, the heritability explained by 

the pre-selected SNPs was 0.05 compared to 0.19 explained by all the SNPs from the 600k panel. 
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Figure 1. Manhattan plots of regional heritability mapping (RHM) results across the ten-fold cross-

validation experiments. The x-axis represents the number of windows and the y-axis represents the 

corresponding likelihood ratio test (LRT) for each window.  
 

Another way of testing the importance of the pre-selected SNPs was to investigate how much 

heritability was lost when the pre-selected SNPs were excluded from the GRM. Fitting only 𝐺𝑅𝑀𝐶, 

containing all SNPs in the 600k panel minus the pre-selected SNPs from the target regions, resulted 

in a similar heritability estimate as fitting all the SNPs. To assess the relative importance of the GRM 

from the selected SNPs and the GRM from the remaining SNPs, both  𝐺𝑅𝑀𝑠 and  𝐺𝑅𝑀𝐶 were fitted 

simultaneously in the same model. The proportion of variance explained when both  𝐺𝑅𝑀𝑠  and 

 𝐺𝑅𝑀𝐶 were fitted simultaneously was similar to the proportion of the genetic variance explained 

by fitting all the SNPs from the 600k. The GRM from the selected SNPs explained 18% of the total 

heritability, whereas 82% of the total heritability was explained by all the remaining SNPs (Table 

2).  

Table 2. The proportion of phenotypic variance (h2) explained for parasite resistance 

 

Selection criteria GRM  𝑮𝑹𝑴𝒔  𝑮𝑹𝑴𝑪 logL 

G (50k) 0.178 ± 0.020   -10673 

G(600k) 0.194 ± 0.021   -10670 

G(regions)  0.050 ± 0.009  -10682 

GRMc   0.188 ± 0.021 -10673 

G(Regions)+GRMc  0.034 ± 0.008 0.152 ± 0.021 -10638 

G (50k): GRM from the 50k SNP panel, G (600k): GRM from the 600k SNP panel, G (regions): 

 𝐆𝐑𝐌𝐬  from the pre-selected SNPs; GRMc: complementary GRM (GRMc)  

 

Using any of the 50k and the 600k SNP panels resulted in a similar prediction accuracy for 

parasite resistance (~0.37, Table 3). When the  𝐺𝑅𝑀𝑠 from the pre-selected SNPs was fitted alone, 
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the prediction accuracy dropped by 18% compared to fitting all SNPs from the 600k panel. However, 

when both  𝐺𝑅𝑀𝑠 and  𝐺𝑅𝑀𝐶 were fitted together, higher prediction accuracy was observed than 

fitting all the SNPs in a single GRM. This is likely because a model with two components of genetic 

effects allows effects of the pre-selected SNPs to have larger variance than all the remaining SNPs 

in the panel, thus putting more weight on the pre-selected SNPs from the QTL regions. Moreover, 
the slopes of all models were not significantly different from 1, which indicates no significant bias 

in the predictions. It should however be noted that the RHM regions are not independent since they 

were the same across all 10-fold repeats and this can of course favourably influence the prediction 

accuracy. While suboptimal for a fair comparison of accuracy of prediction this lack of 

independence is not unexpected nor undesirable in practice since QTLs should have a real biological 

effect on a trait and are expected to be consistently identifiable in different datasets with similar 

power. If the RHM regions changed with each subset of the data, there would be greater cause for 

concern.          

 

Table 3. Cross-validation prediction accuracy for parasite resistance averaged over the ten 

validation sets, and slope for the regression of adjusted phenotypes on the predicted breeding 

values 

Selection criteria Accuracy SE(accuracy) Slope SE(slope) 

G (50k) 0.368 0.036 0.915 0.197 
G(600k) 0.374 0.036 0.916 0.193 

G(regions) 0.307 0.035 0.841 0.219 
G(Regions)+GRMc 0.411 0.036 0.848 0.164 

 

CONCLUSION 

The results in this study show that there is little advantage of using the imputed high density SNP 

panel over the medium-density panel for genomic prediction with this trait. However, by 

incorporating information from QTL regions explicitly into the genomic prediction model, 

prediction accuracy of parasite resistance increased by 10% based on the current SNP panel density. 

These results suggest that QTL information should be beneficial in genomic prediction, not just for 

parasite resistance but also for other economically important traits in sheep.  
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SUMMARY 

The purpose of this study was to investigate genome wide association of genetic markers with 

birth weight (BWT) and the interaction of significant marker effects with birth type (BT) in Merino 

lambs. Data used in this study consisted of 6,463 birth weight records of lambs generated from 349 

sires and 4,896 dams of Merino sheep, which were genotyped using the Illumina Ovine SNP50 

BeadChip (Illumina Inc., San Diego, CA, USA). After quality control 48,599 SNPs were included 

in the association study. We detected 11 and 15 genome-wide significant SNPs for birth weight in 

singles and twins, respectively, and 17 genome-wide significant SNPs were found when using all 

data. OAR6_41936490.1 and OAR6_41877997.1 were the most significant SNPs for single and 
twin birth weight, respectively. Among 17 significant SNPs detected by GWAS there were 9 that 

had a significant SNP by BT interaction, indicating that gene by BT interaction contributed to BWT 

variation. 

 

INTRODUCTION 

Birth type (BT) constitutes an environment that influences gene expression related to particular 

traits in sheep. In a previous study, Dakhlan et al. (2017) found significant genotype by environment 

interaction effects for birth weight (BWT) and weaning weight in Merino lambs. Twin BT is a poorer 

environment for BWT compared to single BT. With information on molecular genotypes it is now 

also possible to assess the interaction between environment and genotype at the individual gene 

level.  
Genome Wide Association Studies (GWAS) have been widely used to identify genes that are 

associated with body weight in some animal species, including sheep. Jonas et al. (2010) detected a 

quantitative trait locus (QTL) on ovine (Ovies aries) chromosome 21 (OAR21) in Awassi-Merino 

backcross and Al-Mamun et al. (2015) identified 39 SNPs associated with body weight in Merinos, 

including a major QTL region on OAR6. 

Birth type is one of many factors that influence growth performance of sheep and given there is 

a BT by growth interaction, it may be possible to differentiate between gene effects associated with 

BWT in single and twin BT of lambs. The purpose of this study was to investigate genotype by BT 

interaction at the gene level by investigating QTL associated with BWT of lambs and identify 

whether effects of significant markers differ between single and twin BT of lambs. 

 

MATERIAL AND METHODS 
Phenotypes for association study. Birth weight data for this study were obtained from the 

Information Nucleus (IN) program of the CRC for Sheep Industry Innovation in Australia. Details 

on this program and its design are described by Van der Werf et al. (2010).  Birth weight records 

were available from 6,463 Merino lambs generated from 349 sires and 4,896 dams. These lambs 

were distributed over 2 BT classes: 3087 lambs were born as single and 3376 lambs were born as 

twins. The lambs were raised in 8 different flocks (521-2,483 lambs per flock) in up to 4 management 

groups per flock per year, and they were born between 2007 and 2012 (969-1,678 lambs per year).  

Mixed model analysis with ASReml software (Gilmour et al., 2009) was used to generate 

predicted birth weight and the residual effects were used in a genome wide association study. The 
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fixed effects in the models were birth year (2 classes), sex (2 classes), age of dam as covariate and 

contemporary group. As random effects in an animal model, genetic group, animal, dam, and 

interaction between sire and flock were fitted. There were 135 genetic groups defined. A pedigree 

file consisting of 17,664 animals from 11 generations was used to determine additive genetic 

relationships among animals and account for them in the analysis. It was assumed that dams were 
unrelated as limited pedigree information was available on the dams. 

Genotyping and association study. Animals used in this study were genotyped using the Illumina 

Ovine SNP50 BeadChip (Illumina Inc., San Diego, CA, USA), and after quality control we included 

48,599 SNPs. Gene annotation was done using the latest sheep genome Ovis_aries_v4.0 sequence 

to identify and explore candidate genes. For the association study birth weight residuals were 

regressed on each of the SNP genotypes individually, one at a time, using a linear model. Three 

analyses were undertaken with the first using all data of birth weight residuals (6,463 records), and 

then two analysis, one for using only records for single birth type (3,087 records) and one for twin 

birth type (3,376 records). 

The significance threshold value (P<2.06x10-7 = 0.01/48,599) was set for genome-wide 

significance by applying the Bonferroni correction. To investigate gene by BT interaction for 

significant SNPs effect, a SNP by BT interaction term was fitted in the model used for all data. 
 

RESULTS AND DISCUSSION 

Genome-wide association study. Genome-wide significant SNPs were detected for birth weight in 

the combined data as well as in the data for single and twin birth types separately (Table 1). There 

were 11 significant SNPs (Bonferroni-corrected genome-wide association, P<1.03x10-6) for birth 

weight in the single BT data set, and they were all within one region on OAR6 between 41.00 and 

42.09 Mb. The most significant SNP was OAR6_41936490.1 (P = 8.45 × 10−15).  

There were 15 significant SNPs for birth weight in the twin BT data, all but one in the same 

region on OAR6 as in the single BT dataset. The most significant SNP was OAR6_41877997.1 (P 

= 3.02 × 10−13). Riggio et al. (2013) reported that OAR6_41558126.1, OAR6_41768532.1 and 

OAR6_40855809.1 are associated with body weight in Scottish Blackface lambs. There were 10 
significant SNPs found in this study that are the same as those SNPs found by Al-Mamun et al. 

(2015), who used post weaning weight data with a smaller (1,781 lambs) subset of the data used in 

this study. 

According to Ovis aries reference genome assembly (Oar_v4.0) there were 12 genes within 17 

significant SNPs that span the region between 40.45 and 42.53 Mb on OAR6, those genes are 

LOC105608045, LOC106991210, TRNAS-GGA (transfer RNA serine (anticodon GGA)), 

LOC105611897, LOC105615458, LOC106991209, TRNAW-CCA (transfer RNA tryptophan 

(anticodon CCA)) and LOC101104829 (60S ribosomal protein L10a pseudogene) which are both 

associated with body weight in Merino sheep (Al-Mamun et al., 2014), KCNIP4 (Kv channel 

interacting protein 4) which is associated with weaning weight in cattle (Buzanskas et al., 2014) and 

body weight aged 12 weeks in chicken (Gu et al., 2011), LOC105611900, ADGRA3 (adhesion G 

protein-coupled receptor A3) which is associated with birth weight in pig (Wang et al., 2016), and 
LOC101103396 (cytosolic beta-glucosidase). No information regarding the function of genes of 

LOC105608045, LOC106991210, LOC105611897, LOC105615458, LOC106991209, 

LOC105611900, and LOC101103396 have been reported in the literature. There were 10 genes (not 

including LOC106991210 and LOC105608045) for single BT and 11 genes (not including 

LOC105608045) for twin BT that span the same region. 

 

Gene by birth type interaction. Among 17 significant SNPs detected by GWAS there were 9 SNPs 

that showed a significant interaction with BT (Table 1). Lambs born as a single have heavier BWT 

than those born as twins, indicating that a single BT provides a better environment compared to a 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=full_report&list_uids=101101794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=full_report&list_uids=101101825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=full_report&list_uids=101104829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=full_report&list_uids=101101984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=full_report&list_uids=101102902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=full_report&list_uids=101103396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=retrieve&dopt=full_report&list_uids=101103396
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twin BT environment. The most significant interaction was found for OAR6_41003295.1, where the 

allele substitution effect was -0.10 kg in singles whereas it was -0.05 kg in twins. Similar effects 

differences were found for other SNPs (Table 2). These result is supported by our previous study 

where it was found that the genetic correlation between breeding values for BWT expressed in 

singles and twins is less than one (Dakhlan et al. 2017), indicating that BWT expressed in two 
different BT environments is genetically not the same trait. 

 

Table 1. SNPs that have significant association on OAR6 for single and twin birth weight and 

with birth weight using total data 

 

SNP name Position (bp) 
P-value 

(all data) 
P-value 

(single BT data) 
P-value 

(twin BT data) 

OAR6_40449774.1 ns 40449774 3.01x10-09  
 

OAR6_40724811_X.1 ns 40724812 1.82x10-11  1.09x10-07 

OAR6_40855809.1 ns 40855809 2.56x10-11  2.39x10-07 

OAR6_41003295.1* 41003295 4.96x10-19 2.47x10-13 1.71x10-09 

s17946.1* 41384761 4.61x10-18 2.04x10-11 1.37x10-08 

OAR6_41476497.1* 41476497 8.21x10-17 1.05x10-10 1.42x10-07 

OAR6_41494878.1* 41494878 6.26x10-17 1.46x10-10 9.76x10-08 

OAR6_41558126.1* 41558126 1.63x10-15 8.88x10-09 5.74x10-08 

OAR6_41583796.1* 41583796 8.47x10-15 3.45x10-09 5.67x10-07 

OAR6_41709987.1* 41709987 1.03x10-14 1.12x10-08 1.20x10-07 

OAR6_41768532.1 ns 41768532 8.83x10-17 4.57x10-08 2.82x10-10 

OAR6_41850329.1 ns 41850329 3.96x10-10  1.12x10-07 

OAR6_41877997.1 ns 41877997 2.75x10-19 2.13x10-08 3.02x10-13 

OAR6_41936490.1* 41936490 4.90x10-25 8.45x10-15 7.26x10-13 

OAR6_42094768.1* 42094768 2.97x10-17 2.29x10-11 1.62x10-08 

OAR6_42247197.1 ns 42247197 2.24x10-07  6.42x10-07 

OAR6_42528741.1 ns 42528741 5.02x10-08 
 

 

Note: *Interaction significance is based on α = 5%, ns = not significant interaction 

 

 

CONCLUSION 

In this study 11 and 15 genome-wide significant SNPs were detected for single and twin birth 

weight, and 17 genome-wide significant SNPs were associated with birth weight when using all data 

of birth weight. Twelve genes spanning the region between 40.45 and 42.53 Mb on OAR6 cause 

birth weight variation but 9 SNPs showed a significant interaction with birth type, indicating that 

the genes associated with these SNPS may have a different gene action in the two birth type 
environments. 

 

 

 

Table 2. SNP effects of single and twin birth type and interaction P-value on birth weight 
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SNP name 
SNP effect 

Interaction P-value 
Single BT Twin BT 

OAR6_40449774.1 -0.09 -0.04 5.01E-02 

OAR6_40724811_X.1 -0.09 -0.06 3.23E-01 

OAR6_40855809.1 0.08 0.06 4.14E-01 

OAR6_41003295.1 -0.10 -0.05 6.84E-05* 

s17946.1 -0.10 -0.05 3.07E-02* 

OAR6_41476497.1 -0.10 -0.05 3.61E-02* 

OAR6_41494878.1 0.10 0.05 3.55E-02* 

OAR6_41558126.1 0.08 0.05 4.40E-02* 

OAR6_41583796.1 -0.11 -0.06 3.81E-02* 

OAR6_41709987.1 -0.11 -0.06 3.58E-02* 

OAR6_41768532.1 0.09 0.06 1.91E-01 

OAR6_41850329.1 0.09 0.07 4.54E-01 

OAR6_41877997.1 -0.08 -0.06 2.99E-01 

OAR6_41936490.1 0.12 0.06 2.21E-02* 

OAR6_42094768.1 -0.11 -0.06 4.16E-02* 

OAR6_42247197.1 -0.05 -0.05 3.32E-01 

OAR6_42528741.1 -0.08 -0.03 3.91E-01 

Note: *Interaction significance is based on α = 5% 
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SUMMARY 

In French sheep breeding programs, several mutations affecting ovulation rate have been 

discovered. For mutations located on the X chromosome, the optimal management of such genes is 

still a challenge because nucleus flocks are small compared to Australian or New Zealand ram 

breeding flocks. A deterministic model was developed, and using sequential quadratic programming 

methodology, the combination of mating types that maximized the profit across a range of genotype 

costs was determined. Results show that even if losses of genetic gain were quite high compared to 
the gain without the major gene, the optimal use of an ovulation rate mutation located on the X 

chromosome was beneficial. At the current costs, the optimal strategy that gave the maximal profit 

was based on four different mating types. A strategy based on only the use of carrier females mated 

to non-carrier males gave similar results to the optimal strategy in terms of profit and genetic gain. 

This strategy could be adopted by French breeding programs where this kind of mutation segregates. 

 

INTRODUCTION 

 The number of lambs produced per female has a large impact on profitability in meat oriented 

sheep production. Several mutations affecting ovulation rate, and thus number of lambs, have been 

identified. For example, Booroola (Piper and Bindon 1982; Davis et al. 1982), BMP15-Inverdale 

(Davis et al. 1982) or BMP15-Grivette (Demars et al. 2013), and GDF9-Cambridge (Hanrahan et 
al. 2004). Most often, these polymorphisms have a positive effect on heterozygous carrier 

productivity. However, in homozygous ewes, these polymorphisms lead to sterility or excessive 

prolificacy and high rates of neonatal lamb mortality. Therefore homozygous females are 

undesirable for commercial production. 

 Several strategies can be implemented to manage these mutations, as outlined by Amer et al. 

(1998) for mutations carried by the X chromosome (i.e. Inverdale gene) and Raoul et al. (2017) for 

mutations carried by an autosomal chromosome: the proportion of each parental genotype is defined 

according to the sex and matings organised. These balance high frequency of heterozygous females 

with genetic gain. Increasing the frequency of heterozygotes leads to a change in the proportion of 

available candidates which affects the overall selection differential of parents and consequently 

genetic gain. Amer et al. (1998) assessed two strategies to manage the Inverdale gene and found that 

depending on the strategy implemented, the loss of genetic gain was either 24%, or less than 5% 
compared to the gain without major gene. In the case of an autosomal polymorphism, strategies that 

enhance either genetic gain or heterozygous female frequency gave equal profit (Raoul et al. 2017) 

and were affected by the genotyping cost per animal. 

 In the French meat sheep production context, the average number of ewes per nucleus flock is 

about 300. With such limited flock sizes implementing a strategy which comprises a small 

proportion of a given mating type (less than 10%) is difficult. It is not practical at a single flock 

level, but could be organized via specialization of several nucleus flocks in which different flocks 

focus on a specific mating. This is difficult to co-ordinate, so for practical reason, French breeders 

would much prefer strategies based on at most two mating types. Strategies outlined for autosomal 
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mutation management have already been discussed for French breeding programs (Raoul et al. 

2017). The aim of this study is, for the case of a mutation carried by the X chromosome, to determine 

the combination of mating types that provide the maximal profit (optimal strategy) according to 

various genotyping costs. This optimal strategy will be compared with more practical strategies in 

terms of profit and genetic gain.  
 

MATERIALS AND METHODS 

 A nucleus population representative of a typical French breeding program based on natural 

mating was modelled. A maternal production trait expressed once per year during female’s 

reproductive life was considered as the only selected trait (e.g. milk production estimated through 

lamb weight at 30 days). Each year, 8000 ewes were mated to 200 rams. Because homozygous 

carrier females were not used for reproduction, 2 genotypes, non-carriers and carriers were 

respectively considered for males ([+] and [m]) and females ([++] and [m+]) leading to 4 mating 

types: 1) ♀ [++] x ♂ [+], 2) ♀[++] x ♂ [m], 3) ♀ [m+] x ♂ [+] and 4) ♀ [m+] x ♂ [m]. As the flock 

management was assumed to be in a steady-state, the proportion of each mating type across time 

was constant. The newborn candidates were divided into categories according to their parental 

genotypes (i.e. 4 matings), their sex and their own genotype (2 genotypes for males and 3 genotypes 
for females). Generations were overlapping and the maximum reproductive life was 6 years for 

males and females, with a maximum parity of 5 (i.e., from 2 to 6 years of age), leading to a 

replacement proportion close to 24%.  

 At each generation, new parents were selected within sex*genotype categories by truncation 

selection on EBVs: 4 truncation thresholds (2 per parental genotype) were determined across the 

candidate EBV distributions. For example, [++] female replacement were selected from progeny of 

mating types 1 and 3. Considering dam parity, these female were selected across 10 EBVs 

distributions. Whatever their parental genotype or dam’s age, we selected females whose EBV was 

above the unique truncation threshold. Given those thresholds, selection differential and genetic 

contribution to the next generation (i.e. probability of gene origin) were calculated for each candidate 

category. Evolution of genetic values of parents and their progeny across time for the maternal trait 
was derived using the gene flow methodology proposed by Hill (1974): a transition matrix 

representing the gene flow from categories at year t to categories at year t+1 was built from genetic 

contributions to newborns and accounting for ageing of parents.  

 Discounted revenues and costs were computed for each cycle (year). The revenues were 

proportional to the number of lambs sold per year which was equal to the number of live lambs 

produced minus the number selected for replacement, and the number of live lambs produced by 

ewes transferred to a commercial flocks. The costs included genotyping costs made at the nucleus 

level and proportional breeding costs per ewe (nucleus and transferred ewes). It was assumed that 

50% of newborn females would still be available after parent selection, and these surplus females 

would be transferred to a commercial flock where they could be retained for up to 5 parities. These 

female were not genotyped and only females from mating types 1, 2 and 3 were transferred. It was 

assumed that independently of their genotype, the selected maternal trait was related to the cost per 
ewe, because the trait was determined based on milk production, with higher production levels 

reducing feed costs per lamb. The overall profit was computed as the sum of discounted revenues 

minus costs over a long-term time horizon (year 5 to year 30). This overall profit was assessed for 

the following sets of parameters: number of lambs produced = 1.5 for non-carrier females, and +0.5 

additional lambs for heterozygous females. Given the fertility, the lamb viability (higher for lambs 

born from non-carrier), the number of lambs weaned per ewe joined for non-carrier and carrier ewes 

were 1.22 and 1.44 respectively. The income per lamb sold was assumed to be constant and the 

production cost per lamb depended on the dam’s genetic value for the selected trait and genotype. 

Three genotyping costs were tested: no cost, 10 and 20 € per genotyped animal.  
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 For a given genotyping cost, the relative proportion of mating types that gave the maximum 

profit (the optimal strategy) was determined using an algorithm based on sequential quadratic 

programming methodology. The gain in the absence of the major gene and two simplified strategies 

was also assessed based on 1 mating only, ♀ [m] x ♂ [++] (S1, corresponding to the “self-sustaining 

scheme” outlined by Amer (1998)) or 2 mating types, ♀ [++] x ♂ [m] and ♀ [m+] x ♂ [+], (named 
S2). The proportion of each mating types of these strategies is shown in Table 1. 

 

Table 1: Proportion (%) of each mating type of alternative strategies assessed for the 

management of an ovulation rate mutation1 located on the X chromosome. 

Mating type ♀[++]x♂[+] ♀[++]x♂[m] ♀[m+]x♂[+] ♀[m+]x ♂[m] 

Gain without major gene 100 0 0 0 

S1 0 0 100 0 

S2 0 60 40 0 
1 Biallelic locus (X chromosome) influencing the number of lambs per female (1.5 for [++] and 2.0 for [m+]).  

 

RESULTS AND DISCUSSION 

Table 2 gives the proportion of each mating type in the nucleus that maximizes profit according to 

the genotyping cost. Results show that when genotyping costs were not included (cost=0), the best 

strategy was to bred only carriers females and mate them to non-carrier males.  

 

Table 2: Percentage of each mating type in the optimal strategy to manage an ovulation 

rate mutation1 located on the X chromosome, according to three genotyping costs (€). 
  Mating type 

 genotyping costs  ♀[++]x♂[+] ♀[++]x♂[m] ♀[m+]x♂[+] ♀[m+]x ♂[m] 

optimal 
strategy  

0 0 0 100 0 
10 21 49 12 18 
20 39 57 0 4 

1 Biallelic locus (X chromosome) influencing the number of lambs per female (1.5 for [++] and 2.0 for [m+]). 
 

 For a genotyping cost equal to 10 €, the optimal strategies combined the 4 mating types. The 

main mating type was non-carrier females mated to carrier males (49% of all matings). In this 

strategy 30% of the nucleus females were carriers. For a genotyping cost equal to 20, the proportion 

of non-carrier females mated to carrier males reached 57%. The proportion of carrier females in the 

nucleus reduced to 4% which corresponded to the minimum requirement to replace carrier males 

and produced heterozygous females transferred to commercial flocks.  

 Table 3 shows the genetic gain achieved by the nucleus for all strategies assessed, the genotyping 

requirements, the frequencies of heterozygous females (nucleus and transferred) and the profit. 

Apart from the heterozygous frequencies, all results are expressed relative to values obtained for the 
optimal strategy when there was no genotype cost (=100 in the first row of Table 3). 

Results show that when genotyping costs were not included, the optimal strategy maximized the 

heterozygous female frequency in the nucleus. In this case, a proportion of m+ females were selected 

for the nucleus, whereas all ++ females were available for transfer. This lead to a reduction in the 

heterozygous frequency of transferred females to 24%. When genotyping costs were included, the 

strategy maximized the heterozygous frequency of transferred females. In this case, mating type 2 

(♀[++]x ♂[m]) which produces m+ females without genotyping was used, allowing production of 

heterozygous females to be transferred to a commercial flock. For a moderate genotyping cost (10€), 

the number of genotyping remained at a significant level and allowed implementation of a strategy 

providing a substantial genetic gain. For a high genotyping cost, the number of genotypes was very 
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low and limited to genotyping male progeny of the mating ♀[m+]x ♂[m] only, implemented to 

replace male carriers. Even if this mating produced homozygous carrier females which were culled, 

it allowed a higher genetic value of carrier males and a higher genetic gain compared to the use of 

the mating ♀[++]x ♂[m] This strategy maintained the high proportion of heterozygous females 

transferred to a commercial flock and limited losses in genetic gain.  
 

Table 3: Genetic gain, genotyping needs, heterozygous female frequencies and profit of various 

strategies according to the genotyping costs (€). 

 
Geno. 
Costs 

Genetic 
gain1 

Genotyping 
requirements2 

Het. freq  
(nucleus) 

Het. freq 
(transferred) Profit3 

Optimal strategy 
0 100.0 100 1.00 0.24 100.0 
10 100.4 27 0.29 1.00 79.1 
20 85.1 4 0.04 1.00 74.6 

Gain without 
major gene 

-  125.4 0 0.00 0.00 72.5 

S14 0 100.0 100 1.00 0.20 100.0 
 10 100.0 100 1.00 0.20 77.1 
 20 100.0 100 1.00 0.20 54.2 

S25 0 103.5 59 0.40 1.00 85.8 
 10 103.5 59 0.40 1.00 72.4 
 20 103.5 59 0.40 1.00 58.9 

1 100=genetic gain obtained for the optimal strategy at null genotyping costs 
2 100=number of genotype for the optimal strategy at null genotyping costs 
3 100= profit obtained for the optimal strategy at null genotyping costs 
4 Simplified strategy based on one mating type ♀ [m] x ♂ [++] 
5 Simplified strategy based on two mating types ♀ [++] x ♂ [m] and ♀ [m+] x ♂ [+] 

 

The genetic gains for  the S1 and S2 strategies were similar to those obtained for optimal 
strategies, and losses of genetic gain ranged from 22 to 25%, compared to gain without the major 

gene, similar to the results obtained by Amer et al. (1998). Profit obtained for S1 was higher than 

S2 except at the high genotyping cost. In this case, simple management of the mutation gave lower 

profit than its eradication. Given the current genotyping cost, approximately 10 €, S1 is a strategy 

which could be considered for French breeding programs. This strategy has quite high genotyping 

requirements (two genotyped animals per selected replacement) but results in profitability similar 

to the optimal strategy and a high productivity in the nucleus flocks. The use of a tool combining 

parentage assignment and mutation genotyping, which is available in France, would decrease the 

genotyping cost and make application the S1 strategy more attractive.  
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SUMMARY 

Theoretical approaches used to calculate economic weights for feed intake and greenhouse gas 

emissions intensity that can be used to augment existing selection indexes are outlined. The 

approaches are discussed. Evaluation of these traits and their index weightings in a way that makes 

them independent of other traits already in the breeding objective is highly desirable to industry 

practitioners wishing to minimise disruption to current systems. However, this requires both 

biological and statistical concerns associated with definition of residual traits to be overcome. 

 

INTRODUCTION 

While collecting records, and undertaking genetic/genomic evaluations of merit for feed intake 

and greenhouse gas (GHG) emissions traits is costly, estimated breeding values for these traits are 

of growing interest for inclusion in national selection indexes, because of their current and potential 

high relative economic importance (Archer et al. 1997; Wall et al. 2010). 

Substantial investment has been dedicated towards recording of phenotypes, but the specific 

options for explicitly defining the estimated breeding value traits and applying weighting to them 

remains contentious. The complexity of the issues is exacerbated by the fact that existing selection 

criteria and estimated breeding values are already linked to both the amount of feed consumed and 

the amount of GHG emissions by animals in a commercial farm system. This means that double 

counting must be avoided, either through the choice of novel estimated breeding value trait 
definitions, or through adjustments to the weightings applied to existing traits in the index.  

This paper introduces the options for implementation of selection criteria for novel traits 

addressing GHG emissions and feed efficiency into selection indexes and discusses their strengths 

and weaknesses. 

 

EXISTING SELECTION CRITERIA 

Existing selection indexes for farmed ruminant livestock commonly affect GHG emissions 

intensity, defined as the amount of GHG emitted from the farm system per unit of product generated. 

Methods have recently been developed to show how output-increasing traits dilute the “fixed” GHG 

emissions that do not increase in proportion to the extra output. For example higher output per 

animal without any increase in animal rearing and maintenance feed requirements improves the 

biological efficiency of the farm system (Wall et al. 2010). This concept has been formalised 
recently into a methodological framework that can be applied across multiple livestock species 

(Amer et al. 2017). It can be expected that the relative importance of existing traits in selection 

indexes based on farm profitability will be different to their relative importance based on GHG 

emissions intensity. Thus, there is an opportunity to divert the selection direction slightly away from 

selection solely for farm profitability, so as to achieve greater than current gains in GHG emissions 

intensity (Quinton et al, 2017). For example, increasing breeding female survival improves GHG 

emissions intensity through a reduction in feed and associated emissions for rearing of replacements. 

In contrast, the trait maternal milk production in meat production systems, while desired by farmers, 

typically does not increase market output, and is less feed efficient than converting feed into meat 
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directly by the growing meat animal. Thus, weightings on emissions intensity traits do not fully 

align with farm profitability weightings.  Because traits that improve GHG emissions intensity tend 

in most cases to also increase farm profitability, trade-offs from profitability weighting to emissions 

intensity weighting will in most cases be very efficient, in that significant improvements in 

emissions intensity gains may be achieved with only small reductions in profitability gains. These 
gains can be achieved with confidence because of the strong association between production 

efficiency (through both genetic and non-genetic means) and GHG emission intensity. 

Existing selection indexes also typically account for correlated increases in feed intake 

associated with genetic changes in traits which are not direct measures of feed intake. Examples 

include the reductions in the economic values for milk component yields and young animal carcase 

output to account for well-known associations of these traits with feed intake. Mature breeding 

female weight is also often used as a proxy to predict the higher maintenance feed intake, and higher 

rearing feed costs associated with larger mature size individuals. While these proxy associations 

only account for a proportion of genetic variation in feed intake and production system efficiency, 

the proportion that they do account for is achieved with considerable prediction accuracy, because 

live weight and dairy system milk traits are typically evaluated with considerable accuracy, in a very 

large proportion of selection candidates and at modest recording expense. 
 

 

DEFINITION OF NEW SELECTION CRITERIA 

New measurement technologies may soon make it possible to record the feed intake and 

greenhouse gas emissions of animals on a sufficient scale for either conventional or genomic 

prediction of estimated breeding values, such that these traits can be included in selection indexes. 

It is important to consider though that many selection candidates are likely to be evaluated with only 

very modest accuracy. Even with genomic selection approaches, the accuracy of prediction of these 

novel selection criteria will at best be modest. This is due to the small size of training populations, 

and the risk of selection candidates having insufficient numbers of phenotyped close relatives in the 

training population. 
Classical selection criteria typically predict fractional components of feed efficiency and GHG 

emissions intensity with high accuracy. Examples include milk yield and growth rate. It is well 

known that animals that produce more milk, or which grow faster, will on average require more feed 

than their contemporaries. The accuracy of novel selection criteria to predict the whole genetic 

variation is typically much lower (see Figure 1).  

 

 
Figure 1. Partitioning of variation in a novel metric into the component predicted at high accuracy 

by existing selection criteria, and the component predicted at lower accuracy by phenotypes for the 
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novel metric.  

Therefore, care must be taken to maximise the efficiency of prediction of the full breeding objective, 

while maintaining clarity and transparency of the index to users in industry. There are three options. 

Firstly, it is possible to adjust the phenotype for the novel metric so that the estimated breeding value 

predicts only variation that is not already predicted by existing selection criteria. The second and 
third options involve a more substantial rebuild of the existing selection index. These options are 

discussed further below. 

 

OPTION 1. RESIDUAL TRAIT DEFINITION 

Residual feed intake is a classic example of implementation of option one. From a breeding 

objective perspective, this approach is very elegant, as no adjustment is required to existing selection 

criteria and the weightings that are applied to them in the existing breeding objective. The economic 

value for feed intake also does not require any major rework. The cost of an extra unit of feed is the 

same, irrespective of whether it is an extra unit of total feed intake, or an extra unit of feed required 

after accounting for the feed intake expected to be associated with maintenance, growth and/or milk 

production (i.e. other traits in the index). Furthermore, it is likely that feed intake is a different 

genetic trait (i.e. correlations less than one) across different life stages of the animal, but the selection 
criterion breeding value is likely to be based on phenotypes measured at only one life stage (e.g. 

feed intake measured in young males for a small test window, used to predict feed intake in both 

growing and mature females, with the mature females split into both dry and lactating states). It is 

reasonable to hypothesise that the residual feed intake trait will be more highly genetically correlated 

across different life stages than total feed intake, but this will be hard to prove definitively in practice. 

Never-the-less, some estimation of these correlations is required for appropriate selection index 

construction, irrespective of the option taken. 

It is important to note that many quantitative geneticists and biologists have reservations about 

the definition and use of residual traits, particularly for feed intake. The arguments put forward are 

beyond the scope of this paper, but relate to both statistical properties of the resulting traits, and 

potential detrimental biological consequences for fitness traits resulting from selection for a narrow 
definition of the trait. 

 

OPTION 2. GROSS TRAIT DEFINITION – USE OF CORRELATED PREDICTORS 

An alternative to option one is to accommodate the novel metric in the breeding objective without 

any adjustments. For example, a gross methane estimated breeding value might be included with a 

negative economic value associated with methane output. Similarly, a breeding value for total feed 

intake could be included in the breeding objective, either with or without the gross methane trait. 

Because output traits such as growth rate, body size and milk production are highly genetically 

correlated with both feed intake and GHG emissions associated with methane output, then these 

output traits should in principle be included as correlated predictor traits in the genetic evaluation of 

the methane or total feed intake breeding values. 

The only advantage of this approach is that the need to define an estimated breeding value for a 
residual or adjusted trait is circumvented. There are many disadvantages. Any accounting for feed 

costs or associated emissions in the existing trait economic values must be removed. This will result 

cosmetically in much larger economic weightings for output-increasing genetic traits. The extent to 

which existing selection criteria are useful as correlated predictors of feed intake and gross methane 

emissions will differ substantially for animals in different life stages. For example, milk yield 

potential will be an important predictor of total feed intake in lactating cows, but much less so in 

young growing animals. The reverse would be expected for body weight traits recorded in young 

animals. This makes the process of estimating breeding values quite arduous, whereby complex 

multi-trait predictions are required with many parameters. Many of these parameters will not be well 
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estimated. While the same parameters are likely required in option one, in that case they are more 

likely to be applied in the definition of the breeding objective, than in the computation of the 

estimated breeding values. Finally, for GHG traits, finding the balance of weighting on gross 

methane, gross feed intake and conventional traits that achieves a quantified and understood 

improvement in emissions intensity will be highly complex. For example, milk yield would be 
penalised heavily in an index including gross methane because of the strong association between 

milk production and GHG emissions in a lactating dairy cow, and it is well known that gain in milk 

production per cow is a substantial contributor to gains in GHG emissions intensity on dairy farms. 

 

OPTION 3. GROSS TRAIT DEFINITION – IGNORING CORRELATED PREDICTORS 

Option two is potentially complex to deploy, and so it might be tempting to completely ignore 

the fact that existing selection criteria are useful predictors of a component of the genetic variation 

in a target trait of interest. This would circumvent the problem stated above in terms of the implied 

complexity for the genetic evaluation system. For the situation of total feed intake as a trait with an 

economic value in the selection index, some weighting penalty should be left on existing selection 

criteria to account for their association with feed intake. Otherwise, it is likely that animals with low 

accuracy estimated breeding values for feed intake would have excessive weighting placed on 
output- and feed intake-increasing traits. However, the optimal amount of weighting would depend 

on the information sources available for both production traits and feed intake for each animal. Thus, 

such an implementation would likely be inefficient for many animals. 

 

DISCUSSION AND CONCLUSION 

Many quantitative geneticists are currently considering how novel selection criteria for feed 

intake and GHG emissions could be included in selection indexes. Two groupings exist. Firstly, 

there are researchers focused on development of the new traits, who view the options in terms of 

their biological interpretation. Secondly, there are practitioners who see the novel traits as a complex 

extension of systems and processes already in place and accepted by industry users. This paper has 

presented some options for deployment, and discussed their advantages and disadvantages. In 
general, option one, whereby the novel phenotypes are evaluated in a way that makes them 

independent of other traits already in the breeding objective is highly desirable to industry 

practitioners wishing to minimise disruption to current systems. However, this requires both 

biological and statistical concerns associated with definition of residual traits to be overcome. 

Failure to do so is likely to delay industry deployment, and so the challenge to overcome the 

objections will need to be addressed by those advocating for inclusion of the new information in 

industry selection indexes. 
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SUMMARY 

In recent years there has been increasing interest internationally in estimating breeding values 

for traits that can reduce farm costs, such as health traits in livestock. One of the limitations in 

developing breeding values for health traits in Australia has been lack of data. In this study, we 

have estimated reliabilities of genomic breeding values for health traits when only clinical records 

on health disorders are used that are collected from a genomic reference population (Ginfo). 

Reliabilities for bulls with daughters in the reference population are 27%, and 25% for mastitis and 

an “all-disease” trait, respectively. For bulls with no daughters in the reference population, 

reliabilities are 4% and 12% for mastitis and the “all-disease” trait, respectively. In contrast, 
reliabilities for reproductive disorders and metabolic diseases were much lower (<15%). Mastitis 

and “all-diseases” have higher incidences and also higher heritability estimates than the other 

diseases, which is likely to be the reason for higher reliability estimates. Although estimates are 

still regarded as low, they are in line with expectations for a newly-recorded trait. Investigation 

into the improvement of reliabilities through the use of predictor traits through multi-trait analysis 

is the next step for this research.  

 

INTRODUCTION 

In the past, genetic selection for milk production was the main focus for the driver of dairy 

farm profitability. While making great genetic gains in milk production, an unfavourable 

relationship between production and disease resistance has become apparent (Pryce et al. 1997; 
Rauw et al. 1998; Koecket al. 2012). Dairy cow health will continue to deteriorate if disease traits, 

or their predictors, are not included in breeding objectives. Healthy cows are more productive, 

easier to manage, require less intervention, have improved animal welfare and contribute to 

profitability by reducing production costs.  

Health and fertility traits generally have low heritability estimates (<5%) compared to 

production traits (>30%) (Egger-Danner et al.2015). However, there is sufficient genetic variation 

to still make selection feasible for low heritable traits, and this has been evident in the dairy 

industry with the improvements made with selecting directly on fertility (Pryce et al. 2014).  

Traits like health and fertility have large impacts on the dairy industry but sometimes data 

availability is low. One option is to obtain records from a dedicated reference population of 

genotyped cows with phenotypes of interest. This has already started in Australia with the 

establishment of the first 100 Genomic Information Nucleus herds (Ginfo). Ginfo was a large-
scale genotyping project (103 herds and 32,386 cows) to increase the size of the Australian dairy 

reference population to improve the reliability of Australian genomic breeding values.  

The objectives of this study were  to estimate ‘clinical’ genomic health breeding values for the 

major disease traits such as mastitis, reproductive disorders, lameness, metabolic disorders and an 

overall “all-disease” trait using the health data collected from the Ginfo herds and secondly to 

determine the reliability of those estimated breeding values. 
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MATERIALS AND METHODS 

Health data and genotypes. A total of 487,503 electronic health records were accessed from 

90 (of 103) Ginfo herds. Genotypes were available on 15,632 cows that also had health records. 

Genotypes of 2,984 bulls with daughter health records were also obtained from DataGene. 
Disease categories. The major disease traits (mastitis, reproductive disorders, lameness, and 

metabolic disorders) were converted into binary traits. Each disease was coded with a 0 or 1 for 

every cow-lactation record, where 1 corresponds to a cow having a particular disease at any time 

in a lactation period and 0 if it does not have that disease. For the “all-diseases” category, if a cow 

has any record of any disease event, it was coded 1, or otherwise 0 as healthy. 

Genomic analysis. The reference dataset contained 11,458 genotyped Holstein cows (out of 

the total 15,632). The validation dataset contained 494 genotyped bulls, with 6,989 daughters that 

had health records (n = 22,276) but were not genotyped themselves, so not included in the 

reference set. Bulls with less than 5 daughters were excluded from the analysis.  

 

For the estimation of genomic breeding values the following linear mixed animal model was 

used:  

 
y =µ + HYS + Parity + MOC+ β1Agecalving + β2Agecalving2+ CowID + GRM + e, 

 

where y= observable health traits (binary trait 0 or 1), µ = trait mean, HYS = Herd-Year-Season 

contemporary group, Parity = 4 levels of parity (1, 2, 3, > 4), MOC = month of calving 1 to 12, 

Agecalving = age at calving from 18 months to 220 months (calving date – birth date) fitted as a 

covariate and 2nd order polynomial, CowID = random permanent environmental cow effect to 

account for repeated measures, GRM = random term for the genetic markers (SNPs), and e = 

random error term. The model was fitted using ASReml Version 4 (Gilmour et al., 2015). 

Reliability of genomic prediction. Two methods were used to estimate the reliability of 

genomic prediction: 

 

1. Theoretical (expected) reliability (R)  =
2

PEV
1

g




, 
 

where, the prediction error variance (PEV) = squared standard error of the direct genetic value 

(DGV) for each animal in the dataset, and σg
2 is the additive genomic variance, obtained from the 

REML estimate. 

 

2. Empirical (observed) reliability using cross-validation 

 

= r(DGV, DTD)2 

 

Cross-validation was performed by predicting DGVs for the 494 genotyped bulls that had 

daughters with health records but were not genotyped. Reliability was then estimated as a simple 

Pearson’s squared correlation between the direct genomic breeding value (DGV) and the corrected 

phenotypes (residuals) which were used to calculate the daughter trait deviations (DTD) for each 
bull. The reliability was adjusted by dividing it by the average reliability of DTDs (h2*average 

effective number of daughters for the genotyped bulls) (Haile-Mariam et al., 2012). 
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RESULTS AND DISCUSSION 

A summary of the number of records used in the genomic analysis for each health trait is 

reported in Table 1 for Holsteins. 

 
Table 1. Summary of the number of cow-lactations, cases of disease (n) recorded for each 

health trait (MAST = mastitis, REPRO = reproductive disorders, LAME = lameness, 

METAB = metabolic diseases, ALL DIS = “all-diseases”) and heritability estimates ( 2ĥ

±standard errors) for Holsteins using all parity records 

 

Traits  n 2ĥ ±S.E  

Cow-Lac  33,000   

MAST  3,735 0.03 ± 0.004  

REPRO  2,498 0.01 ± 0.002  

LAME  248 0.00 ± 0.00  

METAB  241 0.002 ± 0.002  

ALL DIS  6,085 0.02 ± 0.004  

 
Mastitis and the all disease category had the largest number of records followed by reproduction, 

lameness and metabolic disorder categories. The same patterns were also evident with the 

reliabilities of genomic predictions with the highest being mastitis and the all disease category, 

followed by reproductive and metabolic disorders (Table 2).  

 

Table 2. Average expected reliabilities (R) of genomic breeding values for cows and bulls 

with daughters in the reference dataset and bulls in the validation dataset (V) and Cross- 

validation accuracy and reliability (r2) for each health trait (MAST = mastitis, REPRO = 

reproductive disorders, LAME = lameness, METAB = metabolic diseases, ALL DIS = all 

diseases) 

 

Traits 

                Expected Reliability             Cross-Validation 

Bulls*  Cows  Bulls_V^ Accuracy r2 

MAST 0.33 0.23 0.18 0.12 0.04 

REPRO 0.15 0.09 0.05 0.02 0.004 

METAB 0.04 0.01 -0.01 -0.01 0.003 

ALLDIS 0.31 0.20 0.16 0.18 0.12 

   *Bulls with daughters in the reference set (n= 948);  ^Bulls with no daughters in the  reference set (n= 494) 

 

The prediction error variance and cross-validation methods produce similar reliability 

estimates. The reliabilities are low but are comparatively higher for mastitis and the all disease 

category (Table 2). Bulls generally had higher reliabilities than cows, due to bulls having greater 

than 5 daughters in the data.   

The lower reliability for metabolic disease is associated with fewer records in comparison to 

mastitis and the all disease trait. Further, mastitis and the “all-diseases” trait had higher 

heritabilities and incidences than the other disease traits (Table 2), possibly an indication of why 
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their reliabilities are higher. There is still potential for improving these traits’ reliabilities by two 

means: 1) by including DTDs in the reference set for the 948 genotyped bulls, and 2) by 

incorporating predictor traits, for example inclusion of both mastitis and SCC data is expected to 

improve the reliabilities of GEBVs for mastitis.  

The reliability estimate for lameness was unsatisfactory to report (R=0) due to the low number 
of records associated with this trait, and zero heritability. However, there may be merit in 

recording different types of lameness (e.g. laminitis, etc.) and developing new ways of recording, 

such as using a phone app. We expect that collection of more data and distinguishing between 

types of lameness may help to develop genomic breeding values for this trait. 

 

CONCLUSIONS 

Overall the results from this study are in line with expected reliabilities for new traits with 

comparatively small amounts of data and provide a good foundation for further improvement of 

reliabilities for health traits. It is encouraging that reasonable reliabilities were achieved for 

diseases such as mastitis and the all disease trait. Having more health event data being identified 

and made available to the dairy industry, and further investigation in combining predictor traits, 

will assist in providing genomic breeding values with greater reliability.  
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SUMMARY 

 Genetic trends are presented for the estimated feed intake of young Angus animals at pasture 

and in the feedlot, and of Angus cows at pasture for a self-replacing, 100d-finished production 

system. Increases in feed intake over time, both at pasture and in the feedlot, are estimated to have 

accompanied genetic gains in productivity traits in Angus cattle. The estimated increases are both 

in feed requirement and residual feed intake, with the latter being smaller in magnitude. The need 

for industry to record feed intake to facilitate selection for feed efficiency and, in the absence of 

this, for stocking rate to be managed in commercial herds to offset increases in feed intake, are 

factors briefly discussed in connection with industry realising benefits from genetic improvement.  

 

INTRODUCTION 
 Feed intake has a major influence on beef production profitability, but it is difficult to measure 

in the grazing animal and consequently it is not easily included in genetic evaluation. In Australia, 

there is a protocol (eg. Exton 2001) for industry recording of residual or ‘net’ feed intake (ie. feed 

intake at the same liveweight and gain). The high cost of measuring feed intake has so far limited 

its recording. This paper examines genetic trends since 1985 in the estimated feed requirement and 

residual feed intake of young Angus cattle at pasture and in the feedlot, and in the feed 

requirement of Angus cows at pasture. Some implications for whether benefits from genetic gain 

are being realised in industry are briefly discussed.  

 

METHODS 

Breeding objectives. Breeding objectives for net return per cow were derived with BreedObject 
(Barwick et al. 2005) for pasture finished, 100d feedlot finished (self-replacing cow herd at 

pasture, steers finished at 640kg at 22m), and 220d feedlot finished animals. Results are presented 

only for the 100d-fed system, as patterns in results for other systems were similar. Traits in the 

breeding objective were sale weight, dressing %, saleable meat %, rump fat depth, marbling score, 

feedlot entry weight, weaning weight (direct & maternal), mature cow weight, cow weaning rate, 

residual feed intake-pasture, residual feed intake-feedlot, and cow condition score. The general 

form of the economic value for traits is returns – feed requirement cost –  non-feed 
management cost. The feed requirement associated with a unit change in each objective trait was 

estimated using the equation systems described by Freer et al. (2007). 

 

Genetic trends in productivity traits. EBVs for the breeding objective traits were predicted from 

the January 2017 BREEDPLAN EBVs of 1,895,481 Angus animals born from 1985 through to 

2015, and summarised by year of birth. Predictions used the relation ĝ = µ̂ G11
-1G12, where ĝ and 

µ̂ are EBVs for breeding objective traits and from BREEDPLAN, and G11 and G12 are genetic 

covariances among BREEDPLAN EBVs and between these and the objective traits, respectively. 

Genetic parameters employed were derived from industry and literature estimates and are those 

used for developing Angus indexes in Australia. The trends in Figure 1 are for selected objective 

traits of those listed above for the young animal or cow. 

                                                             
* AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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Genetic trends in feed intake. Genetic trends in feed intake were obtained as index trends by 

restricting the prices received and costs incurred in the breeding objective to zero except those for 

feed. Feed requirement and residual feed intake trends were obtained by omitting or retaining the 

residual trait in the objective. In principle, total feed intake is the sum of feed requirement and the 

residual trait. Because these components can be correlated, feed intake trends were derived with 
both components in the objective. The trends in Figure 2 are in terms of the estimated total feed 

intake (excluding any period of surplus feed) per animal (young animal, cow or cow/calf unit) for 

that segment of the production system (cow herd, backgrounding at pasture or feedlot finishing). 

 

RESULTS AND DISCUSSION  
    Figure 1 demonstrates estimated genetic trends occurring in selected objective traits of Angus. 

a) Finished sale liveweight                                    d)   Cow liveweight            

                           

b)    Carcase meat %                                                 e)   Cow weaning rate 

           
                                                                                                                                                              

c)    Carcase marbling score                                     f)    Cow condition score                                                                                      

         

Figure 1.  Genetic trends in breeding objective traits for the young animal or cow in Angus 

cattle for a self-replacing cow herd with steers 100-d feedlot finished after backgrounding. 

1985   2015   1985   2015   

1985   2015   1985   2015   

1985   2015   1985   2015   
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c)  Young animal pasture residual feed intake     d)  Feedlot residual feed intake 

         

e)  Young animal total pasture feed intake          f)  Total feedlot feed intake 

          

g)  Cow feed requirement                                       h)  Cow & calf total feed intake 

          

Figure 2.  Genetic trends in the estimated feed intake of Angus cattle for a self-replacing cow 

herd with steers 100-d feedlot finished after backgrounding. The trends are in terms of total 

feed (excluding any period of surplus feed) for that production system component (cow plus 

calf to weaning, backgrounding or feedlot finishing). 

a)  Young animal pasture feed requirement         b)  Feedlot feed requirement   

1985   2015   1985   2015   

1985   201 5   1985   2015   

1985   2015   1985   2015   

1985   2015   1985   2015   
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Figure 2 shows the gains in productivity traits in Figure 1 have been accompanied by increases in 

estimated feed intake, involving both the animals’ requirement for production and its residual. In 

the 100d-fed system, feed intake is estimated to have increased both at pasture and in the feedlot. 

In the 30 years between 1985 and 2015 the increase in the intake of cows at pasture (about 3000 

MJ, Figure 2g) and the cow and calf unit at pasture (about 5000 MJ; calves at pasture from 
weaning at 7m until feedlot entry at 18.5m), means the expected DSE rating of Angus cows has 

also increased. 

    The estimated increases in feed intake (Figure 2), in particular residual feed intake, illustrate the 

need for industry recording of feed intake so feed efficiency can be improved along with 

productivity. Selection indexes derived for industry in the past with BreedObject (Barwick and 

Henzell 2005), that have increased over time (not presented), take account of the cost of the 

increased feed requirement but residual feed intake has only recently been included (released 

2016). Figures 2c and 2d show residual feed intakes of Angus are increasing rather than decreasing 

(decreases are needed to increase feed efficiency), reflecting the existence of underlying low 

positive genetic correlations between feed requirement and residual feed traits. Given this 

correlation not recording feed intake to estimate residual feed intake EBVs and continued selection 

for increased growth and mature size will allow beef feed efficiency to continue to decrease. 
The results also suggest that animal genetic improvement and pasture stocking rate 

management need to be considered jointly. In an earlier illustration (Barwick et al. 2011) it was 

shown that genetic improvement was likely to have the extra benefit of improving pasture 

utilisation when stocking rates are low. At high stocking rates, it was shown that benefits from 

genetic improvement may not be realised unless stocking rate is reduced or other feed is provided. 

Without this management change, there is environmental decline from the point of view of the 

animal, as individual feed demands have increased. This situation could also be occurring in other 

production systems and other grazing species. Graham et al. (2015) drew attention to the 

possibility of other forms of environmental decline limiting benefits from genetic improvement 

being realised.  

Though data are scarce, it is commonly held that industry pasture utilisation rates are low. 
Anecdotal evidence from industry suggests this may be changing, though it is not clear if this is 

only at particular times of the year and in lower-rainfall seasons. The beef industry needs more 

recording of feed intake so feed efficiency can be improved. In the absence of efficiency 

improvement, when pasture utilisation is high, it is critical for benefits to be realised from genetic 

improvement that commercial producers are aware of the trends in feed intake that accompany 

genetically higher-performing animals. It may also help for industry selection indexes to be 

derived at two or more levels of feed availability/cost (eg. supplementary feed; $100/tonne vs 

$300/tonne).  
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SUMMARY 

Portable accumulation chambers (PAC) enable enteric gas emissions of sheep to be measured 

under field conditions. Feed intake is highly correlated with methane emission and should be 

accounted for in models for parameter estimation of methane emissions, but it cannot be measured 

in the field. In this study, different linear mixed models were fitted to methane and carbon dioxide 

emissions and oxygen consumption to investigate the consequences of not adjusting for feed intake, 

as well as adjusting for effects that indirectly account for feed intake, such as live weight, carbon 

dioxide or oxygen. The significance of permanent environmental effects was also tested. The results 

demonstrate that feed intake accounts for a considerable amount of the variance in methane 
emissions. In this animal house experiment, where sheep were fed at 1.5 x maintenance, much of 

the variation in feed intake appeared to be related to non-genetic effects of the animal. Consequently, 

fitting a permanent environmental effect yielded similar heritability estimates to those of models 

that adjusted for feed intake. Repeated measures of greenhouse gas emission in PAC require more 

complex models including permanent environmental effects to produce acceptable estimates.  

 

INTRODUCTION 

Enteric methane emissions are strongly correlated with feed intake. Criticism has been raised, 

that, without appropriate measures of production, selection to genetically reduce methane emissions 

could lead to decreased production because of decreased feed intake (Arthur et al. 2009). One 

approach is therefore to adjust methane emissions for feed intake. Technologies to measure methane 
and other enteric gas emissions of sheep include respiration chambers (RC) and portable 

accumulation chambers (PAC). The advantage of PAC is that they can be used in the field; the 

disadvantage is that under field conditions, it is not possible to measure feed intake. 

The aim of this study was quantify the differences in variance components and heritability 

estimates for enteric gas emissions and oxygen consumption from models with and without 

adjustment for feed intake, or proxies for feed intake that can easily be measured. In addition, the 

outcomes of fitting permanent environmental effects were explored.  

 

MATERIALS AND METHODS 

Data. Enteric gas emission traits were measured on 512 Information Nucleus Flock (INF) 

follower ewes at Armidale, New South Wales. The ewes were born between August 2007 and 

October 2013. Data were collected in an indoor facility using PAC with two measurement protocols 
that differed in time off feed prior to measurement. Protocol PAC0 measured animals immediately 

off feed and PAC1 kept animals 1 hr off feed prior to measurement. Methane, CO2 and O2 (ml/min), 

live weights (kg) and feed intake (g) were recorded. Measurements from the two PAC protocols 

were highly correlated, with genetic correlations ranging from 0.75 to 1.00. Therefore, records for 

PAC0 and PAC1 were regarded as repeat measures, resulting in two PAC measurements per animal. 

Ewes were tested from mid-April 2015 to mid-March 2016.  

Feed was offered in the mornings at 1.5 x maintenance requirements and feed intake recorded 

from 8 am on the day prior to PAC measurements to 8 am on the day of measurement (FIDP) and 

from 8 am on the measurement day until the time the animal entered the PAC (FIOD). 
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Statistical analysis. Variance components and heritabilities for gas emission traits were estimated 

using ASReml (Gilmour et al. 2009). An extensive back-pedigree with 13 genetic groups was used. 

Univariate mixed animal repeatability models were run to estimate parameters. Fixed effects 

included test batch, birth year, measurement date, measurement protocol, testing run (RUN, 7 levels, 
with 4 for PAC0 and 3 for PAC1), and PAC (from 1 to 12). Ten models were tested for CO2 and O2, 

and twelve models for CH4. For each gas trait, the first model fitted all significant fixed effects, but 

not direct or indirect adjustment for feed intake (Model no adj). Other models fitted either feed 

intake (FIOD and FIDP and their interaction with RUN) as Model FI, live weight (Model LWT), 

feed intake and live weight (Model FI+LWT), CO2 (Model CO2) or O2 (Model O2). Only significant 

fixed effects and interactions were retained in the final models. All models were fitted with and 

without permanent environmental effect (PE). Random effects included animal ID to estimate the 

genetic variance and a permanent environmental effect, fitted as an identity matrix of the animal ID.  

 

RESULTS AND DISCUSSION 

Basic features of the dataset and the distribution of their raw phenotypes are shown in Table 1. 

Table 2 shows the variance components and resulting heritability estimates for CH4, CO2 and O2 
from the different models, with and without adjustment for feed intake or a substitute (LWT, CO2 

or O2) without and with permanent environmental effect (+PE). For all traits, the phenotypic 

variances decreased after fitting FI, LWT, FI and LWT or CO2 or O2, as might be expected. For 

CH4, feed intake accounted for the most variation, whereas O2 accounted for most of the variation 

in CO2 and vice versa. As a consequence of the reduction in phenotypic variances, genetic and 

environmental variances were also reduced, with environmental variance being less affected than 

genetic variance.  

 

Table 1. Mean (+sd: standard deviation), minimum (Min) and maximum (Max) of methane 

(CH4), carbon dioxide (CO2) and oxygen (O2) (in ml/min) 

 
 Mean (+ sd)) Min Max 

CH4 36.27 + 9.35 4.97 75.31 
CO2 422.30 + 82.56 207.40 734.90 
O2 -451.60 +77.43 -732.50 -257.80 

 

The change in heritability estimates also reflects the substantial amount of variance related to the 

covariates fitted. Previously reported heritabilities for CH4 from field measurements of sheep in 

PAC ranged from 0.05 – 0.19 (Robinson et al. 2014a; Goopy et al. 2016). As might be expected, 

the results from this controlled animal house study were higher than published estimates from field 

measurements. Results from the different models in this study support the conclusion of Robinson 

et al. (2014b), that a substantial proportion of the variation in CH4 emissions is related to variation 

in feed intake. In fact, economic modelling of breeding objectives suggests that methane 

measurements can be used as a proxy for feed intake, and that the resulting improvements in feed 
efficiency will often be more valuable than the reductions in greenhouse gas emissions (Robinson 

and Oddy 2016). 

Robinson et al. (2014b) highlighted the importance of PE effects in regards to CH4 emission 

traits. They noted significant effects of twins being reared as singles and hypothesised about other 

causes, such as diet, rumen volume and their impacts on short or long-term variation in rumen 

microbial composition. In our study, the effect of fitting a permanent environmental effect was tested 

for all models (+PE). As assessed by likelihood ratio tests, the significance of PE was not associated 

with a particular trait, but appeared to depend on the covariates that were fitted. The more variance 
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could be captured by the covariate, i.e. FI and also CO2 for O2 emissions, the less variance was due 

to the PE effect. Interestingly, fitting a permanent environmental effect in model no adj yielded 

similar heritability estimates for CH4, CO2 and O2 to those from model FI. The repeated measures 

in this dataset allowed both permanent environmental effects and measurement errors to be 

estimated. Another approach would be to explore the measurements from PAC0 and PAC1 in a 
bivariate analysis as correlated traits. 

 

Table 2. Genetic (VG), residual (VE), phenotypic (VP) and permanent environmental (VPe) 

variance component (including significance), log likelihood (Logl) for each model with and 

without permanent environmental effect and heritability estimates (h2) for CH4, CO2 

emission and O2 consumption 

 
CH4 

 VG VE VP VPe Logl h2 

no adj 45.25 27.10 72.35 -- -2697.32 0.63 (0.03) 
no adj + PE 25.77 26.88 70.62 17.98 -2696.89 0.36 (0.14) 

LWT 36.64 27.32 63.97 -- -2666.19 0.57 (0.03) 
LWT + PE 9.54 26.88 61.70 25.28** -2660.79 0.15 (0.13) 
CO2 20.62 17.64 38.26 -- -2416.55 0.54 (0.03) 
CO2 + PE 15.06 17.52 37.85 5.27 -2415.14 0.40 (0.13) 
O2 17.54 18.34 35.88 -- -2404.53 0.49 (0.03) 
O2 + PE 12.70 18.20 35.56 4.66 -2403.16 0.36 (0.13) 
FI 5.09 14.32 19.41 -- -2974.91 0.26 (0.04) 
FI + PE 3.78 14.22 19.35 1.35*** -2173.48 0.20 (0.11) 

LWT+FI 4.35 14.17 18.53 -- -2158.48 0.23 (0.04) 
LWT+FI+PE 2.98 14.06 18.48 1.44 -2157.50 0.16 (0.10) 

CO2 

 VG VE VP VPe Logl h2 

no adj 2805.21 1750.00 4555.20 -- -4866.12 0.62 (0.03) 
no adj + PE 1554.93 1734.66 4455.60 1156.03* -4863.86 0.35 (0.14) 

LWT 1775.60 1772.57 3548.20 -- -4793.18 0.50 (0.03) 
LWT + PE 63.73 1734.82 3424.70 1626.17*** -4783.88 0.02 (0.12) 
O2 48.67 584.76 633.44 -- -3990.31 0.08 (0.04) 
O2 + PE 15.66 577.65 633.13 39.83 -3988.94 0.02 (0.08) 
FI 765.72 1309.08 2074.80 -- -4578.01 0.37 (0.04) 
FI + PE 232.22 1288.01 2044.80 524.61* -4574.84 0.11 (0.12) 
LWT+FI 670.32 1262.78 1933.10 -- -4547.54 0.35 (0.04) 
LWT+FI+PE 224.89 1243.27 1911.00 442.86* -4544.99 0.12 (0.12) 

O2 

 VG VE VP VPe Logl h2 

no adj 1985.11 1099.85 3085.00 -- -4666.59 0.64 (0.03)  
no adj + PE 1366.19 1093.60 3028.40 568.65 -4665.34 0.44 (0.15) 
LWT 1200.57 1113.36 2313.90 -- -4583.37 0.52 (0.03) 
LWT + PE 50.39 1092.20 2227.00 1084.39*** -4574.16 0.02 (0.12) 

CO2 182.16 543.77 725.93 -- -4058.93 0.19 (0.04 ) 
CO2 + PE 93.33 535.94 722.72 93.33 -4057.45 0.13 (0.10) 
FI 621.80 887.77 1509.60 -- -4420.35 0.41 (0.04) 
FI + PE 212.64 876.54 1482.50 393.31** -4417.26 0.14 (0.13) 
LWT+FI 543.05 851.49 1394.50 -- -4686.23 0.39 (0.04) 
LWT+FI+PE 116.01 837.05 1369.90 416.81*** -4382.35 0.08 (0.12) 

Significance of log likelihood ratio test: P < 0.05 *;P < 0.01 **, P < 0.001*** 

Despite relatively small numbers of animals (total of 512), the PE was more often significant 
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than not. Live weight, is of course highly heritable, and when it was accounted for in Model LWT, 

the estimate of genetic variation was small for CO2, but there was still variation due to PE effects. 

One possible explanation is that in some animals both CO2 production and O2 consumption have a 

different relationship with live weight, and, to a lesser extent, feed intake. What this might be is yet 

to be determined, but could include learned behaviour such as stress responses that might contribute 
to additional PE variation in O2 consumption and CO2 emissions.    

Robinson et al. (2016) noted that the repeatability of methane measurements diminishes over 

time, falling from an average of 0.48 for measurements in the same week to 0.20 for the average of 

6 repeated measurements on the same animals from 2009-2014. This suggests that some of the 

variation attributed to PE effects could in fact be temporary and (perhaps to a greater extent than 

genetic effects) relate to factors affecting the animal during the particular month each batch of sheep 

spent in the animal house.  

 

CONCLUSION 

Ideally feed intake is accounted for in models for genetic parameter estimation of CH4 emission, 

however feed intake measures are difficult to obtain in the field. Repeated measures of enteric gas 

emission in sheep provide an opportunity to estimate both measurement errors and non-genetic 
animal environmental effects. The latter were usually significant and accounted for some variation 

in feed intake and other factors that, in models ignoring the PE effect, would be included in estimates 

of the genetic variance and result in inflated estimates of heritability.  
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SUMMARY 

The aim of this study was to develop a future-scenarios selection tool to assist farmers in 

making selection decisions, that combines the current national dairy selection index, known as the 
Balanced Performance Index (BPI) with a proposed heat tolerance (HT) genomic estimated 

breeding value (GEBV). Heat tolerance GEBV was estimated for 12,062 genotyped cows and 

10,981 bulls, using an established genomic-prediction equation. Publicly available future daily 

average temperature and humidity data were used to calculate mean daily temperature–humidity 

index for each dairy herd. One way to ascertain heat tolerance is the rate of decline in milk 

production traits to rising heat loads, this definition was the basis of the heat tolerance breeding 

values (BV_HT). An economic estimate of an individual cow’s BV_HT was calculated by 

multiplying HT GEBVs for milk, fat and protein yields by their respective economic values that 

are used in the BPI. This was scaled for each region by multiplying BV_HT by the heat load, 

which is the temperature–humidity index (THI) units exceeding the threshold per year at a 

particular location. BV_HT were incorporated into the BPI as: BPI_HT =  BPI +  BV_HT; where 

BPI_HT is the ‘augmented BPI’ breeding value including HT. A web-based application was 

developed enabling farmers to predict the future heat load of a herd and take steps to aim at 

genetic improvement in future generations by selecting bulls and cows that rank high for the 

‘augmented BPI’. 

 

INTRODUCTION 

It is widely recognised that heat stress has significant impacts on the performance of dairy 

cows. When heat stressed, animals consume less feed, followed by a decline in milk yield (St-

Pierre et al., 2003). In Australia, it is projected that major dairying regions will experience an 

increase in daily average temperatures as well as more frequent heat waves (CSIRO and BoM, 
2015). Therefore, there is a need for the industry to develop strategies to mitigate the impacts of a 

warming climate on animal performance. 

Apart from providing cooling devices and managing diets for cows on hot days, selection for 

more heat tolerant animals is an approach worthy of investigation. In this regard, Nguyen et al. 

(2016) developed genomic estimated breeding values (GEBVs) for heat tolerance (HT) for 

Australian Holsteins and Jerseys, which is the rate of decline in milk production traits to rising 

heat loads. The study found that using high-density single-nucleotide polymorphism (SNP) 

genotypes, HT GEBV can be predicted with an accuracy ranging between 0.42–0.61. The HT 

GEBV has unfavourable correlations with production traits, but a favourable correlation with 

fertility. In addition, the HT GEBVs were validated through an experiment where genomically 

predicted heat-susceptible and predicted heat-tolerant animals show a significant difference in milk 
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yield losses, and rectal and intra-vaginal temperatures when experiencing a mild simulated heat 

wave (Garner et al., 2016). A breeding value for HT is planned to be released to the dairy industry 

in the near future. 

Given the complexity in the relationships between HT and other traits in the current selection 

indices, one relevant question is how farmers can balance the selection for HT with their existing 
priorities. Farmers in regions where heat stress is more of an issue may prioritise selection for HT 

to a greater extent than those in cooler climates. In the present study, we developed a future-

scenarios selection tool that enables farmers to make informed decisions so as to balance the 

selection of current economic drivers traits in the BPI with HT simultaneously by varying the 

weight applied to HT_BV for individual farms by heat load. 

 

MATERIALS AND METHODS 

Projected future climate data. The Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) and the Bureau of Meteorology (BoM) have provided details of projected 

future climate-change scenarios in Australia over the 21st century (CSIRO and BoM, 2015). 

Appropriate climate projection models used in the present study were selected following the 

advice of CSIRO climate scientists. We chose medium and high emission scenarios (RCP4.5 and 
RCP8.5 (carbon dioxide level of 540 x10-6 µmol/mol by 2100) and RCP8.5 (carbon dioxide 

concentration of 940 x 10-6 µmol/mol by 2100) as examples. 

On the basis of the selected models, projected average daily temperature and humidity for 

weather stations (namely weather station data) were downloaded from the ‘Climate Change in 

Australia’ website (http://www.climatechangeinaustralia.gov.au/, 01 March 2016). In addition, 

gridded average daily temperature and humidity data (namely gridded data) were also obtained 

directly from the Climate Research and Services, CSIRO Oceans and Atmosphere (Aspendale, 

Victoria). We used data from the nearest grid (1 km distance to weather station) to patch missing 
weather-station data. Weather data were matched to the nearest postcode provided the distance 

between the weather station and centroid of the postcode was no more than 60 km. 

Daily average THI was calculated for each day from 2020 to 2035, as per Nguyen et al. (2016). 

According to Hayes et al. (2003), averaged THI of the test day and 1, 2, 3 and 4 days before the 

test day of exceeding 60 could result in a decline in milk yield. Therefore, we defined heat load of 
a given year as the total of five-consecutive-day-average THI units exceeding 60 in that year, 

which is referred to as THI hereafter. 

HT and BPI breeding values. In order to calculate the future profitability of a herd with and 

without selection for HT, and under different climate-change scenarios, the current genetic merit 

of a herd is required, as well as the genetic merit of the bulls on offer. So as to have a reasonably 

large group of cows and bulls that would span many herds and many bull-selection possibilities, 

HT GEBVs of genotyped cows and bulls were predicted using the equation developed by Nguyen 

et al. (2016) for all genotyped cows and bulls. BPIs for both cows and bulls of the February 2016 

release were obtained from DataGene (formally Australian Dairy Herd Improvement Scheme). 

The heat-tolerance breeding value (BV_HT) in dollars (so it can be readily combined with the 

BPI) was expressed as: 

BV_HT =  (EWmGEBVhtm + EWfGEBVhtf +  EWpGEBVhtp) HL, 

where BV_HT is the breeding value of heat tolerance in monetary term; EWm = −0.10, EWf =
1.79, EWp = 6.92 are economic weight of milk, fat and protein respectively, which are currently 

used in the BPI (Byrne et al., 2016); GEBVhtm, GEBVhtf and GEBVhtp are genomic breeding 

values of heat tolerance in relation to milk, fat and protein respectively; HL is the total number of 

THI units exceeding 60 in a year. 

We combined BPI and BV_HT for each animal as follows: 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:69-72 

71 

BPI_HT =  BPI +  BV_HT, 

Where BPI_HT is the ‘augmented BPI’ breeding value with heat tolerance included; and 

BV_HT is breeding value of heat tolerance. 
Data visualisation. The application HOTdAIRy v.01 developed in R (R Core Team 2015), 

using the ‘shiny’ package (Chang et al., 2016) in RStudio (RStudio Team, 2015). We obtained the 

postal area shape file from the Australian Bureau of Statistics for postcode boundaries 

(http://www.abs.gov.au/, 01 March 2016). 

 

RESULTS AND DISCUSSION 

We successfully obtained daily average temperature and humidity for 58 weather stations in 

Australia. Of these, we were able to match 57 stations with 1861 postcodes covering 3836 herds 

(85.4% of the total number of Australian dairy herds). The average number of days per year with 

THI exceeding the threshold of 60 were 313, 235, 242, 176, 164, 120, 121 in Queensland, New 

South Wales, Western Australia, South Australia, Northern Victoria, Gippsland and Western 

Victoria, respectively. The average number of THI units exceeding the threshold (THI > = 60) per 
year ranged from 2,587 (Gippsland) to 2,676 (Western Victoria), 3,240 (Northern Victoria), 3,445 

(South Australia), 4,338 (Western Australia) and 6,019 (Queensland), indicating that all major 

dairying regions will be affected by excessive heat load, but at different levels. 

For demonstration purposes, we have included only information from genotyped cows that 

currently belong to the Genomic Information Nucleus (Ginfo) herds, and genomic bulls, in our 

tool. We successfully estimated HT GEBV for 12,062 genotyped cows (10,680 Holsteins and 

1,382 Jerseys from 80 Ginfo herds), and 10,981 genomic bulls (9,306 Holsteins and 1,675 

Jerseys). The BV_HT significantly varied according to the level of heat load. For example, if the 

heat load of year 2025 was applied, BV_HT among the 10,981 bulls analysed ranged between 

AU$–29 to A$21 per cow (mean set at zero) under the conditions in Johanna, Victoria, but the 

range of BV_HT changes to AU$–174 to AU$126 per cow at the conditions in Rockhampton, 
Queensland.  The correlation between BPI and BPI_HT for bulls was, therefore, higher (0.99) if 

the heat load in Johanna was applied, than it was under Rockhampton (0.95) conditions. Figure 1 

shows an example scatter plot of BPI vs BPI_HT for the bulls under the conditions in 

Rockhamton. 

 
Figure 1. An example scatter plot between BPI_HT and BPI for 10,981 bulls (FFFF = Holsteins 

and JJJJ = Jerseys) under the conditions in Rockhamton. 

 

A typical workflow in the web-based application HOTdAIRy v.01 

(https://tnshinyr.shinyapps.io/app12) begins with providing inputs, including a herd postcode, a 

herd ID, a future year (2020, 2025, 2030 or 2035) and a greenhouse gas-emission scenario. The 

https://tnshinyr.shinyapps.io/app12
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outputs include the amount of heat load calculated based on the inputs, scatter plots between 

BPI_HT and BPI for cows and bulls, and relevant tables which can be sorted and downloaded. The 

ranked cow and heifer list can then be used to make selection decisions on which animal to keep in 

the herd, and which to cull, on the basis of predicted performance with the projected future heat 

load. The highest-ranked bulls maximising the profit under the given projected future climate 
conditions on the farm. 

One special characteristic of HT is that its breeding value depends on the amount of heat load 

animals are expected to experience. Heat load varies between regions and our approach was to use 

heat load as a weight for the trait, i.e. in regions with high heat load, emphasis on selection for HT 

is higher and vice versa. That means BV_HT for an animal depends on the herd locality. In the 

study, we were able to use projected climate data from CSIRO and BoM (2015) to determine 

levels of heat load for most dairying regions in Australia, which also serves as a weight for HT in 

the ‘augmented BPI’ index. This method of inclusion of a new trait opens opportunities for the 

inclusion of other traits of this nature in the index.  

Our demo version of future-scenarios selection tool is currently a standalone web-based 

application. However, it is also flexible in terms of incorporation into other existing tools that 

farmers are currently using. Once possible option is to integrate it into the Good Bulls app 
(http://www.datagene.com.au/); thereby, BPI_HT breeding values and ranking can be viewed 

along with BPI, HWI and TWI. 

In summary, we have created a practical future-scenarios selection tool that can be used by 

dairy farmers and breeders to make informed decisions in selecting for HT and BPI, that is 

customised to their dairy region and includes options for various future climate-change scenarios. 

The tool will become particularly relevant given the continuing increase in average temperature 

and frequency of heat-wave events. Our study is the first attempt to incorporate HT into selection 

indices for dairy cattle. It is important because profitability and animal welfare can be improved 

simultaneously through identifying animals that are able to cope with current and future climate 

change in a way that is consistent with the impact of HT on local farm profitability. 

 

ACKNOWLEDGEMENTS 

We thank the Department of Agriculture and Water Resources (Canberra, Australia) for 

funding this work, Dairy Futures Cooperative Research Centre for overall support, and DataGene 

(Melbourne, Australia) for providing breeding values for BPI. Special thanks go to Dr John Clark 

of the Climate Research and Services, CSIRO Oceans and Atmosphere (Aspendale, Victoria) for 

advice on selection of climate models and for sharing gridded projected future-climate data. 

 

REFERENCES 

 

Byrne T. J., Santos B. F. S., Amer P. R., Martin-Collado D., Pryce J. E., and Axford M. (2016). J 

Dairy Sci 99:8146-8167. 

Chang W., Cheng J., Allaire J. J., Xie Y., and McPherson J. (2016). http://CRAN.R-
project.org/package=shiny. 

CSIRO and BoM (2015). CSIRO and Bureau of Meteorology, Australia. 

Garner J. B., Douglas M., Williams R. S. O., Wales W. J., Nguyen T. T. T., and Hayes B. J. 

(2016). Nature Scientific Reports 6:1-8. 

Hayes B. J., Carrick M., Bowman P., and Goddard M. E. (2003) J Dairy Sci 86:3736-3744. 

Nguyen T. T. T., Bowman P., Haile-Mariam M., Pryce J. E., and Hayes B. J. (2016). J Dairy Sci 

99:2849-2862. 

RStudio Team. 2015. http://www.rstudio.com/. 

St-Pierre N. R., Cobanov B., and Schnitkey G. (2003). J Dairy Sci 86:52-77. 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:73-80 

73 

CAN WE FRAME AND UNDERSTAND CROSS-VALIDATION RESULTS IN ANIMAL 

BREEDING?  

 

A. Legarra1, A. Reverter2 

 
1 UMR 1388 GenPhySE, INRA, Castanet Tolosan, France 

2 CSIRO Agriculture and Food, 306 Carmody Rd., St. Lucia, QLD 4067, Australia 

 

SUMMARY 

Performance of genomic selection is typically evaluated by cross-validation. In this work we 

review and point out some problems and features of the cross-validation metrics. Then we propose 

a semiparametric alternative using statistics derived from the “Method R”. 

 

INTRODUCTION 

Genomic prediction of breeding values via genomic BLUP (GBLUP) is expensive and requires 

initial and continuous investments in genotyping. State of the art theory so far does not yield 

convincing a priori estimates of the increased accuracy of genomic prediction vs. pedigree-based 
predictions. Thus, cross-validation has been extensively used (e.g. Legarra et al. 2008; VanRaden 

et al. 2009; Mantysaari et al. 2010; Christensen et al. 2012). The theory of cross-validation is 

poorly understood in the context of heavily related and selected data (but see (Gianola and Schön, 

2016)). For instance, how to evaluate accuracy for maternal traits is very unclear. Here we provide 

a brief review of this topic and suggest some options. 

 

CROSS-VALIDATION BIAS AND ACCURACY 

What cross-validation? Forecasters such as pedigree-BLUP and GBLUP may behave differently 

according to what the “forecasted” target is. Breeders have a difficult task, namely, to forecast the 

best reproducers in order to select them. In this, they are different from machine learners, whose 

objective is (from our perspective) to forecast present phenomena. Thus, it is rather obvious that 
for breeders the best method is such that allows taking the best selection decisions, that it is, the 

method that best predicts future performance of an individual knowing its genetic background. 

We will call this forward cross-validation. Its features are three-fold: (1) It needs the definition 

of a cut-off date; (2) It needs the construction of “Full” and “Reduced” data sets (Mantysaari et al. 

2010; Olson et al. 2011); and (3) In its crudest form, it does not provide any form of randomisation 

and therefore a point estimate of goodness of prediction is obtained, without any associated 

measure of uncertainty. 

In contrast, the classical random folding k-fold cross-validation in its most classic form splits 

randomly the data into k distinct sets and predicts one set from the remaining k-1 sets. Its key 

features include: (1) Extremely simple to implement; (2) Provides estimates of standard error of 

metrics of cross-validation; (3) Not realistic in an animal breeding setting and the ranking of 

methods is not suitable for practical purposes; and (4) Tends to overfit (case of leave-one-out) 
Some more esoteric forms of cross-validation exist. Legarra et al. (2008) split folds “across” 

or “within” families, obtaining very different results. But this is undoable (and little useful) for 

regular animal breeding data. The k-means for cross-validation (Saatchi et al. 2011) separates 

individuals into “most distinct” folds, and the i-th fold is predicted from the remaining k-1 folds. 

This does not answer the breeder’s question, which most often wants to predict from close, not 

from far animals.   

 

Which metrics? To assess the predictive ability of the different forecasters, animal breeders are 

highly formatted by Henderson’s BLUP, which in turn was highly dependent upon dairy cattle 
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genetic improvement. Metrics commonly used come from linear regression, named in this paper 

predictive abilities, are: 

Bias: 𝑏0 = 𝐸(𝑢 − 𝑢̂);  Slope: 𝑏1 =
𝐶𝑜𝑣(𝑢,𝑢)

𝑉𝑎𝑟(𝑢)
;     Accuracy: 𝑟 =

𝐶𝑜𝑣(𝑢,𝑢)

√𝑉𝑎𝑟(𝑢)𝑉𝑎𝑟(𝑢)
 

Sometimes mean squared error is used (𝑀𝑆𝐸 = 𝑏0
2 + 𝜎𝑢

2(1 + 𝑟2/𝑏1
2 − 2𝑟2/𝑏1)). Properties of 

BLUP in absence of selection are no bias, slope of 1, and maximum accuracy. Henderson defined 

this at the individual level on a 

frequentist basis (over conceptual 

repetitions). Bias=0 and slope=1 
ensure fair comparisons across 

old and young animals. This is 

important if the scheme mixes 

proven and young animals, like 

dairy cattle. It seems less relevant 

in schemes were reproducers are 

culled quickly (pigs, chicken) 

with beef species falling someone 

in the middle, we believe. 

Deviations may exist if there is 

selection, because bias and slope 

are related to genetic gain and 
dispersion (see Figure 1).  

 
What is it meant by classical bias? Animal breeders probably agree to Henderson’s (1973) 

sentence “most users would, I think, be reluctant deliberately to bias comparisons between 

different groups, for example to underevaluate young sires as compared to older ones”. Here we 

have an operational definition of bias. In formal terms this implies that at a given point in time: 

𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= (𝟏′𝒖̂𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖̂𝑔𝑟𝑜𝑢𝑝2) − (𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2)

= (𝟏′𝒖̂𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1) − (𝟏′𝒖̂𝑔𝑟𝑜𝑢𝑝2 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2) 

This definition has practical implications: if the candidates are chosen across groups, selection 

decisions are optimal if there is no bias. Thus, it is expected that 𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= 0. There may be 

several definitions of groups: (1) Different conditions (grazing vs. indoor fed cattle). This case 

should be addressed by the model used for evaluation; (2) Within country, different amounts of 

information that cumulate in time (progeny-tested vs. genomic bulls). This case is strongly 

affected by within-country genetic trend (see below); (3) Same amount of information, but 

different origins (US vs. FR). This case is most affected by wrong estimates of the difference in 

genetic level across countries (Bonaiti et al. 1993; Powell and Wiggans 1994). 

The Interbull definition. Interbull uses retrospective tests (Boichard et al. 1995; Mantysaari et al. 
2010) that compare EBV’s before and after progeny testing.  

𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

= 𝟏′𝒖̂𝑡 − 𝟏′𝒖̂𝑡−1 

If progeny testing gives exact EBVs, then 𝒖̂𝑡 = 𝒖𝑡 and 𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

= 𝟏′𝒖 − 𝟏′𝒖̂𝑡−1.Note that 

𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

≠ 𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

, but if group1 is “very old” proven bulls and 𝒖̂𝑡 = 𝒖𝑡 and group2 is 

genomic bulls (then becoming proven bulls) then  𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= 𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

. This may be rather 

obvious, but it only holds for progeny testing data. 
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Figure 1 Typical scenario for retrospective analysis. 
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What happens under selection? Assume that we want to compare selection candidates with 

“proven” animals. If there is no selection, then 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1 = 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2  and there is actually no 

need to make the test. Alas, if there is selection, then  

𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= (𝟏′𝒖̂𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖̂𝑔𝑟𝑜𝑢𝑝2) − (𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2) = 𝑛(𝛥̂ − 𝛥) 

in other words, unbiasedness requires a correct (unbiased!) estimate of the realized genetic trend.  

 

What is overdispersion, a.k.a {Interbull, genomic} bias? Is it affected by selection? 

Dairy cattle breeders are much concerned by overdispersion of genomic proofs. If there is too 

much dispersion of 𝒖̂𝑔𝑒𝑛𝑜𝑚𝑖𝑐 , the retained candidates will have unfairly high 𝒖̂𝑔𝑒𝑛𝑜𝑚𝑖𝑐 . This could 

be staten more formally as “the mean of the EBVs of the selected candidates should be equal to the 

mean of the TBVs”. If selection is by truncation and under multivariate normality, the true mean 

after selection is 𝜇𝑇 = (𝟏′𝒖)/𝑛 + 𝑖𝑟𝜎𝑢, but this mean is (implicitly) predicted before selection as 

𝜇𝐸 = (𝟏′𝒖̂)/𝑛 + 𝑖𝜎𝑢. 

For 𝜇𝑇 = 𝜇𝐸 to hold, we need the first unbiasedness condition (𝑏0 above), plus a second 

condition,  𝜎𝑢̂ = 𝑟𝜎𝑢. But this condition only holds if 𝐶𝑜𝑣(𝑢, 𝑢̂) = 𝑉𝑎𝑟(𝑢̂), which amounts to the 

regression coefficient to be 1:  

𝑏1 =
𝐶𝑜𝑣(𝑢, 𝑢̂)

𝑉𝑎𝑟(𝑢̂)
 

This is the Interbull official, and most put forward, test of unbiasedness and nowadays more 

often called as “bias”. It is easy to see why 𝑏1 = 1 may not hold, namely, because selection 

modifies variances in rather unpredictable manners. The expected 𝐶𝑜𝑣(𝑢, 𝑢̂) = 𝑉𝑎𝑟(𝑢̂) holds 

under quite restrictive conditions (Henderson 1982).  

 

Evaluations can easily be biased. Unbiasedness of current genetic evaluations is more wishful 

thinking than an established fact. Unbiasedness exist only if several conditions hold: 

 The model is correct (linear model, effects, heritabilities…) 

 The selection process is described by the data  

 Multivariate normality 

Thus, there are many reasons why there is wrong estimate of the genetic trend and thus there will 

be bias: 

 Collinearity of contemporary groups and genetic trend (this is the usual case) 

 Genetic groups in the model 

 Heritability is wrong (or changes with time) 

 Analysis are single trait whereas selection is multiple trait 

 Selection decisions not based on data. 

In addition, genetic gain can be estimated one generation forward (but no more) unless an 

explicit selection model is included. In other words, retrospective analysis cannot be done deleting 
two generations of records. This would need explicit introduction of the selection process. 

 

Why some species/traits seem biased where others do not? Basically, if there is no selection 

then automatically 𝑏0 = 0 holds (i.e., all possible sets of candidates have 0 average value), and 

most likely 𝑏1 = 1 holds, because selection does not change variances, and if a decent estimator of 

genetic variance is used, then genetic parameters are such that 𝑏1 =
𝐶𝑜𝑣(𝑢,𝑢)

𝑉𝑎𝑟(𝑢)
= 1 by construction, 

in particular in a BLUP context. So, bias is expected to increase more with higher genetic gains. 

An example is pigs. Christensen et al. (Christensen et al. 2012) found slopes below 1 ( ~0.9) 

for a heritable, selected trait (daily gain), whereas Xiang et al. (Xiang et al. 2016) found 

regressions nearly one for hard-to-select trait litter size.  
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In Lacaune dairy sheep (Baloche et al. 2014), we can put together the following. Figure 1 

shows the regression slopes vs. the expected genetic gain or the expected loss of genetic variance 

based on Robertson 

(1977) . In theory, 

the reduction in 
variance is 

accounted for by 

genetic evaluation 

(Bijma 2012). In 

practice, this does 

not seem to be the 

case. A possible 

solution may be to 

reestimate this 

variance in each 

cycle of selection. 

Vitezica et al. 
(2011) compared by 

simulation several 

predictors in 

selected populations in a SSGBLUP context. Statistic 𝑏1 generally indicated bias, that was higher 

with less heritability. High heritability increases the selection differential and reduces variances, 

but it also gives more information. Interestingly, the only method which provided unbiased 𝑏1 =
0.99 resulted in strong bias 𝑏0 = 1.38𝜎𝑢. Thus, both bias should be checked. 

 

What do we mean by accuracy? In animal breeding textbooks, accuracy (𝑟, with reliability 𝑟2) is 

presented twice: first, as a component of 𝛥𝐺 = 𝑖𝑟𝜎𝑢 (so, a populational parameter) and, second, as 

a measure of uncertainty of 𝑢̂ (an individual parameter). However, when selecting from real 

populations, EBVs are correlated across individuals, so the individual accuracies may be 

meaningless. In other words: it is pointless to obtain 𝑟𝑖 = 0.70 and 𝑟𝑗 = 0.70 if 𝑟(𝑢̂𝑖 , 𝑢̂𝑗) = 0.69.  

Cross-validation accuracies are computed as correlations 𝑟2 =
𝐶𝑜𝑣(𝑢,𝑢)

𝑉𝑎𝑟(𝑢)𝑉𝑎𝑟(𝑢)
. They indicate our 

ability to rank individuals within a cohort. The fact that these accuracies are computed regardless 

of the correlated structure of both 𝑢 and 𝑢̂ has unclear implications.  In fact, it can be shown that, 

if Hendersonian conditions hold, 𝐸(𝑟)2 = 1 −
(𝑑𝑖𝑎𝑔(𝑪22)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑪22̅̅ ̅̅ ̅)

(𝑑𝑖𝑎𝑔(𝑮)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −𝑮̅)
 is the expectation of the observed 

reliability. This reliability takes into account the “classical” reliability contained in the diagonal 

terms but also the relationships a priori (in 𝑮) and a posteriori (in 𝑪𝟐𝟐) across individuals. If the 
evaluation method cannot rank correctly within the validation sample, then diagonal and off-

diagonal values of 𝑪22 are similar and reliability drops down. This is a desirable behaviour.   
Selection also affects observed cross-validation accuracy (Edel et al., 2012; Bijma 2012). If the 

cross-validation test uses elite animals, accuracies are underestimated. In other words, it is easy to 

rank all animals, but more difficult to rank elite animals. The reduction is such that  

𝑟𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
2 = 1 − (1 − 𝑟𝑢𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

2 )
𝜎𝑢𝑢𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

2

𝜎𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
2   . 

 

ISSUES OF CROSS-VALIDATION METRICS 

The accuracy of cross-validation metrics. After an experiment has been carried out, the breeder 

wants to know if the genomic accuracy is really different from the parents average accuracy. A 

Figure 2 Slope 𝒃𝟏 vs. expected reduction in genetic variance (left) or 

genetic gain (right) by trait in Lacaune dairy sheep. 
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simple method is to use the theoretical standard error of the estimates; for 𝑏0 and 𝑏1 these are from 

classical regression theory. For the correlation, this is a bit more convoluted, but an option is to use 

Fisher’s z-transform: 𝑧 =
1

2
𝑙𝑛

1+𝑟

1−𝑟
 has approximate s.e. 1/√𝑛 − 3 where 𝑛 is the number of data 

points used. From this a confidence interval can be worked out. For instance, in the Basco-

Bearnaise breed genomic predictions of 87 rams were 0.06 more accurate than parent averages 

(Legarra et al. 2014); this implies a rather symmetric 95% confidence interval of [−0.15,0.27].  
There is a source of bias and two sources of randomness in cross-validation metrics. The 

source of bias is that individuals are related both at the stage of prediction (parent average and 

genomic) and later, at the stage of validation (moment at which they have data; except for the case 

of progeny-tested animals for which proofs can be assumed uncorrelated). This has been discussed 

above. The two sources of randomness are: (1) Sampling of the reference population, (2) Sampling 

of the validation population. Fisher’s z-transform and Hotelling-Williams test include both. 

However, they do not consider that individuals are related, and therefore the accuracy is likely to 

be overestimated. Again, a theoretical equation can be worked out to estimate 𝑉𝑎𝑟(𝑟).  
 

(Re)Sampling of the validation population. A more practical approach involves using 

(re)sampling techniques. In k-fold cross-validation this is immediate but, as discussed before, the 

setting is not realistic. In (Mäntysaari and Koivula 2012; Legarra et al. 2014; Cuyabano et al. 

2015), sampling of the validation population was addressed by bootstrapping, i.e. sampling n 

individuals with replacement from the original n individuals in the validation data set. This method 

main virtue is that it avoids strong influence of outliers in the validation data set. It also allows 

formal comparisons of accuracies. Its main drawback is that it does not addresses the sampling of 

the reference population. 

  

(Re)sampling of the reference population. Recently,  (Mikshowsky et al. 2016) bootstrapped, 

not the validation, but the reference population. This also provides distribution of metrics. 
However, it may be argued that, in a dairy cattle reference population, including a sire twice (what 

the bootstrapping actually does) is like including it once, because the accuracy of the sire pseudo-

phenotype is close to 1 in dairy cattle. Thus, including it twice will not change much the solution 

for the sire – or the contribution of the sire to SNPs solutions. Therefore, randomness comes from 

removing sires more than by overrepresenting sires. In that sense, Mikshowsky et al. (2016) 

bootstrap corresponds to Tukey’s jackknife with 

more than one data point removed.  

 

Superiority of genomic on pedigree predictions is 

a function of family structure of the validation 

data set. Consider a set of two generations, a 
generation of parents and one of descendants: n full-

sib families with k offspring each. Parents have 

information (say, own weight) but there is not 

information for the offspring. We can ask: is it worth 

doing genomic prediction? 

Families can be easily ranked based on parent 

average, but there is not possibility to rank within 

families with pedigree information. However, 

genomic information can rank within family as well 

as across families. Thus, the observed benefit of 

GBLUP by retrospective analysis will be larger in a 
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set composed of few families with a large number of candidates within families. In the limit, if 

there is one big family, pedigree prediction has 0 accuracy, whereas if there are 𝑛 families with 1 

offspring each, pedigree and genomic predictions should behave similarly.  

This is supported by Figure 3 in which we plot the genomic vs pedigree accuracy for milk yield 

for five dairy sheep and two dairy cattle breeds in France, as a function of family size. Clearly, the 
larger the family size, the larger the benefit because genomic selection allows distinguishing sibs. 

This raises several questions: (1) Do comparisons reflect “genetic architecture” or merely data 

structure in the validation? (2) Do selection schemes that select across families get less benefit 

from genomic selection? (3) Is Holstein gaining a lot from genomic selection because it has higher 

LD than other breeds or just as an artefact of its family structure?  

 

Which variables to use on the metrics? In the dairy industry, sires do not have phenotypes, so 

that comparisons are between (G)EBV’s and the “true” progeny proofs or deregressed proofs. In 

other species, it is more common to compare (G)EBV’s to “true” phenotypes, say 𝒚, using an 

approximation 𝑟 = 𝐶𝑜𝑟𝑟(𝐺𝐸𝐵𝑉, 𝑦)/ℎ where ℎ2 is the heritability (Legarra et al. 2008). This is 
unsatisfactory, for conceptual and practical reasons: 

 The equation above for r assumes uncorrelated individuals and GEBV’s 

 Records 𝒚 are typically pre-corrected to 𝒚∗ = 𝒚 − 𝑿𝒃̂, and the results are sensitive to 

precorrection. It is unclear what happens if there are contemporary groups in 𝒃 that are not 

present in the training data. 

 If the whole data set is used for precorrection, then a relationship structure is fit (e.g. 

pedigree relationships) as 𝒚∗ = (𝑰 − 𝑿(𝑿′(𝒁𝑨𝒁𝜎𝑢
2 + 𝑰𝜎𝑒

2)−1𝑿)−)𝒚 where 𝑨𝜎𝑢
2 is assumed 

to be “correct”. If the assumed relationship is biased or incorrect, so will be 𝒃̂ and 𝒚∗, and 

the bias will be toward the assumed relationship. This may explain some puzzling results, 

e.g. poor performance of genomic prediction in low heritable traits such as fertility (Hayes 
et al. 2009).  

 Even after precorrection, there will be a remaining covariance structure across pre-

corrected 𝒚∗. This structure is notoriously hard to model (and rarely modelled). This may 

explain phenomena such as 
𝐶𝑜𝑟𝑟(𝐺𝐸𝐵𝑉,𝒚∗)

ℎ
> 1. 

 Some precorrected 𝒚∗ are too clumsy (Ricard et al. 2013) to be believed or computed in 
practice, for instance maternal effects.  

 

CROSS-VALIDATION ACCURACIES FROM METHOD R  

Description of the method. We propose to use the properties of method R to construct metrics of 

cross-validation. Reverter et al. (1994) observed that the regression of EBVs obtained with 

“whole” (𝑤) data on EBVs estimated with “partial” (𝑝) data, 𝑏𝑤,𝑝 =
𝐶𝑜𝑣(𝑢𝑤,𝑢𝑝)

𝑉𝑎𝑟(𝑢𝑝)
 is 1, and this 

checks bias (in the sense 𝑏1 before). The correlation of partial on whole (eq. 7-9 in their paper) 

𝜌𝑝,𝑤 =
𝐶𝑜𝑣(𝑢𝑝,𝑢𝑤)

√𝑉𝑎𝑟(𝑢𝑤)𝑉𝑎𝑟(𝑢𝑝)
 is a function of respective accuracies. Invoking exchangeability, both 

equations can be extended to multivariate forms, and expectations can be taken in both the 

numerator and the denominator, resulting in: 

𝑏𝑤,𝑝 = 𝒖̂𝑤
′ 𝑲−1𝒖̂𝑝/𝒖̂𝑝

′ 𝑲−1𝒖̂𝑝 

where 𝑲 is a matrix of relationships, 𝑏𝑝,𝑤 with an expected value of 1, and  

𝜌𝑤,𝑝 = 𝒖̂𝑝
′ 𝑲−1𝒖̂𝑤/√𝒖̂𝑝

′ 𝑲−1𝒖̂𝑝𝒖̂𝑤
′ 𝑲−1𝒖̂𝑤 
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with an expected value 𝐸(𝜌𝑤,𝑝) = √
𝜇

𝑎𝑐𝑐𝑝
2

𝜇
𝑎𝑐𝑐𝑤

2
 that is, proportional to the relative increase in average 

reliabilities. As more data cumulates, 𝒖̂ tends towards the true breeding values, thus 𝒖̂𝑤 is more 

accurate than 𝒖̂𝑝. The empirical covariance 𝒖̂𝑤
′ 𝑲−1𝒖̂𝑝 measures the strength of the association 

between the two, whereas 𝒖̂𝑝
′ 𝑲−1𝒖̂𝑝 measures the extent of shrinkage due to lack of information. 

In other words, the theoretical prediction error covariances are replaced by empirical ones 

(Thompson 2001). By combining cross-validation and theory from mixed models, we hope to 

retain the best of both worlds: a measure of accuracy that corresponds to reality and that is little 

affected by the existence of related, unbalanced data. Therefore, an algorithm to estimate accuracy 

of (say) PBLUP and GBLUP is: 

 
1. Compute EBV’s with all data (“whole”) using, say, GBLUP (which method should not be 

critical if all animals have data or progeny) 

2. Choose cutoff date 

3. Create “partial” data: Set values after cutoff date to missing  

4. Compute EBVs based on “partial” and GBLUP 

5. Compute statistic 𝑏𝑤,𝑝
𝐺𝐵𝐿𝑈𝑃 =

𝒖̂𝑝
′ 𝑲−1𝒖̂𝑤

𝒖̂𝑝
′ 𝑲−1𝒖̂𝑝

 

6. Compute statistic 𝜌𝑝,𝑤
𝐺𝐵𝐿𝑈𝑃 =

𝒖̂𝑝
′ 𝑲−1𝒖̂𝑤

√𝒖̂𝑤
′ 𝑲−1𝒖̂𝑤𝒖̂𝑝

′ 𝑲−1𝒖̂𝑝

 

7. Compute EBVs based on “partial” and PBLUP 

8. Compute statistic 𝑏𝑤,𝑝
𝑃𝐵𝐿𝑈𝑃 =

𝒖̂𝑝
′ 𝑲−1𝒖̂𝑤

𝒖̂𝑝
′ 𝑲−1𝒖̂𝑝

 

9. Compute statistic 𝜌𝑝,𝑤
𝑃𝐵𝐿𝑈𝑃 =

𝒖̂𝑝
′ 𝑲−1𝒖̂𝑤

√𝒖̂𝑤
′ 𝑲−1𝒖̂𝑤𝒖̂𝑝

′ 𝑲−1𝒖̂𝑝

 

 

For forward cross-validation, the statistics should be computed for the focal individuals (i.e., 

candidates to selection). On exit, 𝑏𝑤,𝑝
𝐺𝐵𝐿𝑈𝑃 should be 1 (unbiased method) and is equivalent to 𝑏1 

and 𝜌𝑝,𝑤
𝐺𝐵𝐿𝑈𝑃 and 𝜌𝑝,𝑤

𝑃𝐵𝐿𝑈𝑃 describes the respective accuracies of GBLUP and PBLUP. An extra 

statistic is bias 𝜇𝑤𝑝 = 𝑏0 = (𝟏′𝑲−1𝒖̂𝑤 − 𝟏′𝑲−1𝒖̂𝑝)/𝑛 . Matrix 𝐊 should be the “true” relationship 

matrix across individuals but there should be no great difference in using either genomic or 

pedigree relationships as far as they are correct. The procedure has several advantages: is 

completely general (it can be used e.g. for maternal traits or random regression), it is semi-

automatic, and can, at least potentially, provide estimates of the accuracy of the cross-validation 

metric. There are though many points that need to be addressed: robustness to misspecification, the 

role of selection (and how to avoid biases in the estimates of the different 𝑏′𝑠), how to sample 

efficiently, etc. 

 

TEST WITH REAL LIFE DATA SETS 
In beef cattle, we used genetic and phenotypic resources from Brahman cows (N = 995) and 

bulls (N = 1,116) outlined in (Porto-Neto et al. 2015). The phenotype was yearling body weight. A 

procedure “method R” as above was introduced to assess accuracy of GBLUP, and random (1000 

replicates) splits of the data set in training and validation was used, as animals are quite unrelated 

and belong to a single generation. We only present very briefly the results. The statistic 𝑏𝑤,𝑝 =

0.96 ± 0.08 (in the whole population) showed that evaluation was nearly unbiased, whereas 

𝜌𝑝,𝑤 = 0.67 ± 0.02 has a correlation of 0.81 with conventional cross-validation accuracy 
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estimated as 
𝐶𝑜𝑟𝑟(𝐺𝐸𝐵𝑉,𝒚∗)

ℎ
. 

In dairy sheep, we used a large data set (Manech Tete Rousse) of 1,700,000 milk yield 

performances, 500,000 animals in pedigree and 2,111 sires with 50K genotypes. Data was split at 

2011 in training and validation. For all individuals, unbiasedness of (SSG)BLUP was checked 

with results 𝜇𝑤,𝑝 = 𝑏0 = 0.2𝜎𝑔 = 5 (liters), 𝑏𝑤,𝑝 = 𝑏1 = 0.996, so genetic evaluation is virtually 

unbiased for 𝑏1 (slope) but not for 𝑏0 (genetic trend), which is unsurprising because the model 

includes Unknown Parent Groups. Later, candidates to selection were compared, with 𝜌𝑤,𝑝
𝑆𝑆𝐺𝐵𝐿𝑈𝑃 =

0.55 vs. 𝜌𝑤,𝑝
𝐵𝐿𝑈𝑃 = 0.39, and both evaluations where notoriously biased (𝑏1

𝑆𝑆𝐺𝐵𝐿𝑈𝑃 = 0.77, 𝑏1
𝐵𝐿𝑈𝑃 =

0.70), possibly due to selection not well accounted for. All these results agree well with previous 

analysis (Legarra et al. 2014). 
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SUMMARY 

Estimates of genomic relatedness derived from either SNP chip (two different densities) or 

genotyping-by-sequencing (GBS) resources were compared in a group of 95 sheep. The estimates 

were highly correlated (r = 0.983-0.992 for relatedness between individuals) although GBS 

estimates were slightly higher than chip-based estimates. These results provide evidence that GBS 

is a useful technique for genomic studies. 

 

INTRODUCTION 

Genomic information is increasingly being used in animal breeding. Many livestock industries 

have SNP chips available at a range of densities and at a cost where they are being used in breeding 
programmes. The SNP chip results are used either directly or indirectly, often after imputation to a 

higher density, to estimate genomic relatedness between animals in breeding programmes. An 

alternative technology is to use genotyping-by-sequencing (GBS), based on sequencing a fraction 

of the genome, possibly at low depth (to reduce costs). GBS can be applied in species without 

extensive genomic resources (such as SNP chips and reference genome assemblies). Methods have 

been developed to estimate relatedness using GBS results (Dodds et al. 2015). Here we compare 

relatedness estimates in a sub-flock of 95 sheep genotyped using both genotyping technologies. 

 

MATERIALS AND METHODS 

Animals. A group of sheep that had previously been genotyped using SNP chips were chosen for 

GBS genotyping to allow a comparison of methods. This group were a set of 89 male and female 
progeny from a single cohort (born in 2014), 5 of their sires and a control sample; 80 of the progeny 

had their sire in these data. Two of the sires were Primera, two were predominantly Texel, and the 

other was predominantly Texel x Coopworth. The control animal was a Texel x Coopworth. The 

dams were unrecorded, but were a maternal type (predominantly Romney). 

SNP chip genotypes. The set of animals had been previously genotyped. All animals except for 12 

of the progeny had been genotyped with the Illumina ovine HD beadchip (Kijas et al. 2014). 

Although this chip assays over 600,000 SNPs, only 41,020 of those SNPs (referred to as 41k) are 

used here, being those that are also on the Illumina ovine SNP50 beadchip and which passed quality 

control (including being autosomal) on both chips using the criteria in Auvray et al. (2014). All 

progeny had been genotyped with a custom Illumina BovineLDplusovine SNP chip which assays 

5283 ovine SNPs; this study used 4015 (referred to as 4k) of those SNPs, being those that were also 

on both the HD beadchip and the SNP50 beadchip, and which passed quality control. For some 
animals, genotypes for these SNPs from a higher density chip were used as the 4k genotypes. 

GBS genotypes. The animals were genotyped by GBS using the methods described by Dodds et al. 

(2015) and based on the GBS protocol of Elshire et al. (2011). Briefly, DNA samples and a negative 

control were digested with PstI; a different barcode adaptor was added to each sample, along with a 

common adapter. Samples were then combined and fragments in the range 150-500bp were selected 

and single-end sequenced on one lane of an Illumina HiSeq2500 resulting in approximately 2 million 

reads per sample. The resulting sequence reads were adapter-trimmed and then UNEAK (Lu et al. 

2013) was used to detect variants (without the use of a reference genome) and report allele counts 

for each variant and sample. 
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Estimation of relatedness. Relatedness between each pair of individuals, and self-relatedness for 

each individual were estimated by the methods of Dodds et al. (2015) which accounts for the read 

depth in a genotype call. This included estimation from SNP chip genotypes, where the depth was 

taken to be infinite. This is then equivalent to the first method of vanRaden (2008), except that only 

SNPs with data for the individual or pair of individuals involved are used for that estimate (i.e., 
missing genotypes are not imputed). The allele frequencies used were taken as the sample allele 

frequencies using allele counts. For chip data the allele counts were the usual counts (e.g. AA has 2 

A alleles). All SNPs reported by UNEAK were used for the GBS-based analysis. Methods are 

compared by correlation and by regressions of the differences on the means (Altman and Bland 

1983) for each pair of methods. Standard errors for the regressions using pairs of individuals were 

calculated using the number of individuals rather than the number of pairs as an approximate method 

to account for the non-independence of the pairs. 

 

RESULTS AND DISCUSSION 

The GBS process resulted in calls for 68,293 SNPs with a mean read depth of 6.1. The 41k SNPs 

had 407 with a minor allele frequencies (MAF) of 0 in these data, and these were removed before 

further analysis. Summary statistics are shown in Table 1; for GBS, having at least one read at a 
SNP is taken as a call. Call rates were high for the chip data, but lower for GBS due to the 

randomness of the sequence reads. The MAFs were highest for the 4k chip, where SNPs were highly 

selected to be informative, and lowest for GBS where SNPs were not pre-selected. 

 

Table 1. Summary statistics for the different genotyping methods 

 

Marker set Number of 

SNPs used 

Mean call 

rate 

Mean minor 

allele frequency 

Mean inbreeding 

estimate 

Mean 

relatedness 

41k chip 40,613 99.96% 0.289 -0.037 -0.012 

4k chip 4,014 99.37% 0.367 -0.035 -0.010 

GBS 68,293 86.73% 0.225 0.058 -0.003 

 

Table 2. Summary statistics for relatedness comparisons including correlations of the estimates and 

regressions of the differences (first marker type minus second marker type) on the means 

 
Marker 

comparison 

Relatedness Number 

compared 

Correlation 

(r) 

Mean difference 

(SE) 

Slope (SE) 

41k – 4k Self 83 0.844 -0.002 (0.002) 0.093 (0.065) 

41k – GBS Self 83 0.769 -0.095 (0.003)*** 0.060 (0.080) 

4k – GBS Self 95 0.662 -0.094 (0.003)*** -0.068 (0.093) 

41k – 4k Between 3403 0.992 -0.001 (0.002) -0.012 (0.014) 

41k – GBS Between 3403 0.989 -0.008 (0.002)*** -0.055 (0.016)** 

4k – GBS Between 4465 0.983 -0.007 (0.002)** -0.047 (0.019)* 
* P<0.05, ** P<0.01, *** P<0.001 

 
Comparisons of relatedness estimates are shown in Figure 1 and Tables 1 and 2. In general, the 

estimates appear to be quite similar across methods. GBS produced higher (P<0.001) inbreeding 

estimates and they were less consistent with the chip estimates than the two chip results were with 

each other. The breeding design for the progeny set tends to involve breed crosses, so we would 

expect inbreeding to be low (with low variation) in the flock. The differences in inbreeding between 

GBS and chips appeared to be uniform over the observed range; the regression slopes for the 

differences were not significant. One possible reason for GBS giving higher inbreeding estimates is 

that the SNPs have not been pre-selected, and in particular are likely to include non-autosomal SNPs. 
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This could elevate the results for males, as they would appear homozygous for X-linked and Y 

chromosome markers. The inbreeding in the male progeny was higher than in the females, but by 

only a small amount (0.005, SE = 0.006, NS). These regions would be expected to have around half 

the average read depth (in males) and the method of estimating inbreeding adjusts for un-observed 

heterozygosity with low depth (assuming autosomal markers), which would dampen any increase in 
estimated inbreeding due to these regions. 

 

 
Figure 1. Comparison of relatedness estimates using different genotyping methods. Plots below 

the diagonal are for self-relatedness of individuals and those above the diagonal are for 

relatedness between all pairs of individuals. Diagonal labels show the method for the 

horizontal axis in that column and vertical axis in that row. Lines of equality are also drawn. 

 

The relatedness values were all highly correlated (Figure 1, Table 2). Once again, GBS produced 

higher (P<0.01) values overall, but only by a small amount (0.007 or 0.008 on average). There was 

also a significant (P<0.05) slope for these two comparisons, meaning that there was a larger 

difference between GBS-based estimates and chip-based estimates for higher values of relatedness. 

The relatedness estimates form three main groups. The group with higher values are mainly sire-
progeny pairs, but there are also pairs from within the progeny group, presumably full-sibs. The 

middle group contains a pair of sires, while all other pairs are within the progeny group, presumably 

half-sibs. 
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The relatedness estimates average close to zero, a by-product of estimating allele frequencies 

within the dataset, rather than having ancestral frequencies (Yang et al. 2010). As GBS SNPs were 

not pre-selected, and the methods gave similar estimates, it suggests that there is not a large 

ascertainment bias on the chips, in terms of estimating relatedness. It is also interesting to note that 

the estimates appear to be similarly correlated for low values compared to high values of relatedness. 
This suggests that the rankings of relatedness when the estimates are negative are still meaningful 

(pairs with more negative values are less related than pairs with negative values close to zero). 

One of the main reasons for estimating relatedness in agricultural species is to allow genomic 

selection, for example these estimates can be used directly in a GBLUP model. Having the 

relatedness estimates for the three methods correlate well suggests that they would perform similarly 

for genomic prediction, but further work is needed to verify this. For example, it is generally 

accepted that at least 10,000 SNPs are needed for genomic prediction, suggesting that the high 

correlation (0.992) between the 4k and 41k sets seen here may not be enough to guarantee 

satisfactory predictions from the 4k set. If GBS is to be adopted in resources were many individuals 

have been genotyped with SNP chips, there will need to be an investigation on how to combine 

relatedness estimates from different methods as has been required for combining pedigree and 

genomic-based relatedness (Aguilar et al. 2010). 
We have shown that there is good agreement between relatedness estimates from GBS and from 

SNP chips, especially in terms of their correlation. There were some small differences in the mean 

levels of relatedness, so that adjustments would be required if combining data using different 

methods. It would be useful if this comparison could be extended to genomic relatedness estimation 

across divergent breeds and also to examine different GBS protocols, i.e. different enzymes, to check 

the robustness of these results. In summary, GBS is a promising method for genomic analyses using 

relatedness estimates and can be rapidly deployed, even for species with poor genomic resources. 
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SUMMARY 

In this paper we examine, using simulation and an analytical method,  the factors that control 

the accuracy of genomic prediction when the effects of chromosome segments are not normally 

distributed, for instance, because many chromosome segments do not contain a QTL. In this 

situation non-linear methods of analysis give higher accuracy than GBLUP but the advantage is 

small unless the distribution of chromosome segment effects departs markedly from a normal 

distribution and the distribution assumed by the method of analysis also departs markedly from a 
normal distribution.  The effect of sample size on accuracy of non-linear methods is similar to that 

with GBLUP but the advantage of non-linear methods over GBLUP increases with sample size 

when accuracy is low. 

 

INTRODUCTION 

Before implementing genomic prediction of breeding values (genomic selection), it would be 

useful to be able to predict the accuracy that might be achieved or at least to understand the factors 

controlling accuracy so that the optimum combination could be used. If genomic estimated 

breeding values (GEBVs) are estimated using GBLUP (Meuwissen et al 2001), there is good 

theory to predict the accuracy (Daetwyler et al 2008, Goddard 2009).  In this case, the accuracy or 

correlation between EBV and true breeding value (r) is approximately given by MacLeod et al 
(2014) 

r2 = θc/(1+θ –h2r2)      (1) 

where c = the proportion of genetic variance explained by markers 

  h2 = heritability 

  θ = Nh2c/Me 

  N= number of records in the training population 

  Me = effective number of independent chromosome segments in the genome. 

This is not an explicit formula for r2 because r2 appears on both sides of the equation. However, 

we choose to present the formula in this way because it makes clear  the way in which increasing 

accuracy decreases the unexplained variance and so further increases accuracy. If the causal 

variants or QTL have similar properties to the markers, then c = M/(M + Me) where M is the 

number of markers. However, c is often less than this presumably because the QTL have lower 
linkage disequilibrium (LD) with the markers than the markers do amongst themselves. 

Estimation of breeding values using GBLUP, as above, is a Bayesian prediction if it is assumed 

that the effects of the markers are all drawn from a normal distribution with mean zero and 

constant variance. That is, a model in which the genomic relationships between the animals is 

estimated from the markers (GBLUP) is equivalent to a model in which SNP effects are assumed 

to be normally distributed (SNP-BLUP). Other assumptions about the distribution of marker 

effects lead to other methods of estimation of which some have been called Bayes A, B, C or R. 

Although BLUP is a linear estimate in the phenotypic values (y), these other Bayesian methods are 

non-linear in y. These non-linear Bayesian methods give higher accuracy than BLUP in some 
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cases (MacLeod e al 2014) but there is no theory that predicts how much more accurate and in 

what circumstances. As well as the parameters that affect GBLUP accuracy, the accuracy of non-

linear methods could be affected by the true distribution of marker effects and the distribution 

assumed by the method of analysis. The aim of this paper is illustrate how these parameters affect 

the accuracy of non-linear Bayesian methods of predicting breeding value. We use simulation and 
a simplified analytical model. 

 

MATERIALS AND METHODS 

Analytical method. Here we assume that the markers and QTL are identical and there are Me 

independent QTL so that the accuracy of estimating a single QTL effect (r) is equal to the accuracy 

with which the combined value of all QTL is estimated. This can then be calculated using 

numerical integration. That is, r2 =  𝑉(𝑞̂)/V(q) and 𝑉(𝑞̂) = ∫ 𝑓(𝑞)𝐸(𝑞̂|𝑞)2 𝑑𝑞 , where q is the 

effect of a QTL assumed to have a mean of zero, f(q) is the distribution of QTL effects, 𝐸(𝑞̂|𝑞) is 

the expectation of the estimate of q (𝑞̂) 𝑔iven q. 

Simulation. We simulated a genome of length 1M in a population of Ne = 1000 until it reached 

mutation-drift equilibrium. At this point there were approximately 33,000 SNPs segregating of 

which between 3 and 290 were designated as QTL and their effect sampled from a distribution that 

was either exponential or gamma (shape parameter = 0.09) or t-distribution (degrees of freedom = 

4.1 or 4.2). The scale of the effects was adjusted so that a fixed heritability was reached after 
adding normally distributed environmental effects. The linkage disequilibrium among the markers 

means that the effective number of chromosome segments (Me) is approximately 300. The 

simulated data on 200 animals were analysed with BLUP, Bayes A, Bayes B (Meuwissen et al 

2001) and Bayes R (Erbe et al 2012) and the correlation between true breeding value and EBV 

calculated in an independent set of animals. Because the results depend to θ, the simulation 

approximately corresponds to a genome of 30 M but with a sample size of 30 * 200 = 6000. 

 

RESULTS AND DISCUSSION 

Simulation results. Table 1 lists the accuracy achieved when h2 = 0.5 and the all 33,000 

markers were used so that all genetic variance is explained by the markers (c=1 in equation 1). 

 

Table 1 Effect of distribution of QTL and  distribution assumed by the method of analysis 

on accuracy (%) of EBVs. 

For Bayes R Sim. = simulation results, anal. = analytic approximation, all other results 

are from simulation. 
 

No. Distribution   Method of analysis 

QTL          GBLUP Bayes B Bayes R  Bayes A 
       sim. anal. 

3 exponential  51 97  95 98 67 

30 exponential  49 83  82 85 54 

30 gamma   48 88  89 96 65 
30 t (df = 4.105)  54 81  82 81 57 

290 t (df = 4.225)  52 57  55 61 51 

 
When GBLUP is used, assuming a normal distribution of marker effects, the accuracy is nearly 

the same (~0.5) regardless of the true distribution of QTL effects. Although there are 33,000 SNPs, 

there are only about 300 effective independent chromosome segments. Therefore the last 
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distribution in table 1 with 290 QTL with effects drawn from a t distribution does not differ greatly 

from a distribution in which all chromosome segments have an effect drawn from a normal 

distribution. Consequently the Bayesian methods have little advantage over GBLUP. When there 

are less than or equal to 30 QTL, many chromosome segments have zero effect and the 

distribution differs more markedly from a normal distribution. In these cases Bayes B and Bayes R 
have similar accuracy and an advantage over GBLUP. Bayes B and Bayes R assume a distribution 

of marker effects in which some effects are zero and this agrees with the true distribution in the 

first 4 cases in table 1. Bayes A assumes no effects are zero but all SNP effects follow a t-

distribution. The accuracy it achieves is in between that of GBLUP and Bayes B or R. 

The accuracy of the non-linear methods (e.g. Bayes B and R) depends in part on the kurtosis of 

the distribution of effects of chromosome segments. If many segments have zero effect (i.e. no 

QTL in the segment) the kurtosis is increased. However, the kurtosis is not the only parameter of 

the distribution that affects the accuracy of EBVs. In table 1 the gamma distribution with 30 QTL 

and the exponential distribution with 3 QTL have similar kurtosis but the exponential distribution 

leads to higher accuracy. This is because the gamma distribution with shape parameter of 0.094 

has some large effects but also many very small effects that are hard to estimate accurately. 

The results in table 1 can be summarised by 

 the true distribution must differ greatly from a normal before non-linear methods have 

an advantage over GBLUP, 

 it is not worthwhile to use a non-linear method of analysis unless it assumes a 

distribution of marker effects that differ greatly from a normal distribution. 

 

Analytical method. Here we calculated the accuracy of estimating the effect of a single QTL 

assuming that the method of analysis used the same distribution of QTL effects as used to generate 

true QTL effects. Table 1 shows that the analytical method overestimates the accuracy found by 

simulation. This is expected. The analytical method assumes there is only one marker per effective 

chromosome segment, whereas in the simulation there are approximately 100. The GBLUP 

analysis shrinks estimates of marker effects but the amount of shrinkage is not effected by the size 
of the estimated effect. Consequently, the effect of a chromosome segment can be shared among 

several markers with little loss of accuracy. But the non-linear methods shrinks apparently large 

effects less than small effects (Figure 2) and so, if the effect of a single QTL is shared among 

several markers, the effect is shrunk too much and this reduces the accuracy. 

Apart from this over prediction of accuracy, the analytical method does predict the differences 

in accuracy between distributions (Table 1) and, although not shown here, it also predicts the 

effect of changing θ reasonably well. In figure 1, we use the analytical method to examine the 

effect of θ on accuracy. The y-axis of the graph is T = r2/(1-r2). For GBLUP analysis this is almost 

equal to θ but differs from it due to the –h2r2 term in equation 1. This term corrects for the 

reduction in error variance when estimating the effect of one marker due to the simultaneous 

prediction of the effects of all other markers (Daetwyler et al 2008). Consequently, T is slightly 
greater than θ for GBLUP and this disparity increases slightly with θ. For the non-linear methods, 

T increases faster than linear in θ and the advantage over GBLUP increases with θ at first and then 

reaches a constant ratio.  

In real data within one breed, the distribution of QTL effects may be most similar to the t-

distribution with 290 QTL in 300 effective chromosome segments corresponding to 8100 QTL in a 

30M genome. This would explain why non-linear methods enjoy only a small advantage over 

BLUP in many cases. The advantage of non-linear methods would be expected to increase if 

multiple breeds were analysed or the population had a high effective population size e.g. in 

humans. 
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Figure 1. The effect of θ on T = r2 / (1-r2). The graphs show the effect of θ on accuracy from the 

analytical method for the exponential distribution of 30 QTL effects (T exp), the normal 

distribution of 300 QTL effects (T blup) and the t-distribution with degrees of freedom = 4.225 
of 290 QTL effects.  

 

 

 
 

Figure 2. Estimated QTL effect size vs true QTL effect size from the analytical method under the 

exponential distribution of 30 QTL in 300 effective chromosomal segments (arbitary scale of 

effect sizes). 
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SUMMARY 
 To accompany the implementation of multi-trait Single Step Genomic BLUP (SS-GBLUP) in 

the BREEDPLAN and OVIS genetic evaluation systems, an algorithm to approximate accuracy with 

genomic information has been developed and is presented in this paper. Data from full terminal sire 

OVIS and Brahman BREEDPLAN runs were processed using this new method. Results demonstrate 

that the approximated accuracy of SS-GBLUP estimated breed values (EBVs) is highly correlated 

(R2 >0.96) with exact accuracies in several small example analyses for both beef and sheep. SS-

GBLUP EBV accuracies increase more for traits with a larger reference population and for traits 

with higher heritabilities. Animals with low pedigree-only (ABLUP) EBV accuracies benefit more 

from genomic information than animals with high ABLUP EBV accuracies. 

 

INTRODUCTION 

 Single Step Genomic BLUP (SS-GBLUP, e.g. Legarra et al. 2014) was implemented in the 
Australian sheep and beef cattle evaluation systems OVIS and BREEDPLAN during 2016, 

simultaneously combining phenotypic, pedigree, and genomic information. Conceptually, SS-

GBLUP is compatible to the existing pedigree BLUP models and is relatively straightforward to 

implement by replacing the traditional inverse pedigree relationship matrix (A-1) in the mixed model 

equations (MME) with H-1 (Christensen and Lund, 2010): 

𝑯−1 = 𝑨−1 + (
0 0
0 𝑮−1 − 𝑨22

−1) 

where G and A22 are genomic and pedigree relationship matrices for genotyped animals, 

respectively. This make modification of models and software to estimate breeding values (EBVs) 

relative straightforward, although computational requirements can increase significantly. 

 Accuracies of EBVs are also an important output of genetic evaluation systems, and these have 

traditionally been approximated using “effective progeny numbers” (EPN) as a basis which 
accumulate information from animals’ own performance, progeny, parents, and from correlated 

traits (Graser and Tier 1997). In this paper, we present a modification to this algorithm to account 

for EPN from genomic information, allowing the calculation of accuracies for SS-GBLUP EBVs. 

We also investigate the impact of genomic information on the improvement of accuracy of EBV for 

real examples. 

 

MATERIALS AND METHODS 

Algorithms to derive “genomic EPN”. In order to ensure compatibility with the current accuracy 

algorithm, information from the genomic relationship matrix needs to be expressed in the form of 

an EPN for each animal. This “genomic EPN” must be accumulated with existing sources of EPN 

to derive approximations of the total accuracy for multi-trait SS-GBLUP analyses. The steps 

required are described below. 
 Step 1. Calculate a prediction error variance (PEV) using a series of single trait GBLUP pseudo-

analyses. For each trait, we construct the MME for genotyped animals with additive genetic effects 
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considered in the model, ignoring all the other fixed and random effects.  The diagonal of the inverse 

of the MME then represents the genomic PEV for the trait. Because the pedigree relationship matrix 

A22 for these animals has already been used to contribute accuracy from pedigree and performance 

information, and also because a proportion of G is used to build H-1 in SS-GBLUP, an adjusted PEV 

must be used to derive the contribution of genomic information to accuracy. This adjusted PEV for 
the ith animal is calculated as: 

𝑃𝐸𝑉𝑖
∗ = 𝑤𝑡 ∗ 𝑃𝐸𝑉𝑖 + (1 − 𝑤𝑡)𝜎𝑎

2 

where 𝜎𝑎
2 is the additive variance, and  wt is a tuning parameter (referred to as the “genomic PEV 

weight” below) determined empirically by comparing approximate accuracies calculated across a 

range of wt values from 0.1 to 1.0 with exact accuracies calculated by direct inversion of the SS-

GBLUP mixed model equations for a range of examples reported below.  

 After 𝑃𝐸𝑉∗ for each trait is calculated with appropriate values of wt, accuracy is calculated as: 

 𝑎𝑐𝑐 = √1 − 𝑃𝐸𝑉𝑖
∗ 𝑔𝑖𝑖𝜎𝑎

2⁄   

where 𝑔𝑖𝑖 is the diagonal of G for the ith animal.  This is assumed to be the gain in accuracy due to 
genomic information for genotyped animals.  

 Step 2. Propagate genomic accuracy to un-genotyped ancestors and descendants so that the 

impact of genomic information on close relatives is included. Propagation is performed upwards 

first (to ancestors) and then downwards (to descendants). If an un-genotyped animal has its parents 

and progeny genotyped, accuracy is calculated from the progeny, except for the case where only one 

progeny and both parents are genotyped, in which accuracy is calculated from the parents. The 

accuracy of un-genotyped parents with genotyped progeny is given by: 

𝑎𝑐𝑐 = 𝑎𝑐𝑐̅̅ ̅̅̅ × (1 − 0.5𝑛) 

where 𝑎𝑐𝑐̅̅ ̅̅̅ is the average accuracy over 𝑛 genotyped progeny for the sire or dam. The accuracy of 

the un-genotyped progeny is given by: 

𝑎𝑐𝑐 = √(𝑎𝑐𝑐𝑠𝑖𝑟𝑒
2 + 𝑎𝑐𝑐𝑑𝑎𝑚

2 ) 4⁄   

 Step 3. Accuracy for genotyped animals and progeny and parents of genotyped animals is 

transformed to the equivalent number of effective progeny as: 

𝐸𝑃𝑁 = 𝛿 × 𝑎𝑐𝑐2 (1 − 𝑎𝑐𝑐2)⁄  

where 𝛿 = (4 − ℎ2)/ℎ2 and ℎ2 is the heritability of the trait. 
 Step 4. For each animal with genomic EPN derived from the above single trait analyses, multiple 

trait EPN are derived by constructing multiple trait MME with additive genetic effects as follows: 

1) Accumulating the residual matrices based on the common minimal EPN across traits based on 

the phenotypes observed into a trait by trait matrix; 2) The additive genetic co-variance matrix is 

added to the accumulated residual matrix; 3) Multiple trait PEV are then calculated by inverting this 
matrix and then converted to EPN following the procedures above. 

 Step 5. Because EPN due to genomic information for each animal are confounded with EPN 

arising from phenotypic own-performance information, the final step is to calculate the difference 

between the genomic EPN of an animal and the EPN arising from its own phenotype, as calculated 

from the current algorithm. Only when this difference is positive is the genomic EPN accumulated 

with EPN from all other sources to derive the final accuracy.  

 Note that when calculating final EBV accuracies following the formula in equation above, rather 

than using 𝑔𝑖𝑖 for genotyped animals, we use 𝜆𝑔𝑖𝑖 + (1 − 𝜆)𝑎𝑖𝑖, following the specification of the 
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H matrix used for SS-GBLUP, where 𝜆 is a weighting factor for genomic and pedigree information 

as described by McMillan and Swan (2017). 

Selection of genomic PEV weight. Data from OVIS and BREEDPLAN runs were used to 

investigating the genomic prediction error variance weight. Traits considered for sheep were intra-

muscular fat (IMF, h2 = 0.56) and shear force at day 5 (SF5, h2 = 0.32), with the data including 
11,416 genotyped animals from terminal sire evaluation. Traits considered for beef were beef 600 

day weight (FWD, h2 = 0.49) and days to calving (DTC, h2 = 0.08), with the data including 5,847 

genotyped animals from the Brahman BREEDPLAN evaluation. These data were analysed 

repeatedly with the new accuracy algorithm, fitting a range of genomic PEV weights from 0 to 1 in 

increments of 0.1. The approximate accuracies derived were then compared to exact accuracies 

calculated from PEVs derived by inversion of the mixed model coefficient matrix for each data set, 

and varying the value of λ used to construct the G matrix from 0 to 1 in increments of 0.1. 

Application to industry data. The new SS-GBLUP accuracy algorithm was applied to data from 

full sheep terminal sire evaluation and full Brahman BREEDPLAN runs. The numbers of genotyped 

animals were 11,832 in sheep and 7,166 in beef data. 

  

RESULTS AND DISCUSSION 

Selection of the genomic PEV weight. Based on comparison of approximate accuracy calculated 

over a series of genomic PEV weights to exact accuracy with a series of λ values, results showed 

that the means and standard deviations of true accuracies increased with λ from 0 to 1. When λ = 

0.5, the value currently chosen to run SS-GBLUP analyses in OVIS and BREEDPLAN, the closest 

genomic PEV weight for the new accuracy algorithm was 0.3 for all sheep and beef traits, based on 

comparison of means and standard deviations. Across all four traits, high R-squared values (>0.95) 

and regression coefficients (from 0.96 to 1.1) were observed for the regression of approximate 

accuracies with genomic PEV weight = 0.3 on true accuracies with λ = 0.5, indicating a genomic 

PEV weight of 0.30 is appropriate to tune the genomic prediction error variances for the current 

implementation of SS-GBLUP. 
 

 
Figure 1. Relationship between average accuracy for genotyped animals arising from the genomic 

relationship matrix, number of genotyped animals recorded in the reference population, and heritability 

(size of points) for different sheep and beef traits. 
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The impact of genomic information on accuracy. The relationship between average accuracies 

for genotyped animals arising from the genomic information, number of genotyped animals recorded 

in the reference population, and heritability for sheep and beef traits are shown in Figure 1. The 

average accuracies of genotyped animals as calculated in Step 1 above varied from 0.12 to 0.40 in 

both sheep and beef across different traits. The accuracies were positively related to the number of 
animals with records and heritability for each trait.  

   Figure 2 shows the distribution of average accuracy improvement for SS-GBLUP relative to 

ABLUP for beef and sheep. For animals with low starting ABLUP accuracies (<30%), the SS-

GBLUP accuracy was on average 18% points higher for sheep (ranging from 11 to 24% points), and 

on average 13% points higher for beef (ranging from 3 to 29% points). For medium starting 

accuracies (30 to 50%), the improvements were 6% (2 to 8%) for sheep and 4 (1 to 9%) for beef, 

while very little improvement in accuracy was observed for high starting accuracies (>50%). These 

trends confirm expected benefits of accuracy from genomic information. 

 

 
Figure 2. Distribution across beef and sheep traits of improvement of SS-GBLUP accuracies over 

ABLUP accuracies within bands of ABLUP accuracy from low (<30), medium (30 – 50) and high (>50). 

 

CONCLUSIONS 

An algorithm to approximate SS-GBLUP EBV accuracies was developed, and shown to be 

consistent with exact accuracies in several small example analyses for beef and sheep. SS-GBLUP 

EBV accuracies increase more for traits with a larger reference population (numbers of animals 

phenotyped and genotyped), and for traits with higher heritabilities. Animals with low pedigree-only 

(ABLUP) EBV accuracies gain more improvement in accuracy from genomic information than 

animals with high ABLUP EBV accuracies. 
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SUMMARY 

We present a computationally efficient approach to GBLUP which approximates inverse 

reference set matrix by optimally selecting the most informative animal cohort.  The optimal 

animal cohort, named core reference animals, are identified through a Partial Incomplete Cholesky 

Decomposition (PICD) and selected such that the reconstruction error is at a specified user 

percentage. Our application of PICD on the Australian Holstein and Jersey reference sets shows 

that allowing a small error halves the effective size of reference set, resulting in significant gains in 

performance with only minor differences between exact and approximate breeding values and 

reliabilities (r > 0.99).  Overall our results show that application of methods like PICD aimed at 

eliminating redundancy within large reference sets, significant performance gains can be made 
without sacrificing accuracy. 

 

INTRODUCTION 

Genomic evaluations are routinely used to evaluate the performance of dairy cattle world-wide.  

These genomic evaluations impose a significant and ever increasing computational burden on the 

evaluation organisations. This computational burden must be offset by the requirement to maintain 

a meaningful animal reference set to ensure that accurate and reliable predictions are made for the 

young animals entering the system.  Up to now the focus has been on increasing the accuracy and 

reliability of genomic evaluations with projects such as GINFO (Pryce et al, in press) succeeding 

in increasing the overall reliability of the Australian genomic evaluations between 2 and 7 percent, 

by doubling the number of animals in the reference set. The cost of doubling the size of the 
reference set results in a dramatic increase in computational burden. GBLUP (Van Raden, 2008) 

like algorithms can be solved for breeding values using gradient techniques highly efficiently, 

however the reliability computation requires the explicit inverse of the genomic reference set 

matrix which scales at cubic complexity. With reference sets continuing to grow, and now 

including more than 35000 Australian dairy animals, more efficient solutions for genomic 

evaluations are required. 

The accuracy and reliability of a genomic breeding value for a young, non-reference animal, is 

not based on the size of the reference set, but how related that animal is to the reference set.  

Additionally, the genomic relationship structure within the reference set animals are not related to 

the quality of their phenotypic information.  Therefore simply adding animals to the reference set 

based on the quality of their phenotype alone will not ensure more reliable predictions into the 

future and is likely to make routine evaluations computationally infeasible.  
In this paper we investigate the feasibility of a Partial Incomplete Cholseky Decomposition 

PICD (Foster et al, 2009) to identify a smaller cohort of reference set animals, named core 

reference set animals, which can be used to optimally represent the structure within full reference 

set. PICD has been shown in kernel regression literature to provide a robust approximate solution 

to a related model to GBLUP (Foster et al, 2009).  In this paper we extend PICD for application to 

the GBLUP model by accounting for the diagonal weighting of all reference set animals to ensure 

that phenotype accuracy information is included in the evaluation of all animals.  We show that 

application of PICD with a small degree of error can significantly reduce computational time 

without dramatically moving from the estimated breeding values or reliability from the full model. 
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MATERIALS AND METHODS 

The equations for the GBLUP breeding values 𝑎̂ and reliabilities rel are as follows (Van 

Raden, 2008), 

𝒂̂ = 𝑮𝑐𝑟(𝑮𝑟𝑟 + 𝑹)−1𝒚            and          𝒓𝒆𝒍 =
𝐝𝐢𝐚𝐠[𝑮𝑐𝑟(𝑮𝑟𝑟 + 𝑹)−1𝑮𝑐𝑟

𝑇 ]

𝐝𝐢𝐚𝐠[𝑮]
  . 

where 𝑮𝑟𝑟  is the genomic relationship matrix of the reference set animals, 𝑹 is a diagonal matrix 

of observation weights and 𝑮𝑐𝑟 is the genomic covariance matrix of all animals with the reference 

set animals.  The cost of a GBLUP model is in the evaluation of (𝑮𝑟𝑟 + 𝑹)−1 where the number of 

required operations scales cubically, 𝑂(𝑟3), as the number of reference set animals, r, increases. 
Partial Incomplete Cholesky Decomposition (PICD) (Foster et al, 2009) is a variant of the 

Cholesky decomposition which employs both row pivoting and a diagonal error tolerance to create 

a rank-reduced decomposition.  The purpose of PICD is to select from 𝑮𝑟𝑟  a reduced cohort of 

animals, called core reference animals, which are representative of the entire population.  This 

cohort can then be used to reconstruct 𝑮𝑟𝑟  by, 

𝑮𝑟𝑟 = 𝑳𝑇𝑳 ≈ 𝑳𝑘
𝑇𝑳𝑘 , 

where k is the set of core reference animals, k < r, and 𝑳𝑘 is the Cholesky complement only 

including the currently selected k animals.  
The PICD algorithm identifies the core reference animal by performing single Cholesky 

updates to 𝑳𝑘 , animal-by-animal in a stage-wise and greedy fashion where the next animal to be 

added 𝑳𝑘 is selected such that it maximally reduces the reconstruction error.  The reconstruction 

error is a measurement of how well 𝑳𝑘
𝑇𝑳𝑘 predicts 𝑮𝑟𝑟 .  The addition of all r animals completely 

reconstructs the full Cholesky complement with no error. Therefore the reconstruction error can be 

measured as a percentage of complete reconstruction. 

The algorithm requires as input the acceptable amount of error as a percentage, and from this 

will create a Cholskey complement, 𝑳𝑘, of size (N, k)  where k number of animals required to 

approximate the original matrix at that error percentage.  The advantage of using this approach to 

others such as Singular Value Decomposition (SVD) is its ability to pick the specific animals 

required for the reconstruction, whereas SVD projects each animal onto every eigenvector.  

Therefore PICD is a means of selecting the most informative animals from the reference set. 

PCID when used in the kernel regression setting reduces the cost complexity from order 𝑂(𝑟3) 

to 𝑂(𝑘𝑟2) (Rasmussen and Williams, 2006).  However, within the reference set of GBLUP there 
are also observation weightings defined.  To allow for all reference set animals to have their 

observation weight applied we must derive a subset-of-regressors approximation of (𝑮𝑟𝑟 + 𝑹)−1 

using the Nystrom approximation of 𝑮𝑟𝑟  (Rasmussen and Williams, 2006).  The Nystrom 

approximation of 𝑮𝑟𝑟  is the approximation of the 𝑮𝑟𝑟  using a subset of rows and can be expressed 
as, 

𝑮̂𝑟𝑟 = 𝑮𝑟𝑘𝑮𝑘𝑘
−1𝑮𝑘𝑟 

where the k animals are selected from the reference set using PICD.  From this representation of 

𝑮̂𝑟𝑟  we can apply the Woodbury matrix identity to gain an approximation of the whole system 

inclusive of the observation weights, 

(𝑮𝑟𝑟 + 𝑹)−1 ≈ (𝑮̂𝑟𝑟 + 𝑹)
−1

= 𝑹−1 − 𝑹−1𝑮𝑟𝑘(𝑮𝑘𝑘 + 𝑮𝑘𝑟𝑹−1𝑮𝑟𝑘)−1𝑮𝑘𝑟𝑹−1 

where 𝑮𝑟𝑘  is the covariance between the all reference animals and the core reference animals.   

This approximation to GBLUP allows for a selection of core animals from the reference set, 

without losing any phenotypic information from the model. Once the solution to the approximate 

GBLUP is attained the pre and post multiplication by 𝑮𝑐𝑟 is still required to compute the breeding 

values and reliabilities respectively.  If no error tolerance is specified the approximation will yield 

exactly the same results as solving the system directly.  It is suggested that this be treated like a 

heritability analysis and run once annually, out of scope of an evaluation. 
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PICD is also similar in idea to the sparse inverse of 𝑮 with the APY algorithm of (Misztal, 

2014) however PICD is a reduced rank approximation where as APY is a sparse approximation.  

The main advantage of PICD over APY is reducing the size of the entire system required to be 

solved through the efficient use of the Woodbury matrix identity above.  APY on the other hand 

approximates only 𝑮 or 𝑮−𝟏 which still requires the addition of observation weights, 𝑹, and 
solution of the entire system to be computed. 

 

MATERIALS AND METHODS 

To evaluate our proposed PICD approximated GBLUP we perform a simple parameter sweep 
on the percent error for the PICD algorithm and evaluate three different metrics. 

1. The computational elapsed time. 

2. The number of animals in the core reference set. 

3. The correlation between breeding values and reliabilities as compared to the exact 

solutions. 

The PICD program was developed in-house and implemented in R using Rcpp and compiled using 

the Intel MKL library.  The datasets under consideration are the 58961 non-duplicated Holstein 

bulls and cows as well as the 11768 non-duplicated Jersey bulls and cows from the December 

2016 ABV ADHIS release. Of these animals 32481 Holstein and 8846 Jersey bulls and cows were 

found in the full Protein GEBV reference set.  The parameter sweep is run between 0 and 50% 

allowable error in increments of 5%. 
 

RESULTS AND DISCUSSION 

 
Figure 1: Holstein parameter screening results. Green line is the correlation between the exact solution and 
the PICD algorithm and the blue dots are the average correlation of 10 repeats of randomly selecting rows at 
four specified error tolerance. 

 
Figure 2: Jersey parameter screening results. Green line the correlation between the exact solution and PICD 
algorithm and the blue dots are the average correlation of 10 repeats of randomly selecting rows at four 
specified error tolerance. 

Figure 1 and 2 present the parameter sweep results for the Holstein and Jersey analyses 

respectively.  The results include the computation of breeding values and reliability for all animals 
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in the analysis, including non-reference animals with no phenotype.  From left to right, the first 

two plots are the correlation between approximate breeding values and reliabilities compared to 

exact GBLUP calculation, the dimension of the core reference animal set, k, and the run time.  

Both Holstein and Jersey sets share the same profile, where at small amount of acceptable 

errors the approximate methods correlate very well (r > 0.99, % error = 0.05) with the exact 
solutions. The animals removed are predominantly bulls rather than cows.  In of the 7754 cows 

and 1092 bulls in the Jersey reference set 2464 (32 %) cows and 591 (54 %) bulls were removed 

by PICD at 0.05 error tolerance.  Of the 28228 cows and 4253 bulls in the Holstein reference set 

13761 (49 %) cows and 3295 (78 %) bulls were removed PICD at 0.05 error tolerance.  The 

removal of bulls from the reference is likely due to the selection of bulls results in stronger 

relationships between them, and therefore they produce more redundant set in terms of genotypic 

variation. The surprising result from these parameter sweeps by imposing only a small error the 

amount of animals in the core reference set is approximately. 

The observed massive reduction in the reference set size is a result of the genomic redundancy 

within the reference set created by one-sided selection of animals.  Reference set inclusion is based 

bulls having more than 10 daughters or cows in specific projects with phenotypic records, not on 

how related the animal is to the existing reference set. This approach is likely to select a reference 
set with a large number of highly related animals who collectively contribute very little to the 

performance of the overall evaluation. Algorithms like PICD are able to parse this redundant set 

and capture the key animals required to maintaining accuracy and reliability.  The availability of 

such algorithms therefore encourages the continued collection of phenotypes and from the ever 

increasing pool of reference set animals timely evaluations are still possible. 

At larger amounts of acceptable errors we observe that the PICD approximated reliabilities are 

significantly closer to the exact reliabilities than those computed from a random sample. However, 

the breeding values estimated by PICD are more poorly estimated, in particular within the Jersey 

analysis.  This drop in performance is because PICD seeks to remove all redundancy within the 

genomic relationship matrix, without any knowledge of the phenotype.  This style of selection may 

inadvertently remove animals with phenotypes that are highly informative for the trait under 
analysis because their relatives are already included in core reference set.  This reduces the 

accuracy of breeding value estimation, but not reliability estimation, as the reliability is a function 

only of the relationship matrix (the target of PICD) not the phenotypic importance. This problem is 

well known and could potentially be overcome by selecting an animal subset using more complex 

objective functions which seek to balance the contributions from both left and right hand side 

GBLUP equations (Rasmussen and Williams, 2006). 

In conclusion we have shown that it is possible to dramatically decrease the running time of 

genomic evaluations, without a significant impact on accuracy or reliability, by defining a smaller 

set of core reference animals. The implementation PICD with only small amount of error will 

reduce the computational burden on evaluation organisations allowing them to screen more 

animals, faster and more often. 
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SUMMARY 

Genetically admixed animals are common in most quantitative genetic analysis, and usually are 

a result of intended crosses between two or more pure breed populations to enhance productivity. 

Disregarding the genetic heterogeneous architecture of admixed individuals may lead to poor or 

even wrong inference about the quality, quantity and genome location of genetic factors affecting 

phenotypes, and it could reduce the accuracy of estimates of genetic merit. In this article a non-

linear optimisation approach (constrained genomic regression, CGR) is presented to describe the 

marker genotype of a focus animal as a linear function of marker allele frequencies of possible 

populations of origin. The algorithm was tested on a beef cattle data set consisting of 11639 

animals from 11 different breeds with marker genotypes of 4022 single nucleotide polymorphisms, 
which were used to generate 5000 artificially cross-bred animals. For comparison the data set was 

also analysed with the ADMIXTURE software (ADM). CGR outperformed ADM with a 

maximum difference between the true and estimated breed proportion of 0.25 and 0.28 for the 5 

and 25 cross-over data set respectively. For ADM this parameter was 0.83 and 0.66. The mean 

squared estimation error was 15 and 5 times larger for ADM compared to CGR for the 5 and 25 

cross-over data set respectively. In addition, CGR always outperformed ADM in terms of speed by 

factor 20. 
 

INTRODUCTION 
The quantification of pure breed proportions of cross-bred animals’ genomes is of relevance 

for genome wide association studies, estimation of population parameters, breeding value 
estimation and cross-breeding program optimisation. The most widely used methodology for 

marker based breed proportion estimation is likelihood formulation of the animals’ genotype 

probability conditional on the pure breed population allele frequencies, where the latter are 

estimated in turn from the animals’ genotypes and the assigned breed proportion (Pritchard et al. 

2000). The whole system is evaluated using Gibbs Sampling (Pritchard et al. 2000; Raj et al. 

2014), expectation maximisation (Tang et al. 2005), or, as a sped-up version, a block relaxation 

algorithm (Alexander et al. 2009). Since often the allele frequencies of pure breed populations can 

be estimated from animals of known pure breed origin, Alexander et al. (2009) shortcut their 

method to facilitate quicker breed proportion estimation for cross bred animals. However, the 

likelihood based method has two major shortcomings: a) the likelihood formulation assumes the 

absence of linkage disequilibrium between markers and orthogonality of pure breed population 

allele frequency vectors, and b) processing time becomes an obstacle if there are many marker 
genotypes (e.g. 700k or full genome sequences). This article describes a non-linear optimisation 

method (constrained genomic regression, CGR) for the estimation of pure breed proportions of 

cross-bred animals’ maker genotypes, which overcomes both the limitations of the likelihood 

based method and allows a meaningful interpretation of the results even if the number of possible 

pure breeds is huge (see Chiang et al. 2010; Kuehn et al. 2011, for an unconstrained version of this 

approach). The algorithm was applied to 4k single nucleotide polymorphisms (SNP) genotypes of 

5000 cross-bred animals artificially generated from real genotypes of 11639 animals from 11 

different breeds. Result were compared to results from ADMIXTURE (ADM) (Alexander et al. 

2009). 
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METHODS 

Model. The problem to solve can be written as 𝑎𝑟𝑔𝑚𝑖𝑛𝑏𝑓(𝑏) = 𝑦′𝑦 − 2𝑦′𝑋𝑏 +
𝑏′𝑋′𝑋𝑏(1) subject to 𝑏𝑖 ⩾ 0{𝑖 = 1, . . , 𝑁}(2) and ∑𝑏𝑖 = 1(3)where y is the marker 

genotype vector of the cross-bred animal, X is a column matrix of pure breed population allele 

frequency vectors, and N is the number of pure breeds. Note that equations (2) and (3) comprise 

constraints to the solutions of equation (1). Values in vector b are regression coefficients 

regressing y on the columns of X. Minimising equation 1 with respect to equation 2 and 3 will 

yield a vector b of which values will not only explain the genotype in y as a linear function of 

population allele frequencies in X, coefficients also have the straight forward interpretation of 

what proportion of Xb is explained by each column in X. 
 

Data. The cattle data set consisted of 11639 animals from 11 different cattle breeds (Brahman 

(1492), Angus (1473), Murray Grey (316), Limousin (1395), Charolais (899), Hereford (1500), 

Simmental (337), Shorthorn (1126), Wagyu (1497), Santa Gertrudis (1474) and Drought Master 

(130)). Since genotypes of these animals were from various SNP panels, the 4022 SNP were 

selected which all panels had in common. The SNP genotypes were randomly phased to obtain 

haplotypes. Cross-bred animals were generated over five rounds. In round one the sex was 

randomly assigned to the 11639 pure-bred animals and 1000 males and 1000 females were 

randomly chosen (with replacement) to serve as parents. From each pair of parents one offspring 

was generated by joining their gametes generated from their haplotypes assuming 25 or 5 

randomly located cross-overs. In the subsequent four rounds the 2000 parents were selected among 
previous 1000 offspring implying more than one offspring per parent. Thus, the total number of 

artificial admixed offspring was 5000. Table 1 summarises the number of cross-bred animals with 

1 to 11 pure breed proportions in their genome. 
 

Table 1: Summary of number of cross-bred animals with genome proportions of 1 to 11 pure 

breeds. 

Number of 

cross-overs 
 

Number of pure breeds contributing to a cross-bred genome 

 1 2 3 4 5 6 7 8 9 10 11 

5 121 970 465 594 424 529 584 618 477 205 13 

25 120 968 453 610 394 478 465 559 576 312 65 

Note that table rows sum up to 5000, which is the number of cross-bred animals. 
 

Result evaluation. Let bT be the row matrix of true breed proportions, and bE its estimated 

equivalent, with row dimension equal to the number of cross-bred animals and column dimension 

equal to the number of possible pure breeds. Results were evaluated by a parameter M calculated 

as the maximum of |𝑏𝑇 − 𝑏𝐸|, and by a parameter S calculated as the mean of (𝑏𝑇 − 𝑏𝐸)2. 
 

Software. CGR was implemented in a FORTRAN program which called the NLopt library 
(Johnson 2011). The optimisation solver used the augmented Lagrangian algorithm as global 

solver and the method of moving asymptotes as a local solver. All computations were carried out 

on a desktop computer with an Intel(R) Core(TM) i7-3770 processor and 32GB of memory. 
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RESULTS 
Table 2 summarises the results for the cross-bred animals when the number of cross-overs 

during gametogenesis was 5 and 25 respectively. Invariably of the number of cross-overs CGR 

always performed better than ADM. The greatest absolute difference between the true and 

estimated breed proportion estimated by CGR was 0.24 and 0.28 for the 5 and 25 cross-over data 
set respectively, whereas for ADM that parameter was 0.85 and 0.67. The parameter S for the 

ADM results was 15 times larger than that for CGR results when the 5 cross-over data set was 

used. This difference to shrunk to 5 times larger when the 25 cross-over data set was used. 
 

Table 2: Statistics of the breed proportion estimation error subject to the number of cross-

overs when generating cross-bred animals and the used algorithm, where M is the maximum 

absolute error across all cross-bred animals and all possible breeds, and S is the mean of the 

squared estimation error calculated across all animals and possible breeds. 

Number of cross-overs CGR ADM 

 M S M S 

5 0.24691 0.00103 0.85393 0.01578 

25 0.28217 0.00107 0.67077 0.00566 

 

 

CGR needed about 16 real time seconds for estimating the pure breed proportions of all 5000 

cross-bred animals, whereas ADM needed 292 and 336 real time seconds for the 5 and 25 cross-

over data set, respectively, which is an increase in processing time by a factor of 20. Note that the 

processing time was obtained without exploiting the parallel processing capabilities of both 

algorithms. 
 

DISCUSSION 
Results show that when pure breed population allele frequencies are known, the less elaborate 

modelling approach of CGR performs better than the ADM approach. Both algorithms do not 

account for linkage disequilibrium between marker. However, in addition to not assuming any LD 

between markers, the likelihood formulation of the ADM algorithm assumes also orthogonality 

between pure breed population allele frequency vectors. While this might be the case between very 

distant breeds having diverged many generations ago, it is unlikely to be the case for commercial 

beef cattle breeds. While CGR in its current formulation is not accounting for LD explicitly, it 

accounts for non-orthogonality between pure breed allele frequency vectors which might be one 

reason for the better performance. However, CGR could also account for LD by reformulating 

formula 1 to a generalised least square problem with the co-variance matrix of vector y reflecting 

the LD between markers, although this approach is limited by the number of markers. Beside 

better performance CGR generated more accurate results in a processing real time of only 5 % of 
that of ADM. This will becoming even more relevant when the number of marker used increases 

to 50k or more. 
 

CONCLUSION 

The results show that the simple modelling approach implemented in CGR provides accurate 

estimations of breed proportions in cross-bred animals. Moreover, CGR proved to be robust 

against LD, accounts for non-orthogonality of allele frequency vectors of founder breeds and is 

fast enough to deliver results for tens of thousands of animals in a reasonable time. 
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SUMMARY 

There has been extensive research, particularly in human genetics, devoted to the development 

of methods that use genotype data for the identification of distinct genetic sub-populations within 

the population of interest. Some of these methods have also been incorporated in the field of 

animal breeding in order to improve the accuracy of predicted breeding values through their use as 

genetic group effects. In this paper, we compared a method of finding sub-populations based on a 

decomposition of a normalised matrix derived from genotype data, to a modified probabilistic 

PCA model that took into account the non-normal nature of the genotype data. In an initial study, 

where we used a dataset from the New Zealand sheep industry with a known breed composition, 
we found that the modified probabilistic PCA model gave equivalent separation between breeds to 

EIGENSTRAT. 

 

INTRODUCTION 

Livestock programs aim to optimise long-term genetic gain. To do this the ideal is for breeding 

values to be as accurate as possible. One method of improving breeding value accuracy is through 

the fitting of genetic groups. However in practice, genetic groups often prove difficult to define 

(Kuehn et al. 2007).  

With the increased availability of genotype data, there has been a move towards replacing 

pedigree records with genotype data for the construction of the relationship matrix to improve 

breeding value accuracy. In addition there have been attempts to use genotype data to define 
structure within the population of interest, which is then fitted in the model, usually as a fixed 

effect. An example of this is EIGENSTRAT (Patterson et al. 2006), which in practice is very 

similar to the eigen-decomposition of the second genomic relationship matrix proposed in 

VanRaden (2008). This method ignores the non-normal nature of the genotype data and has been 

shown to reduce across breed accuracy when used as a genetic group (Daetwyler et al. 2012).   

To deal with the issues outlined, we propose a probabilistic PCA model that explicitly takes 

into account the ideal conditions of binomially distributed genotypes. We then compared the two 

methods, focusing on their respective ability to distinguish between genetic groups, which we took 

to correspond to the recorded breed.   

 

MATERIALS AND METHODS 

Data. The genotype data (5K Illumina SNP Chip) available was from 8,902 animals born from 
2000 to 2014, each with up to 5,283 markers recorded. Genotypes which were missing for more 

than 1 % of animals or monomorphic for all animals were omitted from analysis. The removal of 

animals with any missing genotypes reduced the dataset to 1,672 animals with 5,170 markers 

recorded. Breed composition data was obtained from Sheep Improvement Limited (SIL). The 

distribution of breeds in the dataset is indicated on Table 1.  

EIGENSTRAT. This method of identifying population structure was introduced in Patterson 

et al. (2006). It assumes a 𝑛 ×  𝑚 matrix of genotypes 𝒁 with rows corresponding to individuals 

and columns to markers and coded  0, 1, 2 where the numbers correspond to the number of copies 

of the A allele. Each column j of 𝒁 was then normalised by subtracting by twice the allele 
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frequency 𝑝𝑗  and dividing the result by √𝑝𝑗(1 − 𝑝𝑗) to form the matrix 𝑴. Eigen-decomposition 

(Principal Component analysis) was then performed on the matrix  
1

𝑚
𝑴𝑴’. Determination of 

population structure was then made using the resulting eigenvectors (Principal components). 
 

Table 1. Breed distribution of genotyped animals as recorded in SIL  

 
Breed distribution of animals 

Breed Number of animals Breed Number of animals 

Unknown 11 Perendale 133 
Romney 495 Highlander 31 
Coopworth  67 Composite 2 

Overall distribution of breeds where known 

Breed % in population Breed % in population 

Romney 48.13 Poll Dorset 1.28 
Coopworth 14.87 East Friesian 1.04 
Perendale 13.88 Highlander 3.37 
Finnish Landrace  1.12 Composite 3.57 
Texel 6.70 Other Breeds  2.53 
Suffolk 3.51 (less than 1 % of population) 

 

Binomial probabilistic principal component analysis (BPPCA). Under ideal conditions of 

Hardy-Weinberg equilibrium and no linkage disequilibrium, each of the markers j observed from 

individual i can be regarded as realisations of a binomial random variable. 

𝒁𝑖𝑗 ∼ 𝐵𝑖𝑛(2, 𝑝𝑖𝑗)                 [1] 

BPPCA assumes that the individual-marker specific allele frequency 𝑝𝑖𝑗  can be modelled using 

the link function 𝜽𝑖𝑗 = log(𝑝𝑖𝑗/(1 − 𝑝𝑖𝑗)) as a function of a marker specific intercept 𝜇𝑗, f 

principal components, where f was pre-determined, and an error term. This results in the following 

model for the observed genotype pattern, where 𝜽 is a 𝑛 ×  𝑚 matrix of link functions, 𝑳 a 𝑛 ×  𝑓 

matrix of components, 𝑭 a 𝑓 ×  𝑚 matrix of scores, and 𝒆 is a 𝑛 ×  𝑚 matrix of residuals. 

 

𝒁𝑖𝑗 ∼ 𝐵𝑖𝑛(2, (1 + e−𝜃𝑖𝑗 )−1)  

𝜽𝑖𝑗 = 𝜇𝑗 + ∑ 𝑳𝑖𝑘𝑭𝑘𝑗𝑘 + 𝒆𝑖𝑗 , 𝑭𝑘𝑗 ∼ 𝑁(0,1),  𝒆𝑖𝑗~𝑁(0, 𝜎2)            [2] 

To fit the model, we used Pólya-gamma data augmentation as outlined in Polson et.al (2013) 

and previously implemented for a similar model in Klami (2014). This allowed closed form 
conditional posteriors to be obtained for all model parameters. Based on the eigenvalue scree plot 

obtained from implementing the EIGENSTRAT method, the number of components to fit was 

fixed at five. Estimates were obtained from the posterior means found by using a blocked Gibbs 

sampler based on the conditional posteriors. The Gibbs sampler was stopped once the relative 

change in 𝜽̅ dropped below 1 × 10−5. Spectral value decomposition was then applied to the initial 

estimates to ensure orthogonal components. This ensured comparability of components to those 

extracted using EIGENSTRAT. 

RESULTS AND DISCUSSION 

Ability to separate breeds based on principal components. Figure 1 plots the first two 

principal components obtained from EIGENSTRAT and BPPCA with pure breed animals 

highlighted. Both methods were able to distinguish between different pure breed populations.  
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Figure 1. First two principal components obtained from EIGENSTRAT and BPPCA.  

 

Possible uses of the principal components (PC) to represent population structure. Since it 

is established that principal component analysis on normalised genotype data can distinguish 

between sub-populations, the fitting of PC has been used extensively to account for population 

structure in models. The PC are usually fitted as fixed effects. Since EIGENSTRAT extracts PC 

from the decomposition of the genomic relationship matrix, we suggest that it is more appropriate 

to fit the PC as random effects. In addition, fitting a decomposition of the genomic relationship 
matrix in addition to the genomic relationship matrix could be regarded as over-fitting. 

In BPPCA, PC are constructed at the link function level, not directly from the observed data. 

This means that the relationship between the PC and the genomic relationship matrix is indirect. 

This can be demonstrated by the law of total variance and noting that 𝐸(𝒑) and 𝑉𝑎𝑟(𝒑), where 𝒑 

is the vector of latent probabilities for each animal, are both functions of the BPPCA PC. It may 

also mean representing population structure using PC from the BPPCA model is less prone to the 

reduction of across breed accuracy seen in Daetwyler et al. (2012). 

 

𝑉𝑎𝑟(𝒁) = 𝐸(𝑉𝑎𝑟(𝒁|𝒑)) + 𝑉𝑎𝑟(𝐸(𝒁|𝒑))                              [3] 

      = 𝑑𝑖𝑎𝑔{𝐸(2𝒑(1 − 𝒑))} + 𝑉𝑎𝑟(2𝒑) = 2𝑑𝑖𝑎𝑔{𝐸(𝒑) − 𝐸(𝒑)2 − 𝑉𝑎𝑟(𝒑)} + 4𝑉𝑎𝑟(𝒑) 

If the genotype data can be represented by a low rank matrix factorisation at the link function 
level, the correlations between animals implied by the PC would be higher (if correlation is 

positive) or lower (if correlation is negative) than the corresponding correlations in the genomic 

relationship matrix. However EIGENSTRAT extracts a reduced number of PC, which contain 

more information about covariance than variance elements. Therefore the implied correlation 

between random structure effects of different animals is similar between the two methods. This is 

shown in Figure 2, which shows heat maps of the implied between animal correlation.  

Figure 2 shows if PC are used as a classification tool to distinguish between breeds, similar 

results were obtained from EIGENSTRAT and BPPCA.  In our dataset, both clearly identify each 

pure breed population, sub-groups within the Romneys and classify the animals of unknown breed 

as Perendale. Corresponding PC extracted by the two methods were highly correlated, except for 

component 2 and 3, as seen in Table 2. The high negative correlation seen in component 1 and 5 is 

due to the sign invariance property of estimated loadings in latent factor models. 
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Figure 2. Heat maps of implied correlations between animals that were either of pure or 

unknown breed. (Dark Red: High positive correlation, Dark Blue: High negative correlation) 

 

Table 2. Correlation between EIGENSTRAT and BPPCA principal components 
 

EIGENSTRAT 
component 

BPPCA component 
1 2 3 4 5 

1 -0.9922 -0.0342 -0.0062 0.0194 0.0537 
2 -0.0299 0.7297 0.6536 0.1353 -0.0483 
3 0.0159 -0.6636 0.7352 0.0157 -0.0345 
4 0.0130 -0.0895 -0.1086 0.9677 -0.1509 

5 -0.0509 -0.0023 -0.0406 -0.1534 -0.9683 

 

Conclusions. BPPCA can be shown to successfully distinguish between different breeds and 

identify the breed of unknown animals but we did not find substantial differences to 

EIGENSTRAT for either property. Currently BPPCA is much slower to implement and the 
challenge will be to determine if the method has advantages in populations with different sub-

structure than the example given. In the future, the fitting of principal components from 

EIGENSTRAT and BPPCA as random effects in a BLUP model can be compared for their 

efficacy in the prediction of breeding values with respect to accuracy and bias. 
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SUMMARY 

Advanced animal breeding in aquaculture has reached a tipping point where the commercial 

implementation of genomic selection to improve productivity and disease resistance is becoming 

reality. However, the success of practical implementation of genomic selection depends on the 

specific aquaculture species, production system and available phenotyping and genetic resources. 
Using the experience learned from commercial programs for pearl oysters and marine shrimp, we 

highlight current benefits and options in cost-effective high-throughput genotyping and phenotyping 

technologies for genomic selection applications relevant to aquaculture species, followed by 

discussion of some of the lessons learnt when dealing with its practical implementation, including 

what is needed to build adequate genotype resources for non-model species; confounded breeding 

objective verse trait measurements; complex traits and unknown interactions; multi-family breeding 

schemes; multi-stage selection schemes, and transition to a genomic selection breeding program 

incorporating minimisation of inbreeding. 

 

INTRODUCTION 

Classical breeding programs for farmed plant and animal species are based on phenotypic selection 
of individuals in conjunction with knowledge on genetic relationships and quantitative genetic 

principles. Breeders have enhanced production traits of farmed species by selecting superior 

individuals as parents for succeeding generations. However, the efficiency of this method is limited 

when traits are difficult-to-measure, can only be measured late in life, are sex limited, or have low 

heritability. Over the past two decades, rapid developments in genomics have resulted in breeders 

incorporating genetic marker technology in the form of Marker Assisted Selection (MAS) to aid in 

the animal selection process. Although this technique can be useful for some simple traits, 

application of MAS to improve complex traits controlled by many genes of small effect is limited. 

Genetic improvement in these traits can only be achieved through more advanced genomic methods 

(Eggen 2014). 

With recent advances in molecular biotechnology and quantitative analysis methods, it is now 

possible to accurately predict and use genome-wide molecular breeding values for improved animal 
selection. This approach is termed Genomic Selection (GS) and was first proposed by Meuwissen 

et al. (2001), and has gained significant application within the animal genetics community. In this 

approach, animal selection decisions are based on genomic breeding values (GBVs) predicted from 

genome-wide loci. GS is based on the theory that with sufficiently high numbers of loci across the 

genome, most quantitative trait loci will be in strong linkage disequilibrium with at least one marker. 

GS simultaneously estimates the combined genetic effects of all relevant genes and provides 

accurate predictions of genetic merit for a trait. Furthermore, genome wide markers can be directly 

use to compute the genomic relationship matrix (GRM), which can then be used to compute genomic 

breeding values using standard mixed model equations. GRM, even based on a smaller subset of 
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markers, can provide an accurate estimate of the proportion of the genome shared by related 

individuals and hence provides higher accuracy of estimation of breeding values as compared to 

estimates based on pedigree information alone (Forni et al. 2011). 

Integration of GS methods into aquaculture breeding programs promise to rapidly increase 

genetic gains through improved accuracy of breeding value estimation. GS has the highest potential 
for traits that cannot be directly measured on the selection candidates and can be used to capture 

both within- and between-family genetic variances (Nielsen et al. 2009). This makes genomic 

selection a powerful approach in aquaculture, since many traits (eg., disease resistance, carcass 

quality and pearl quality traits) must be measured on the siblings of the actual selection candidates, 

rather than the selected candidates themselves. Furthermore, GS can minimise inbreeding while 

maximising genetic gain beyond that of current practices (Daetwyler et al. 2007). This is of 

particular benefit to aquaculture where species are often highly fecund and the number of 

contributing families reared in closed farms is low, resulting in rapid inbreeding if pedigree is not 

tracked (Gjedrem 2005). Despite all of these advantages, a limited number of aquaculture breeding 

companies and associated research programs are attempting to implement GS into commercial 

operations for long-term genetic gain (eg., Tsai et al. 2017; Khatkar et al. 2017a; Jones et al. 2017). 

The success of the practical implementation of GS in aquaculture production systems depends 
on the breeding objectives, selection criteria, infrastructure, genomic resources and phenotypic 

recording / analysis systems. Each of these aspects can have different challenges depending on the 

specific aquaculture species and production system. Here we aim to provide an overview of the 

opportunities for the adoption of genomic selection within aquaculture, with particular focus on the 

challenges of implementation and long-term use in aquaculture commercial systems. 

 

VALUE OF GENOMIC SELECTION IN AQUACULTURE 

The breeding design of aquaculture species is primarily governed by the biology of the animal 

and available farm resources. Commercial selective breeding programs have recently expanded to a 

diverse range of species (eg., crustaceans such as shrimp, oysters and finfish). Primarily, most 

aquaculture selection programs have focused on growth, which can be selected easily based on either 
simple individual, or pedigree family-based selection approaches (eg., between, within and 

combined). For disease traits or other traits that require destructive sampling, family-based sib-

selection is more commonly practised. Sib-selection, whilst allowing family average breeding values 

to be calculated, only exploits half of the available additive genetic variance (ie., exploits the 

between family variance), which limits genetic gains, and can also lead to increased inbreeding as 

not all families are selected to contribute to the next generation stocks. 

In aquaculture, GS has been theoretically shown to simultaneously increase genetic gains, while 

decreasing inbreeding by up to 81% when compared with traditional selection programs (Sonesson 

and Meuwissen 2009). Although, the monetary value of individual animals of most aquaculture 

species is generally low (eg., compared to livestock), they are highly fecund and have a relatively 

short generation interval. This not only provides the ability for varied selective breeding strategies, 

but also for generating the thousands of phenotypic records required for accurate GS predictions. 
Furthermore, with a limited number of discrete broodstock capable of producing offspring for the 

entire production system, the farm effective population size is relatively small. This characteristic 

enables GS to be implemented on a family-based, or farm-wide basis, utilising a lower density of 

genome-wide loci compared to outbred populations (see genomic information section below). In 

aquaculture, GS improvement programs can have a rapid impact on genetic improvement 

particularly through the use of a structured nucleus breeding scheme. As with traditional selective 

breeding programs, the potential of GS will vary across different species depending on differences 

in life cycle, fecundity, effective population size and breeding objectives. 

To date the successful application of GS in aquaculture has been limited to a handful of research 
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projects. For example, sea lice resistance in Atlantic salmon (Tsai et al. 2016), bacterial cold-water 

disease resistance in rainbow trout (Vallejo et al. 2017) pasteurellosis resistance in gilthead sea 

bream (Palaiokostas et al. 2016) and shell size in scallops (Dou et al. 2016). For commercial 

aquaculture applications of GS, there is limited public information available, and progress is 

reported here on optimisation and implementation within the authors own programs. Here, GS is 
being directly integrated into shrimp breeding programs for multiple production traits (eg., size, 

disease resistance, colour, survival, Khatkar et al. 2017a these proceedings), as well as pearl oyster 

breeding programs for both host oyster and donor oyster traits (eg., shell size and pearl quality traits, 

Jones et al. 2017 these proceedings). Within these programs, the feasibility of successfully applying 

GS has relied on the availability of high-quality genomic resources, comprehensive information on 

genetic parameters for all traits and extensive trait phenotype records in the reference population. 

 

COST-EFFECTIVE GENOMIC INFORMATION 

In aquaculture breeding, the number of individuals to genotype can be large (particularly for 

traits with low heritability). Apart from optimising the number of training or selection candidates 

for routine genotyping (ie., based on GS modelling and farm breeding scheme, eg., Sonesson and 

Meuwissen 2009), reducing the cost or number of genome-wide markers is a viable solution. Our 
own data show that derivation of genomic relationships can be achieved with relatively low-density 

SNP panels (Figure 1; 1,000-3,000 SNPs;) compared to those derived from medium-to high density 

SNP panels (eg., 50,000+ SNPs; see also Ødegård et al. 2014). However, such accuracies deteriorate 

rapidly if very low-density SNP panels are used (<1,000 SNPs). 

 

  
Figure 1.  Comparison of SNP based kinship estimates (rG) computed using two independent 

sets of (a) 100 SNPs and (b) 3,000 SNPs, calculated on 393 shrimp samples. 

 

To our knowledge, there are only a handful of aquaculture species that have commercially 
available SNP genotyping arrays available (ie., Affymetrix Axiom Salmon genotyping array, 

Affymetrix Axiom Trout genotyping array and Illumina Infinium ShrimpLD-24 genotyping array). 

The lack of commercially available genotyping SNP arrays for aquaculture adds significant 

additional cost to GS genotyping, as these resources need to be first development and tested. 

However, the recent development of high-throughput and cost-effective genotyping by sequencing 

(GBS) technologies has significantly reduced both the cost of developing and genotyping SNPs for 
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non-model species (eg., Lind et al. 2017). As such, GBS is rapidly becoming the methodology of 

choice for aquaculture species (Robledo et al. 2017). Compared to SNP array based genotyping 

platforms, GBS requires significantly more quality control (QC) measures to ensure robust genotype 

data is produced. This is primarily a result of the molecular technique itself, which can introduce 

spurious and missing data when proper control and data filtering methods are not put in place. 
Aquaculture species can be particularly sensitive to these anomalies given their sometimes highly 

polymorphic and repetitive genome structures, a problem particularly observed for crustaceans and 

oysters (eg., Yu et al. 2015; Lal et al. 2016). 

Another method to reduce the cost of genotyping is through imputation of genotypes, where most 

of the animals can be genotyped with a low-cost, low-density SNP panel. The genotypes of these 

animals can be imputed up to high-density by using information on a smaller number of reference 

individuals (typically broodstock) genotyped with a larger high-density SNP panel that also captures 

the same SNP as represented on smaller arrays. Such imputed in-silico genotypes can then be used 

for GS and other genomic analyses. Such strategies have been shown to improve the accuracy of GS 

in livestock (Khatkar et al. 2012) and aquaculture species (Tsai et al. 2017).  

The number of individuals in the reference panel and number of markers in the low-density panel 

depends on the effective population size of the breeding stock and relationship between reference 
and test populations. A small effective population size, as present in many aquaculture stocks, will 

require smaller number of animals in the reference panel and can be imputed with high accuracy 

with smaller number of SNPs in the low density panel. Moreover, if all the contributing broodstock 

are genotyped with the high-density panel, the accuracy of imputation in the progeny, genotyped 

with even smaller SNP panel, could be quite high using a pedigree based imputation approach 

(Hickey et al. 2012). However, accurate imputation requires knowledge about the precise location 

of SNPs across the genome. For most aquaculture species genetic linkage maps and / or genome 

assemblies are in the early stages of development (Abdelrahman et al. 2017). 

 

NEXT-GENERATION PHENOTYPING 

Accurate phenotypes on commercially important traits are critical for any breeding program. 
This becomes especially challenging in aquaculture where large numbers of animals need to be 

recorded. Any error in the trait recording will reduce effective estimated heritability and hence 

realised genetic gain. High-throughput and precise phenotyping strategies are required to supply the 

large amount of trait data required for commercial scale GS applications. Within this framework, 

the objective is to increase the accuracy, precision and throughput of phenotypic assessment while 

reducing costs and minimising labour in an intensive production system. Today, phenotyping is 

quickly emerging as the major operational bottleneck limiting the power and speed of commercial 

GS programs (eg., Cobb et al. 2013). This problem is compounded in aquaculture where fecundity, 

progeny numbers from breeding pairs and variable survival rates create circumstances where 

individual phenotypes and traceability are nearly impossible to obtain without new methodologies. 

Furthermore, aquaculture does not have the benefit of standardised global phenotyping programs 

such as in livestock (eg., dairy cattle). Designing effective on-farm phenotyping strategies requires 
integrated solutions incorporating biologists, computer scientists, statisticians and engineers.  

More recently, automation, imaging and software developments have paved the way for many 

quantitative phenotyping studies. Within these developments, digital imaging has emerged as a 

cornerstone to capturing quantitative phenotypic information. Visual imaging has already allowed 

many production traits to be measured efficiently and accurately across different production 

industries including aquaculture (Cobb et al. 2013; Saberioon et al. 2016). For example, fish length 

has been estimated in Rainbow trout (Miranda and Romero 2017) and fish mass in Jade Perch 

(Viazzi et al. 2015) with very low residual errors using automated computer vision techniques. 

Furthermore, fish skin colour and pearl quality traits (eg., colour, lustre, completion), which 
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traditionally are recorded as categorical traits, can now be recorded as highly-reliable continuous 

quantitative traits based on UV-Vis spectrophotometry (eg., Kustrin and Morton 2015), which 

ultimately will improve GS predictions. Other emerging aquaculture phenotyping techniques are 

Near Infra Red (NIR) spectroscopy and Hyperspectral imaging (HIS) which combines spectroscopy 

with imaging technology. These techniques are able to quantify and evaluate the chemical (eg., fat, 
protein, moisture) and physical (eg., freshness, texture, colour) attributes of aquatic animals with 

relatively high accuracies of prediction (r > 0.8, see Liu et al. 2013; Saberioon et al. 2016). All of 

these machine vision systems (MVS) are able to extract and analyse quantitative information from 

digital images and have the ability to improve the accuracy of the phenotype by electronically 

analysing the data at a pixel level across spectral regions not always visible to the human eye. 

MVS usually consists of two components, the image acquisition system hardware (ie., UV-Vis, 

NIR and HIS) and data extraction system software. The latter typically incorporates computer based 

processing and optimised statistical methods and algorithms specific for the trait of interest, which 

is often the limiting factor in applying MVS. The development of advanced image analysis software 

including artificial neural network (ANN) algorithms based on machine learning approaches has 

been an important step forward in the development of analysis systems for automated MVS 

phenotyping (eg., Grys et al. 2016). 
 

 
 

Figure 2. (a) Oyster net image depicts one of the most difficult tested situations. (b) Oysters 

and net have low contrast from the background and lighting is variable. (c) Sliding windows 

CNNs correctly identified and measured oysters with >93% accuracy. 

 

Within our own research programs (ie., for marine shrimp and pearl oyster), machine learning 
algorithms have allowed precise inexpensive phenotyping across diverse production traits. For 

example, MVS systems have been used for pearl oyster growth data as well as pearl quality traits 

(eg., colour, size, lustre, completion). Although still in development, sliding window algorithms and 

Convolutional Neural Network (CNN) with rule-association based clustering yielded high accuracy 
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(exceeding 93%) in Object Character Recognition (OCR) for the oysters in nets within the full 

spectrum of commercial situations (Figure 2; P. Toole unpub. data). By definition, CNN learning 

algorithms get more precise when presented with more data. This supervised learning approach has 

been undertaken with developing methodologies on how to automate the entry of commercial data 

into a noSQL or graph-based database. 

 

IMPLEMENTING GENOMIC SELECTION ON FARM – LESSONS LEARNT 

Greatest immediate value from genomic selection is realised where genomic breeding values can 

be targeted against traits that drive economic returns to commercial farmers. Typically such traits 

are based on yields of harvested product. Although this sounds straightforward enough, practical 

limitations become immediately apparent in situations where traits under commercial grow-out 

conditions vary substantially from performance recording environments in often pathogen-free 

central nucleus breeding facilities (as used in specific pathogen free shrimp breeding programs for 

instance). For most aquaculture systems the Genotype by Environment (GxE) interactions are 

largely unknown and limit the value of GS training data if the genetic correlation between the central 

nucleus breeding values and on-farm breeding values is significantly less than unity (ie., < 0.6). 

Fortunately, genomic selection platforms allow for field data to be linked to nucleus broodstock 
through DNA derived genomic relationships and on-farm phenotyping. Secondly, genomic selection 

programs become increasingly more complex when harvest yields are determined by diverse 

genomes, as is the case of pearl oyster, with a host recipient seeded with the saibo of a donor. The 

need to have accurate breeding values for both host and donor oyster may eventually result in the 

need of separate breeding lines for both. Unknown interactions between host and donor further 

complicate the application of genomic selection if such epistatic effects are significantly greater than 

zero. In the case of pearl oyster the multi-factorial nature of pearl value adds to the complexity of 

setting up multi-trait genomic selection. Thirdly, and potentially of greatest commercial appeal for 

genomic selection is to build disease resistance into the genetic improvement program as has been 

highlighted above. Most central nucleus breeding programs are pathogen free and breeding decisions 

are based on family sib-selection, but commercial grow out environments are under constant disease 
challenge. It is unlikely that simply screening commercial stocks will yield data of sufficient quality 

to obtain genomic breeding values for disease resistance, since most disease field challenges are 

uncontrolled, and often resistance to multiple pathogens is of interest. One potential solution is to 

expose large mixed-family progeny cohorts to standardised disease challenge and ascertain survival 

statistics from pooled genotype data pre- and post-challenge. Finally, it is almost certain that for 

most genomic selection programs, there will be a need for ongoing phenotyping to update the 

training sets, and cross validate data collected under diverse commercial environments and to 

monitor unfavourable genetic correlated responses. 

Perhaps one of the greatest advantages offered by application of genomic selection over 

conventional breeding programs, is that large-scale multi-family data can be resolved retrospectively 

through genomic relationships. This has two immediate and highly significant advantages. Firstly, 

the predicted genetic response and realised inbreeding are far superior over the management of 
multiple single-family lines. Simple simulation shows that a cohort of 100 families in a single line 

outperforms the average of 100 single-family lines and creates long-term sustainable value for the 

industry (Khatkar et al. 2017b, these proceeding). Secondly, the enormous costs in establishing and 

maintaining single-family mating, spawning and rearing facilities are not required under a genomic 

selection program using a large scale multi-family breeding program. In many cases the commercial 

infrastructure for propagation is sufficient, and the cost saving outweighs the cost incurred for 

genotyping. 

In our experience, the transition from existing/traditional selection programs into a genomic 

selection program is challenging since most mating and infrastructure designs in central nucleus 
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breeding facilities do not capture the advantages offered by genomic selection programs. In the case 

where simple mass produced commercial stocks are produced, or where no genetic improvement 

programs are in place, imposing a genomic selection program is potentially straightforward. The 

main requirement is that the species is domesticated, since lifecycles need to be closed for ongoing 

selection and capture of genetic gain. Where source broodstock has been harvested from wild stock, 
the base generation needs to be adequately represented in the foundation stocks, and inclusion of 

“new” ongoing sampling of wild stocks limited. Once an adequate training data set against 

commercially well-defined breeding objectives has been completed, a robust test-set and validation 

phase is required to determine the accuracy of the genomic predictions. For easy to measure traits 

of moderate to high heritability, this is relatively easy to achieve; however, for most, if not all 

diseases, and complex multi-factorial traits, the development of adequate training data sets will 

remain a logistical challenge. Of practical concern is also how best to use available information. For 

most applications, genotyping potential candidates under selection remains a significant cost. The 

use of multi-stage selection, based on simple phenotypic selection as a primary selection, followed 

by genomic sampling (DNA sampling genotyping and tracking tagged individuals) and selection is 

likely the most cost-effective application of this technology (Khatkar et al. 2017b these proceeding). 

Other applications of genomic selection include the genomic management to minimize inbreeding 
by candidate selection and mate allocation to maximize genomic diversity. Genomic selection also 

offers an additional commercial benefit, to pre-screen females and males in the current generation 

for production of commercial animals, given that relatively few females are needed to generate the 

many millions of larvae for commercial production. The exact benefits of GS breeding programs 

will be dependent on the species and nature of the aquaculture enterprise.  
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SUMMARY 
Sexual maturation of Atlantic salmon, Salmo salar, is a complicated process that involves many 

variables that can act to activate and/or inhibit sexual development. Unwanted early onset of sexual 

maturation of Atlantic salmon is a challenge for the salmon aquaculture industry, as it has negative 

impacts on growth rate and product quality. Consequently, there has been a significant amount of 

research aiming to understand the biological mechanisms driving early salmon maturation. We 

present the description of a proposed animal trial, coupled with RNA-Seq based transcriptomics, 

designed to elucidate the earliest triggers which commit animals to sexual maturation. Our approach 

has two major components. First, animals will be photoperiod manipulated to artificially narrow the 

time window during which maturation is initiated. Tissue samples will be collected before, during 

and after the initiation event. The second component involves next generation sequencing to obtain 

detailed gene expression profiles. We will target the brain, pituitary and gonad tissues as the brain-

pituitary-gonad (BPG) axis is central to regulating sexual maturation. We anticipate our approach 
has the potential to both identify the genes involved, and open new approaches to control the timing 

of maturation in this important production species. 

 

INTRODUCTION 

Sexual maturation is the process by which organisms become mature and are capable of 

reproducing. In Atlantic salmon, the development of sexual maturation is complex, with extreme 

variability in age and size at maturation (Good and Davidson 2015). Moreover, the variability in 

timing of maturation is considered a significant problem to Atlantic salmon aquaculture, specifically 

Atlantic salmon that mature at an early age are more susceptible to opportunistic microbes (St-

Hilaire et al. 1998), exhibit decreased feed conversion efficiency and lower than normal growth rate 

(McClure et al. 2007), and have reduced product quality (Aksnes et al. 1986). In salmon industry, 
photoperiod management is the general practice to control animal maturation. The brain-pituitary-

gonad (BPG) axis is a key regulator of sexual development in vertebrates. Activation of neurons in 

the hypothalamus leads to production of gonadotropin releasing hormones (GnRH), which stimulate 

the release of gonadotropins such as follicle stimulating hormone (FSH) and luteinising hormone 

(LH) from the pituitary gland. In the gonads, gonadotropins induce the production of gonadal 

steroids (e.g., testosterone, estrogen and progesterone), which in turn affect various aspects of sex-

related physiology, secondary sexual characteristics and behaviour. Consequently, analysing 

transcriptomic changes in the BPG axis during the early stages of sexual maturation in Atlantic 

salmon could identify differentially expressed genes and gene co-expression networks operating to 

control the process. 

It is possible maturation is inhibited during the juvenile life stages until specific 
physiological/biochemical thresholds are attained. The thresholds include, for example, levels of 

adipose tissue (Rowe et al. 1991) and energy reserves (Kadri et al. 1996), which provide information 

about the optimal fitness and triggers a developmental switch towards maturation. These thresholds 

are influenced by environmental factors (Taranger et al. 2010) of which photoperiod is considered 

an essential determinant for initiating sexual maturation in teleosts including Atlantic salmon 
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(Bromage et al. 2001). Photoperiod effects facilitate optimal timing of conditions that favour growth 

and survival of young animals. Moreover, those physiological thresholds are genetically determined 

to some extent. For example, Barson et al. (2015) identified a single locus in the Atlantic salmon 

genome that is associated with age at maturity through a genome wide association study. The causal 

gene is likely to be the vestigial-like family member 3 gene (VGLL3), which has a role in adiposity, 
however its precise role is yet to be determined.   

The mechanisms underlying the onset of maturation are not understood in Atlantic salmon. This 

is primarily because it is difficult to sample animals as they commit to the maturation pathway. This 

project describes an animal experiment designed to identify the genes, gene expression differences 

and gene networks driving initiation of sexual maturation in Atlantic salmon. 

 

MATERIALS AND METHODS 

Experimental design. In order to maximise the probability of sampling animals during the earliest 

stages of the maturation process, well before the appearance of the phenotypic changes associated 

with maturing fish, the decision window for animals to initiate maturation should be as short as 

possible. Consequently animals will be managed via photoperiod manipulation to synchronise the 

timing of commitment into maturation. We will study a population of female broodstock that will 
be approximately 36 months post fertilization in April 2017 (~3.1 to 3.4 yrs at sampling). The 

proposed management of the animals and associated timeline is given in Fig.1. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1. Induction of maturation through photoperiod manipulation and suggested time 

points for tissue sampling and RNA isolation. 

 

Sampling. Activation of the brain-pituitary-gonad axis is central to reproductive development and 

prioritises the three target tissues for examination in the experiment. An expanded set of tissues 

(liver, spleen and muscle) may be harvested at sampling, however these three are the focus for RNA-

Seq data generation. In order to measure and control for variation between individuals, we propose 

to sample 4 fish at each of the T1 – T4 and the C1 time point (total of 20 fish). This will enable 

variation within tissues and time points to be evaluated. The maturation status of animals (leading 

up to the long day photoperiod initiation) is currently being monitored by ultrasound. Ultrasound 

data and update on the T1 samples will be presented at the conference. 
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Transcriptomic data generation and high-throughput sequencing. A total of 60 RNA libraries 

will be generated arising from 5 (time points) x 3 (tissues; brain, pituitary, ovary) x 4 (biological 

replicates). RNA-Seq libraries will be prepared using the Illumina TruSeq RNA Sample Preparation 

Kit. RNA-Seq libraries will be sequenced on four lanes on an Illumina HiSeq platform. Sequencing 

should produce (at least) 25 million individual 100-bp paired-end reads per library. RNA-Seq data 
will be processed and analysed for differential expression in response to the onset of maturation 

Fig.2.  

 

 
Figure 2. Flow chart of the pipeline for RNA-Seq (transcriptomic) data generation, 

identification of differentially expressed genes and subsequent gene co-expression networks 

analyses. 

 

RNA-Seq data processing and differential expression analysis.  Illumina raw reads will be 

checked using FastQC, a quality control tool for NGS data. Illumina universal and indexed adapters 

will be removed and data will be filtered based on quality using Trimmomatic software (Bolger et 
al. 2014). Illumina reads will be analysed according to the Tuxedo protocol (Trapnell et al. 2012). 

Briefly, the processed Illumina reads will be mapped separately against the salmon reference 

genome (Lien et al. 2016) using TopHat, a gapped/ spliced mapper, in order to generate alignment 
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(accepted_hits.bam) files. Then the Cufflinks suite will be used for differential expression. First 

transcripts will be assembled and quantified using cufflinks, then transcripts will be merged into a 

single transcriptome using cuffmerge and differential expression will be calculated using cuffdiff. 

The R package CummeRbund will be then used to explore the gene expression data and create 

volcano plots and heatmaps to visualise the differential expression. The list of differentially 
expressed genes (DEGs) will be analysed using GO and KEGG databases for pathway enrichment 

among the gene lists. 

  

Gene co-expression network analysis. Gene co-expression networks will be analysed as described 

in (Canovas et al. 2014). Briefly, in addition to the list of DEGs, tissue-specific genes (TSGs), genes 

harbouring SNPs reported to be associated with maturation traits and key regulators such as 

transcription factors (TF) will be used to generate and analyse gene co-expression networks. The 

DEGs, TSGs, key TF and SNP harbouring genes will be used as nodes and significant connections 

will be identified using the partial correlation and information theory (PCIT) algorithm (Watson-

Haigh et al. 2010) in the R environment. The PCIT ascertains the correlation between genes and 

network nodes after taking into account all other genes present in the dataset. The PCIT output will 

be viewed with Cytoscape, a software for analysis and visualisation of gene co-expression networks 
(Shannon et al. 2003). The highly interconnected gene clusters and significantly overrepresented 

Gene Ontology terms will be identified. Those clusters may be of biological significance to 

maturation in Atlantic salmon. The analysis flowchart is summarized in Fig.2.   

 

CONCLUSIONS 
Execution of the proposed experiment will generate a tissue collection and a large transcriptomic 

dataset that has not yet been obtained by the research community. The project is focused to 

investigate the biological mechanisms driving the onset of sexual development, with a view to 

developing novel approaches to assist management of unwanted early maturation within the Atlantic 

salmon industry. 
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SUMMARY 
The Pacific whiteleg shrimp, Litopenaeus vannamei, is the most farmed shrimp species globally. 

The development of high quality genomic resources including a dense array of genetic markers and 

genetic maps are pivotal to integrating genomic selection in this species. We describe the 

development and utility of an Illumina low-density single nucleotide polymorphism (SNP) array 

(Infinium ShrimpLD-24 v1.0) which is now commercially available. These resources set the 

foundation for investigating the architecture of complex traits and genomic selection.  

 

INTRODUCTION 

The whiteleg shrimp, Litopenaeus vannamei, is an intensively farmed species with global 

production exceeding 3 million tonnes annually (GLOBEFISH 2016). Current breeding programs 

for L. vannamei use traditional phenotypic selection to produce shrimp with enhanced growth and 
that exhibit-lowered susceptibility to various viral pathogens like Taura syndrome virus (TSV) and 

White spot syndrome virus (WSSV). While this traditional approach has been moderately successful 

in producing more productive shrimp strains, genetic progress using multi-trait phenotypic selection 

in L. vannamei is in some cases significantly impeded by an unfavourable genetic correlation 

between growth and disease, as well as a poor correlative response in susceptibility to multiple 

diseases (Gitterle et al. 2007, Huang et al. 2012, Gjedrem 2015). L. vannamei is an aquaculture 

species that would benefit substantially from the integration of genomic information into traditional 

breeding programs, particularly for disease and growth traits. Recent increased research effort has 

yielded a number of genome-wide SNP and genome map resources for L. vannamei (Ciobanu et al. 

2010, Du et al. 2010, Yu et al. 2015). However, none have yet to be made commercially available. 

Herein, we present a large transcriptome sequence reference assembly with utility for mining over 

26,662 high quality SNP markers and a commercially available Illumina Infinium ShrimpLD-24 
v1.0 genotyping array with 8,967 SNPs for L. vannamei.  

 

MATERIALS AND METHODS 

Sequencing, assembly and annotation 

To enable the identification and development of genome-wide Type I SNPs, high-quality total 

RNA was extracted from the pleopod tissue of 30 L. vannamei individuals (provided by Global Gen, 

Indonesia) using TRIZOL® Reagent (Life Technologies). Equimolar pooled RNA was converted to 

cDNA using the Mint cDNA synthesis kit (Evrogen) and sequenced using an Illumina GA-IIX at 76 

bp paired-end resulting in approximately 25 gigabases of paired-end EST sequence data (~10x 
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genome coverage). Sequences were screened using the software Seqclean 

(https://sourceforge.net/projects/seqclean/) and MOTHUR (Schloss et al. 2009). The cleaned 

sequence data was assembled using Velvet V1.0 (Zerbino et al. 2008) and OASES (Schulz et al. 

2012). Transcript assemblies were conducted at kmer lengths of k39, k41, k43, k45, k47, k49, k51 

and k53 before being clustered together at a 90% sequence identify threshold using the software 
CD-HIT (Li et al. 2006). Assembly of the cleaned-up sequence data produced 76,963 contigs (N50 

= 2,375 bp and average contig length = 1,429 bp).  

 

SNP Discovery and Filtering 

Genome-wide SNPs were identified within SAMTOOLs (Li et al. 2009). The varFilter option in 

SAMTOOLs was employed to filter SNPs, keeping only the most informative (i.e. minor allele 

frequency (MAF) >0.25, read depth >10 reads, minor allele reads >2, SNP mapping quality >25, 

flanking sequence quality >25). Any SNP identified within 50 bp of a candidate SNP was excluded 

to ensure a conservative flanking region for probe design. SNPs with the highest MAF and read 

depth were submitted for assay development analysis using Illumina’s Assay Design Tool (ADT) 

and included if their ADT score was greater than 0.7. To ensure no unintentional duplicate SNPs 

were included on the array, probes for each SNP were mapped to the initial assembly using 
NOVOCRAFT (Novocraft Technologies) and only the probes that mapped uniquely were included.  

 

Infinium Array Genotyping 

To validate the performance of the Illumina ShrimpLD-24 v1.0 genotyping array, 1,134 female 

and 193 male parents of families (produced by Global Gen, Indonesia) were genotyped. To ensure 

all genotype calls were genuine and to identify aberrant SNP and DNA samples, strict data integrity 

was undertaken in GenomeStudio V2011.1 following methods outlined in Jones et al. (2013). 

Genotype reproducibility between batches was tested using 52 replicate samples and 26 replicate 

SNPs. SNPs with a MAF greater than 0.01 were considered polymorphic. SNPs were investigated 

for conformation to Hardy-Weinberg Equilibrium (HWE) and Mendelian Inheritance (MI) patterns.  

To demonstrate the utility of the SNPs included on the Infinium ShrimpLD-24 v1.0 array, we 
generated a preliminary linkage map using 30 grand-maternal and 19 grand-paternal families 

containing 15 progeny on average. The linkage map was constructed in Carthagene V1.3 (de Givry 

et al. 2005) using an iterative buildfw, annealing, flips 6 and polish method until the best map were 

produced. Finally, genomic relationship matrixes (GRMs) were calculated with subsets of SNPs and 

the full array to determine the minimum number of SNPs required for genomic selection (GS). 

 

RESULTS AND DISCUSSION 

Sequencing and assembly of transcripts 

In total, over 25 Gb of sequence data (329 million raw EST sequences, 76 bp paired-end, ~15x 

genome coverage) was produced from an Illumina GA-IIx run. After sequence trimming, 19.7 Gb 

of high-quality data was retained. Assembly of remaining sequence data produced 76,963 contigs 

(N50 = 2,375 bp and the average contig length = 1,429 bp). The average read depth over all contigs 
was 210 reads with a median of 29. The assembled contig sequences and mapped raw reads have 

been submitted to GenBank (Accession number: SRP094129). This significant genomic resource 

enables the mining of over 17,000 additional SNPs not included within any commercial SNP array.  

 

SNP discovery and filtering 

From the assembled sequence dataset, 234,452 putative SNPs were identified in-silico before 

strict filtering parameters were applied. By filtering out all SNPs with a read depth less than 10 reads 

and a MAF of less than 0.25, a total of 26,662 high-quality SNPs were identified. A total of 1,142 

SNPs did not return ADT values > 0.7 and 1,006 SNPs did not map to unique contigs and were 
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removed. A further 7,003 SNPs were excluded due to being located within the flanking region of 

another SNP resulting in a final list of 9,447 high-value SNPs. Of these, the highest scoring 8,967 

SNPs [8,616 novel; and 351 developed in Ciobanu et al. (2010) and mapped in Du et al. (2010)] 

were incorporated into the Illumina ShrimpLD-24 v1.0 array enabling high throughput, cost 

effective and accurate genotyping. The average MAF and ADT score of these high-value SNPs was 
0.37 and 0.95 respectively. SNPs included on the custom array have been submitted to dbSNP on 

NCBI [ss2137297825-ss2137306471 (the current study); rs159816077-rs159831399 (Du et al. 

2010); and rs142459135-rs142459627 (Ciobanu et al. 2010)]. The ShrimpLD-24 v1.0 array is 

available at https://www.illumina.com/products/by-type/microarray-kits/infinium-shrimp-ld.html.  

 

Infinium array genotyping and validation 

In total, 1,327 individuals were genotyped on the ShrimpLD-24 v1.0 array. From these samples, 

70 (5.3%) individuals produced call rates of less than 90% and were removed from further analysis 

leaving 1,257 unique individuals to investigate SNP array performance. Analysis of the resulting 

genotypic data revealed that 6.0% of the SNPs did not amplify successfully (probe did not bind to 

the DNA) and 13.0% of the SNPs returned ambiguous clusters. From the resulting 7,259 SNPs, the 

SNP conversion and validation rates were 80.9% and 95.6% respectively (Table 1). Further filtering 
(i.e. excluding SNPs with a MAF < 0.01, SNP duplication, low call rates, or deviations from HWE 

or MI expectations) resulted in a final dataset of 6,379 high quality SNPs with an extremely high 

call rate (98.9%). The average minor allele frequency of these high-value SNPs was 0.37.  

 

Table 1: SNP array performance indicating the number of SNPs retained throughout filtering. 

 

SNP Exclusion Category # SNPs excluded #SNPs remaining 

Total Number of SNPs:   8,967 

Probe Didn't Bind 539   
Ambiguous Clusters 1169   

Number of SNPs producing genotypes (conversion rate):   7,259 (80.95%) 

Monomorphic 318   

Number Validated SNPs (validation rate):   6,941 (95.62%) 

HWE deviations (Heterozygous Excess / Deficit) 163   
Mendelian Inheritance Errors 399   

Number of SNPs with minimal errors:   6,379 (87.88%) 

Mendelian Inheritance Errors (< 0.01), or MAF < 0.01 90   
Duplicated SNPs 43   

Call rate < 90%, or Only 2 Clusters 190   

Number of SNPs with no errors:   6,056 (83.43%) 

 
A total of 52 replicate samples were included to evaluate array performance with concordance 

between replicate samples exceeding 99.9%. This provided strong support for highly reliable 

genotypic data across all validated SNPs. Furthermore, we reliably constructed a moderate density 

linkage map of 44 linkage groups containing 4,370 SNPs. These SNPs span 98.12% of the estimated 

genome size of 4619.3 cM at an average interval of 0.97 (map data to be revised and presented in 

subsequent publication). The number of markers placed within each linkage group ranged from 22 

– 169 and linkage group distances ranged from 24.9 – 159.5 cM. By assigning positional information 

to these SNPs, not only we demonstrate their utility, but improve their value within ongoing studies.  

In the current breeding program, 3,000 highly informative SNPs provided adequate power for 

accurate GRM calculations when compared to the 6,379 high quality filtered SNPs [Figure 1; 
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correlation value of r2 = 0.99; see Khatkar et al. 2017 (these proceedings) for GS analysis]. The 

minimum number of SNPs for GRM analysis is also supported in similar studies of closed farm 

populations including Atlantic Salmon (Tsai et al. 2015).  

 

 
 

Figure 1: GRM comparisons of different subsets of SNPs. 

 

The development and validation of a large EST-derived SNP resource is pivotal for ongoing 

research including identifying the major genes underlying important commercial traits, predicting 

production performance and developing genetic selective breeding programs for L. vannamei. If 

further SNPs are required these can be sourced from the SNP in-silico database. High SNP 
conversion rates are anticipated since the observed conversion rate within this array was > 80%.  
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SUMMARY 

Traditional genetic improvement programs for Pacific white-leg shrimp (Litopenaeus vannamei) 

rely on family selection to improve growth and disease resistance traits. DNA technologies can help 

in simplifying breeding schemes and increasing genetic gains particularly for complex or difficult to 
measure traits. Here we present the results of genome-wide association and whole genomic 

prediction analyses using average family allele frequencies and the family mean of a growth trait in a 

genetic resource population consisting 1,934 animals and 690 families of L. vannamei genotyped with 

8,967 genome-wide SNPs. After correcting for FDR, no significant SNPs were detected for growth. 

The accuracy of DGV in mirror prediction is much higher (0.65-0.69) as compared to forward 

prediction. A SNP that may be closely linked to the sex locus was identified with the female being the 

heterogametic sex. 

 

INTRODUCTION 

The Pacific white-leg shrimp (Litopenaeus vannamei) is an important aquaculture species and the 

most widely farmed shrimp globally. Traditional genetic improvement programs for L. vannamei rely 
on family selection to improve growth and disease resistance traits. Recent advances in high-

throughput genotyping and analytical methods can help to simplify breeding schemes and increase 

genetic gain, particularly for complex or difficult to measure traits. In particular the mapping of 

quantitative trait loci (QTL), or genes with large effect may have an immediate application in marker 

assisted selection (MAS). We conducted a genome-wide association analysis for growth and a sex 

associated trait in L. vannamei by genotyping a resource population with a purpose built genome 

wide SNP panel and explored the possibility of genomic selection in L. vannamei. 

 

MATERIALS AND METHODS 

We built a resource database for L. vannamei by genotyping a total of 1,934 samples with 8,967 

genome-wide SNPs on the Illumina Infinium ShrimpLD-24 v1.0 genotyping array (Jones et al. 2017 

- these proceedings). These included 1,134 female and 123 male parents along with 677 nauplii 
(larval shrimp) pools.  Following SNP quality control (QC), 5,893 SNPs were used for all analyses. 

An integrated linkage and LODE map was constructed using 631 progeny from 30 grand maternal 

and 19 grand paternal traced families (Jones et al 2017 - these proceedings). In total, 4,817 SNPs 

were mapped to 44 linkage groups that span a total of 4552.5 cM and cover an estimated 98.12% of 

the L. vannamei genome. The average interval, excluding intervals of 0 cM, was 2.67 cM. This map 

was utilised for all subsequent GWAS analyses and presenting results as Manhattan plots. 

For the GWAS, average family allele frequencies were used for 690 families. For an additional 

94 families, the genotype of the parents were available and for these the realised family-mean allele 

frequencies were computed as the mean of parental alleles. Out of these, based on the availability of 
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genotypic and phenotypic data, family-wise mean frequencies on 416 families were finally used for 

conducting SNP association with the traits.  

Phenotypic data on the family mean of 416 families on one growth trait G.d2All (Growth rate in 

grams per day for all tanks) were used for the current analyses.  The family mean value of G.d2All 

ranged from 0.16 to 0.45 with a mean and standard deviation of 0.31 and 0.05, respectively. The 
overall distribution of G.d2All (Figure 1a) indicated that this trait is normally distributed. Figure 1b 

shows batch-wise distribution.  In addition, individual genotypes of 1,963 animals and their sex-

status were analysed to detect any sex associated SNP association. 

 

 
       Batch ID 
Figure 1.  a) Overall distribution of the growth trait, G.d2All, presented as histogram. b) 

Batch-wise mean and distribution of the growth trait. The x axis represents batch id in a 

chronological order. 

 

Genome-wide association (GWA) analyses. The association analysis was conducted using the 

allele frequencies and mean phenotypic value of the traits for the families. A realized additive 

relationship matrix (K) (Endelman, 2011) was computed to calculate molecular kinship among all 

families using scaled mean allelic frequencies. The regression of the mean family phenotype on SNP 

genotypes were conducted by fitting the mean allele frequency as a covariate and adjusting for across 
family relationships using the following linear mixed model: 

y = Xβ + Zu + ε 

where y is a vector of the phenotypic value (trait), X is the incidence matrix incorporating mean and 

SNP allele frequency; β is a vector representing coefficients of the fixed effects, Z is an incidence 

matrix mapping phenotype records to families, u is a vector of polygenic genetic effects such that 
2var( ) g= su K , where K is the kinship matrix as described above, and ε is vector of residual 

random errors with
2var( ) e= sε I . The model was fitted using ASReml (Gilmour, Gogele, Cullis, 

& Thompson, 2009).   Genome-wide false discovery rate was computed using the q-value package 

in R (www.r-project.org). 
 

Accuracy of genomic prediction. Genomic selection uses information from all SNP to derive 

Direct Genomic Values (DGV). Accuracy of direct genomic values using SNP genotypes was 

investigated by dividing the data on 416 families into a training set and a validation/test set. Three 

different sets of training and test sets were investigated by using a different proportion of the families 

in validation and test sets viz. 1) 75 % in training and 25 % in test; 2) 67% in training and 33 % in 

test; 3) 50 % in training and 50 % in test. In forward prediction, the training set consisted of older 

http://www.r-project.org/
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families and the test set consisted of recent families. In the mirror prediction the families were 

allotted randomly to the training and the test sets across all batches.  

DGV were estimated using a best linear unbiased prediction (BLUP) method which used a Gaussian 

kernel prediction based on the Euclidean distance matrix for K where K is the kinship matrix as 

described above. This model is implemented in R package rrBLUP (Endelman, 2011).  The accuracy 
of DGV prediction was computed as the Pearson’s correlation coefficient between DGV and the 

mean phenotypic value of the families in the test set.  The bias was computed as the regression 

coefficient of DGV on the phenotypic value. 

 

RESULTS AND DISCUSSION 

Genome-wide association (GWA) analyses for growth.  Genome-wide associations expressed as 

log-P value for each marker are presented as a Manhattan plot in Figure 2. The unmapped SNPs are 

shown without any chromosome label on right hand side of the plot. There were 83 SNPs significant 

at P <0.05.  However, after correcting for FDR no significant SNPs were detected for growth. A few 

clusters of SNPs with P-value <0.001 were identified, however, due to the high FDR, these could 

only be considered as suggestive at best. Overall these GWAS results suggest that no gene of large 

effect regulates this growth trait. In order to detect significant SNPs of moderate or small effect, a 
substantially larger sample size and a higher SNP density would be required. 

 

 
Figure 2: Genome wide SNPs associations with growth trait, G.d2All, presented as 

Manhattan plot. 

 
Sex-associated SNPs. The genome-wide associations of SNPs with sex status of the animals 

presented in Figure 3 as Manhattan plot shows one very significant cluster of SNPs on linkage group 

44. The most significant SNP was associated with sex status of the animals with -log10 (p)=294 at 

the start of LG44. Minor allelic frequency for this SNP was 0.3 indicating that this is a common 

SNP. The strong association and frequency of males and females genotypes suggest that this SNP 

may be closely linked to the sex locus. Most females (95%) were heterozygous whereas most males 

(95%) were homozygous for the major allele of the most significant SNP. These results are in 

agreement with earlier studies which suggest that the sex in penaeid species is mainly genetic and 

determined by a WZ–ZZ chromosomal system where the female is the heterogametic sex (Staelens 

et al., 2008). This also raised possibility of monosex culture. Potentially homogametic females and 

males can be used as parents to yield sexually uniform heterogametic female offspring. Monosex 
sex culture in prawn has been reported more profitable as compared to rearing of mixed sex animals 

(Mohanakumaran Nair, Salin, Raju, & Sebastian, 2006).  In addition, monsex culture system can 

provide some protection to genetically superior stock. 
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Figure 3. Genome-wide associations for sex status of animals. 

 

Accuracy of genomic prediction of growth trait (G.d2All). The data on a growth trait G.d2All on 

416 families were analysed for this analysis. The mean of each family was obtained by pooling data 

across tanks as described in the methods section. The genotypic data on family-wise mean allelic 

frequencies for 4,686 QC SNPs were included in this analysis. 

The accuracy of DGV in mirror prediction (randomly dividing families in training and test set, Table 

1) is much higher (0.65-0.69) as compared to forward prediction (0.17-0.32) (Table 1). The 

prediction accuracies in the mirror prediction indicate the potential level of accuracies of genomic 

selection in shrimp. It seems that declining trend with a very large batch effect of G.d2All (Figure 

1b) hampered the accuracy of genomic prediction in forward prediction.  
Partitioning 50 % families in training and 50 % in test gave higher accuracy as compared to other 

partitions in forward prediction (Table 1). Inconsistent accuracies in different partition/sets indicate 

that the current sample size for genomic prediction is too small which is further complicated by the 

large batch effect confounded with families. 

 

Table 1. Accuracy of genomic prediction for a growth trait (G.d2All). 

% in training Number of families Mirror prediction Forward prediction 

Training Test Accuracy  Bias Accuracy Bias 

75 312 104 0.693 1.256 0.168 0.413 

67 277 139 0.632 1.039 0.279 0.757 

50 208 208 0.647 1.478 0.315 0.671 

 

CONCLUSION 

This study identified a major region associated with sex, and demonstrated that genomic 

selection has potential application with moderate number of SNPs, family average phenotypic 

records, and based on family DNA pool frequency data for commercially important traits in L. 

vannamei.  
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SUMMARY 

The genetic variance for SRS resistance in Atlantic salmon was estimated based on the challenge 

test performed in VESO (Norway). Data was obtained from 1881 juveniles tested at average weight 

of 38.7 grams. The juveniles belong to full and half sib mating structure comprising 100 full sib and 

100 and paternal half-sibs families. The challenge test, which lasted for 47 days, had a cumulative 
mortality of 82%. Two statistical models were used to estimate genetic parameters: test survival 

model (TS) and day of death (DD). Estimated heritabilities for the models differ from 0.23 (TS) to 

0.41 (DD). A tissue sample was taken from each juvenile for DNA extraction prior to Genotyping-

by-Sequencing (GBS) using PstI for the restriction digest. Subsequent filtering of GBS SNPs 

resulted in 22.917 SNPs (~23k) derived from the diploid region of the genome for further analysis. 

Using the Kinship using GBS with Depth adjustment (KGD) method to estimate a genomic 

relationship matrix (GRM) allowed a Genomic Best Linear Unbiased Prediction (GBLUP) 

evaluation of breeding value for SRS resistance. The results suggest that by using GBS with GBLUP 

in genotyped but non-challenged half and full sib candidates, both the accuracy and genetic gain, 

would increase 21-22% compared with conventional pedigree based BLUP methodology. 

 

INTRODUCTION 
Piscirickettsia salmonis (SRS) is caused by the intracellular Gram-negative 

bacterium, Piscirickettsia salmonis, first identified in Chile and later in Canada and several 

European countries (Corbeil and Crane 2005). SRS has been reported to infect a wide range of 

Salmonidae pink salmon (Oncorhynchus gorbuscha), chinook salmon (Oncorhynchus tshawytscha) 

and rainbow trout (Oncorhynchus mykiss) (Corbeil and Crane 2005). Although SRS has wide 

geographic range, it has caused larger outbreaks in South America than in Europe. 

SRS is epizootic in Chile and losses due to SRS are significant and have severely hit the Chilean 

Atlantic salmon and Coho salmon industry (Cvitanich et al. 1991). Mortality rates have been 

reported to be 30-90% among Coho salmon (Corbeil and Crane 2005). Treatments with antibiotic 

and vaccination have provided some advantage, but do not give control of the disease.  

In recent years there has been an increased focus on genetic improvement programs to select 
more robust and resistant individuals towards diseases. To date a number of studies have been 

conducted to determine additive genetic variation for disease resistance for both bacterial and virus 

diseases in Atlantic Salmon (Ødegård et al. 2011; Gjedrem et al. 2012). For the last ten years these 

studies have been supported by extensive genomic research including the use of genomic selection 

(GS). Studies in Atlantic salmon breeding have shown that genetic gain and accuracy can be 

improved substantially with GS, even with sparse SNPs (4K) (Sonesson and Meuwissen 2009; 

Villanueva et al. 2011; Ødegård et al. 2014). Most of the genotyping in salmon breeding has used 

SNP-chips, however, more recently high throughput, low cost GBS genotyping and analysis 

methods have been developed (Elshire et al. 2011; Dodds et al. 2015). These methods offer several 

advantages albeit at the expense of more complicated bioinformatics analysis.  

 The aim of this study was to estimate genetic variance of salmon towards SRS resistance. GBS 

together with KGD analysis were utilized for SNP filtering and later GBLUP was used to estimate 
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breeding values for both challenged and non-challenged test groups, which were compared with 

conventional pedigree based BLUP methodology. 

 

MATERIALS AND METHODS  

Animals for both challenged and non-challenged test groups were chosen from Stofnfiskur 

breeding population and hatched in November 2012, year class 2012-2 (YC12-2). A nested mating 

design was used in which, one male was used to fertilize eggs from two females, creating groups of 

full-sibs and paternal half-sibs. In total, 100 females were mated with 50 males. Each family was 

reared in a one cubic meter tank until the fish were tagged with a PITtag. The average tagging weight 

was 15.8 (SD = 6.6) g. After tagging the fish were pooled and reared in a single communal tank for 

6 months. The challenge group was then moved to VESO in Norway. In total, 2.400 fish (20 fish 

per family) were transported in bags from Stofnfiskur to VESO Vikan by plane. The fish were kept 

in two separate tanks until challenge testing. After 4 weeks of acclimatization at 12°C in freshwater, 

the fish were acclimatized to 15°C freshwater for one week before the challenge. The challenge 

weight was 38.7 (SD = 9.7) g. Out of 2.400 fish, 400 were used as challenge carriers (shedders) and 

marked by adipose fin. The cohabitation challenge was performed in one tank by injecting the 

shedder fish with Piscirickettsia salmonis and adding these fish directly to the same tank as the 

tested fish. Mortality was observed throughout a 47-day period after challenge.  

In January 2016, 2.846 fish from were selected from YC12-2 as a non-challenged test group and 

future breeding candidates in the Stofnfiskurs breeding nucleus. Fin clips were taken from both 

challenged and non-challenged test groups and stored in 96 % ethanol for DNA analyzing. The tissue 

samples were sent to AgResearch, New Zealand, for DNA extraction and GBS using PstI and the 

protocol and subsequent processing was as described in Dodds et al. (2015) except that 190 bar-

coded samples were sequenced per lane.  

GBLUP and BLUP were fitted in mixed linear models using DMU 6, software package for 

animal breeding (Madsen and Jensen 2013). Two models were used for the analysis. Model one was 

Test survival (TS) where the individuals are scored 0 if it dies within challenge test time and 1 

otherwise. The second model was Day of death (DD) where individuals were scored at the day of 

death in the challenge ranging from day 1- 47 and individuals which survive the challenge test were 

considered censored. Non-challenged individuals were given missing values. The model is as 

follows: y = Xb + Za + e, where y is the vector of the survivals score either as 0/1 or day of death, 

and b is a vector of fixed effects, which included sex and rearing tanks. The vector a is a vector of 

random additive genetic effects of individual animals. KGD method was used to estimate a GRM in 

GBLUP and pedigree information was used in BLUP.  

 

RESULTS AND DISCUSSION 

The mean survival at day 47 of the SRS disease challenge test was 18% and ranged from 0 to 60% 

(Figure 1). A total of 29.671putative SNPs were identified using GBS methodology. After filtering 

by using the KGD method, the 22.917 remaining SNPs were used to create the GRM for GBLUP 

evaluation.  

Running the TS and DD models in DMU 6 gave in both cases higher estimate of heritability and 

accuracy of the estimated value compared to conventional pedigree based BLUP methodology (see 
Table 1).  
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Table 1.  The estimates of genetic parameters. BLUP refers to pedigree based BLUP 

methodology and GBLUP refers to genomic based BLUP methodology.   

BLUP methods Models h2 Accuracy in 

challenged group 

Accuracy in non- 

challenged group 

Increased 

accuracy 

BLUP DD 0.35 0.71 0.56 
 

GBLUP DD 0.41 0.82 0.68 21% 

BLUP TS 0.23 0.69 0.54 
 

GBLUP TS 0.26 0.76 0.66 22% 

 

 
  

Figure 1. On the left is the Kaplan–Meier mortality curves for 47 days of challenge, on the right is 

the variation among 100 families tested.  

This study shows a substantial increase in accuracy by applying GBS with GBLUP where the KGD 

method is applied to create the GRM. This is in line with other studies in salmon breeding. Ødegård 

et al. (2014) showed that a considerable improvement can be gained even from sparse SNPs (4k) 

but increased accuracy starts to converge rapidly from 22k to 220k, confirming the 23k SNPs from 

this present study would be sufficient to utilize the full potential of GBLUP.  

Estimated heritabilities indicate that there is moderate additive genetic variance of SRS 

resistance. Moreover, heritability of DD model was higher than estimated in the TS model for both 

BLUP and GBLUP (Table 1). However, the estimates from the two models give different results in 

heritability. It should be noted that traits are defined very differently in these two models. These 

heritability estimates are similar to Yáñez et al. (2013). In both models GBLUP gives an increased 

accuracy and heritability compared to pedigree based BLUP methodology. Where GRM is created 
with SNPs, such as in GBLUP, random deviations from relationships caused by Mendelian sampling 

terms can be quantified more accurately. 

In salmon, breeding for SRS disease resistance is difficult because breeding companies don’t use 

infected challenged fish for breeding. Instead non-challenged sibs are used as breeding candidates 

(sib testing). Such evaluation has many drawbacks in relation to the amount of genetic progress that 

can be realized within a breeding program when depending only on pedigree information to predict 

breeding values by using conventional BLUP. When the predicted breeding values are not based on 

an individual’s own performance, selected accuracy would be lower.  Moreover, variation of 

Mendelian sampling effects within a family cannot be used to select superior animals within the best 

family. 

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan-Meier-estimate S
^

t  with CI

day of challenges

S
ur

v

Survival among families

Famillies 1 - 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5



Aquaculture 

128 

Using genomic information, such as GBLUP, increases the importance of the Mendelian 

sampling term, or the within family variance, and reduces the importance of family compared to 

traditional BLUP valuation. Thus, breeding programs for traits with low heritability and relatively 

few records per trait measured, such as carcass and disease resistance, are those which can benefit 

from GS. 
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SUMMARY 

Shrimp farming is a highly valuable aquaculture industry globally. Domesticated and selectively 

bred stocks of Litopenaeus vannamei are farmed throughout Asia and South America, however, 

selective breeding in Australian farmed shrimp (Penaeus monodon) is currently severely 

underutilised. Disease is the biggest threat to shrimp production globally and selective breeding is 

thought to be a more effective long term disease management strategy. Breeding resistant shrimp 

has been accomplished for very few diseases using laboratory disease challenge tests, sib-selection 
and conventional breeding methodologies. Genomic selection offers the potential to significantly 

advance shrimp selective breeding particularly for complex traits like disease resistance through 

increased accuracy and selection intensity. In Australia, a breeding program is currently underway 

developing and applying new and improved methods for selection for disease resistance in shrimp.  

 

INTRODUCTION 

Selective breeding plays an important role in increasing farming productivity and helping to meet 

the increasing global demand for animal protein. Aquaculture is the fastest growing primary 

production industry, yet less than 10% of world aquaculture production is based on selectively bred 

and genetically improved stocks (Gjedrem et al. 2012). Within the global aquaculture industry, 

farming of penaeid shrimp is a highly valuable sector, with most production taking place in Asia 
and South America using the species Litopenaeus vannamei (Pacific White Shrimp). Domesticated 

specific pathogen free (SPF) and recently selectively bred populations have been developed for this 

species, largely in response to the widespread disease problems the industry has faced and the 

catastrophic losses that result when a disease manifests in a new region (Lightner 2005). However, 

in the Australian shrimp farming context, the major species farmed is Penaeus monodon (Black 

Tiger Shrimp) and production is based nearly exclusively on unimproved seed derived from wild 

caught broodstock (although there are smaller scale domestication and breeding programs currently 

being developed). 

Disease is perhaps the most significant issue for shrimp production globally (Stentiford et al. 

2012) and until recently Australia has been fortunate to remain free of the major pathogens that have 

resulted in catastrophic production losses in Asia and Latin America. Over the last decade losses 

due to disease are thought to have cost the industry at least $20bn (Shinn 2016). For example, White 
Spot Syndrome Virus (WSSV) is estimated to have cost at least $8bn, however, some estimates 

make it closer to $15bn since its emergence in South East Asia in the early 1990’s (Lightner et al. 

2012). Acute Hepatopancreatic Necrosis Disease (AHPND), a more recent disease impacting shrimp 

farming, is estimated to cause losses in production in the Thai shrimp industry alone between $1.7 

and $2bn annually (Shinn 2016).  

In December 2016 the first outbreak of WSSV was detected in Australia in South East 

Queensland and has had a significant immediate impact on production, brought about uncertain 

consequences for future production in the area, as well as having ramifications to seafood products 

in Australia more broadly. Additionally, an AHPND-like disease was detected in 2 Australian 
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shrimp farms in early 2016, which was found to be caused from a similar acting, but different 

pathogenic strain of bacteria than that found in Asia (Nick Moody, CSIRO pers. comm.). These 

examples highlight how exotic diseases pose a great threat to Australian shrimp farming; however, 

Australian farms are also often exposed to endemic pathogens, such as gill-associated virus (GAV), 

that have a less devastating, but nonetheless persistent impact on production (Munro et al. 2011). 
This is because these viruses are highly prevalent in wild and farmed stocks; prevalence of GAV for 

example approaches 100% in some cases of P. monodon populations (Walker & Winton 2010). 

As shrimp lack an adaptive immune system, common disease management strategies such as 

vaccination are not an option for shrimp. The most common management strategy used in regions 

where highly pathogenic diseases are present is the use of specific pathogen free (SPF) stocks that 

are tested and certified free of major disease causing pathogens. Whilst not selected for resistance 

or tolerance to the pathogen, SPF shrimp have allowed the industry to operate in regions where 

pathogens are present through the stocking of “clean” shrimp into ponds. However, SPF shrimp are 

still naïve to infection with massive losses due to disease continuing to occur and there is evidence 

they perform poorly in the presence of disease compared to wild stocks (Moss et al. 2001). 

Improving disease resistance through selective breeding is seen to be a more sustainable, long term 

strategy for the industry and as a result instigation of selective breeding programs for shrimp that 
capitalise on additive genetic variability in disease tolerance within farmed populations are 

underway.  

 

MEASURING DISEASE RESISTANCE  

The ability to accurately and reliably measure a trait under selection is core to any breeding 

program. For shrimp disease, measuring resistance is largely based on survival, either on-farm 

during grow out, or in laboratory challenge tests. Laboratory challenges tests are most commonly 

used because inoculation of the pathogen and environmental conditions can be more easily 

controlled. Challenge methods in shrimp include; injection of the pathogen into abdominal muscle, 

ingestion of infected material and waterborne exposure. Breeding programs that utilize disease 

challenge tests to measure disease resistance are based on family selection. Here a subset of progeny 
from a family are removed from the core breeding nucleus facilities and disease challenged. Family 

survival estimates are then calculated after a specified amount of time post inoculation and families 

are ranked on their survival performance. Families to perpetuate into the breeding program are then 

selected based on the family’s performance. This approach means the breeding candidates 

themselves are never exposed to the disease, but rather chosen based on the estimated breeding 

values (EBV) of their disease challenged sibs (i.e. sib selection). This allows breeding companies to 

not only improve disease tolerance through accumulation of additive genetic variability, but practice 

SPF management strategies. One disadvantage of the approach, however, is that family selection 

only utilises the between-family genetic variance within a population and ignores 50% of the 

available genetic variance that is represented within-family. This, coupled with the phenotypic 

performance of the selected candidate having never been evaluated can lead to inaccuracies in EBV, 

reduced selection intensity, and therefore can lower the genetic gains realised. 
Another characteristic of shrimp disease challenge tests is that resistance is often only measured 

as a single trait, survival. However, survivorship is complex, can be influenced by many non-disease 

related factors and may not manifest predominantly, or entirely through survivorship, instead 

causing issues with growth or deformities (e.g. runt deformity syndrome caused by Infectious 

Hypodermal Hematopoietic Necrosis Virus (Lightner 1999)). Therefore, alternative methods such 

as measuring viral load, or presence of disease associated genetic markers, may be useful in 

evaluating disease resistance.  

A large assumption made when using controlled challenge tests in breeding programs is that 

resistance measured during challenge testing accurately reflects resistance under grow out farm 
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conditions. This is largely untested for shrimp breeding programs. If there are differences then 

significant genotype-by-environment (GxE) interactions may be occurring which will reduce the 

efficiency of selection and genetic gains realised. The only known correlation published on this issue 

in shrimp was a phenotypic correlation between TSV challenge survival and commercial pond 

survival in L. vannamei (Moss et al. 2005). Here moderate positive correlations were reported (0.55 
and 0.68), however, phenotypic correlations are insubstantial as there is no inclusion of the genetic 

effects; this information is still lacking in shrimp.   

 

LESSONS FROM OVERSEAS GENETIC IMPROVEMENT PROGRAMS  

There are few published studies that have investigated the quantitative genetics of disease 

resistance in shrimp. However, information on the implementation and success of disease resistance 

traits being incorporated into breeding programs is variable and very limited. Nearly all work has 

been carried out on L. vannamei and the most well-known success story in shrimp has been selecting 

L. vannamei for resistance against Taura Syndrome Virus (TSV). This trait has been incorporated 

in several breeding programs (Cock et al. 2009), as it has high phenotypic variation (14.6 - 93.8%) 

and genetic variance is moderate to high; heritability estimates across the different breeding 

programs range between 0.2 – 0.4 (Argue et al. 2002, Odegard et al. 2011). Response to selection 
has also been very good, with survival rates shown to increase by at least 18.4% per generation 

(Argue et al. 2002, White et al. 2002). Unfortunately, TSV disease resistance was found to be 

negatively correlated with growth (Argue et al. 2002), therefore both growth and resistance to TSV 

were incorporated in the breeding programs as separate traits selected for in individual breeding 

lines (Argue et al. 2002, Odegard et al. 2011). Despite this impediment, selecting for TSV resistance 

has been so successful that TSV resistant shrimp are widely used throughout the shrimp farming 

industry and TSV is no longer considered a major threat to production.  

Conversely, breeding for resistance to WSSV has had limited success. This can in part be due to 

the highly virulent nature of this virus and very small genetic variation often observed both under 

field and controlled challenge conditions (>90 % mortality is commonly found). Estimates of 

heritability for resistance to WSSV under controlled challenge conditions were found to be <0.1 
(Gitterle et al. 2005). Similar to TSV, resistance to WSSV was also negatively correlated (- 0.55 & 

- 0.64) with harvest weight (Gitterle et al. 2005). More recently, however, there have been reports 

of significant improvement of resistance to WSSV: For example 3 families of L. vannamei from a 

Panamanian breeding program had significantly higher survival compared to the unselected “Kona” 

shrimp breeding line (Cuellar-Anjel et al. 2011). It is difficult to get a full appreciation of how 

successful breeding for resistance to WSSV has been, most likely due to the commercial sensitivities 

of genetically improved stocks; however, this virus continues to be a major problem for shrimp 

farming worldwide which would suggest breeding for improved resistance has had little success so 

far. 

 

OPPORTUNITIES FOR AUSTRALIAN SHRIMP FARMING 

Australia has been somewhat fortunate that until recently it has been free of many of the highly 
virulent and devastating diseases that have occurred in overseas shrimp farms. The only known 

example in Australia whereby a breeding program has directly incorporated disease testing was via 

viral screening of wild and domesticated P. monodon broodstock to identify individuals with natural 

high GAV loads that were then removed from the spawning group (Coman et al. 2013). It is 

unknown how effective this strategy was in reducing the impact of GAV on production and there is 

no evidence that the approach leads to significant accumulation of advantageous additive genetic 

variance for GAV tolerance. Moving forward, GAV will likely continue to be an important virus 

affecting Australian shrimp farms, as this virus is highly prevalent in the wild and in shrimp farms.  
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Conventional methods of quantitative genetics used so far for shrimp breeding programs, while 

successful at improving growth rate, have been less effective for improving disease resistance as 

evidenced by an absence of resistant strains to most virulent diseases. Possibly this lack of progress 

is a consequence of the selection models used (i.e. sib selection) and/or laboratory challenge tests 

which don’t accurately estimate disease additive genetic variation as it manifests itself on-farm 
under complex environmental interactions. Genomic selection, however, offers the potential to 

increase the accuracy and selection intensity of complex traits like disease resistance (Castillo-Juarez 

et al. 2015), along with more readily accessible integration of on-farm performance. This is because 

genomic selection allows individual phenotype data from both laboratory and on-farm performance 

trials to be linked with predictive genome-wide markers which can then be applied to select 

unchallenged individuals through genotyping only (i.e. thereby maintaining SPF status in the 

breeding nucleus). Genomic selection under this model would increase genetic gain as it utilizes 

both between and within-family variance and is able to estimate individual EBVs to use for selection 

of breeding candidates. Furthermore, the identification of SNPs associated with disease resistance 

may also be applied through quantitative trait loci (QTL) and marker assisted selection. All of this 

combined should allow for greater accuracy of genetic merit estimates, increased selection intensity 

and hence genetic gains for disease resistance traits (Castillo-Juarez et al. 2015). Developing and 
applying these new technologies are currently underway for P. monodon in a developing breeding 

program in Australia.   
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SUMMARY 

Ginfo is a large-scale genotyping project to increase the size of the Australian dairy reference 

population. In total, there were 32,386 cows from 103 herds with excellent records located across 
Australia’s main dairy regions. The increase in the reliabilities of breeding values for young 

genomic bulls (without daughters) was between 5% and 7% in Holsteins and between 2% and 3% 

in Jerseys. For example, in Holsteins, the reliability of daughter fertility breeding values increased 

from 41% to 46%. Incorporating genotypes from herds selected on the quality of their phenotypes 

has increased the reliability of genomic breeding values. 

 

INTRODUCTION 

Phenotypic data underpins the calculation of both traditional and genomic breeding values. A 

reference population of genotyped individuals with phenotypes is required to calculate 

associations between genetic markers and phenotypes and form a genomic prediction equation. 

Without sufficient data, the relationship between the reference population and the general 
population weakens and so does the relevance of the genomic prediction equations.   

In Australia, the male reference populations comprise around 4000 Holsteins and 1000 Jerseys. 

Previous research investments have already resulted in female populations of approximately 

10,000 Holstein 4000 Jersey females being added to the national reference populations of the 

respective breeds. These data were from projects that focused on cows with large quantities of 

phenotypes. Instead, the aim of Ginfo was to select herds that had high quality phenotypes. 

The aim of this study was to quantify the change in reliability of genomic breeding values for 

Australian breeding values through adding the Ginfo population to the reference population. 

 

MATERIALS AND METHODS 

Herd Selection. To qualify for the reference population, known as Ginfo (Genomic Information 

Nucleus), Australian dairy herds were scored according to the quality of the records contributing 
to the national database using an index that rewards cows with fertility, conformation, survival, 

workability, somatic cell count and milk yield data; in the scoring system, the maximum score was 

25 and having complete fertility phenotypes can make up 10 of these points. The highest scoring 

herds (n=103) were invited to participate in the project. 

The 103 Ginfo herds have been contributing records on 32,386 daughters of 2,917 bulls to the 

Ginfo project. Tail hair samples were collected from all the cows in the recruited herds for 

genotyping and data on milk production traits, somatic cell count, mating, pregnancy and calving 

data for multiple parities were provided to DataGene. First parity cows from Ginfo herds were also 

type classified by Holstein Australia. The herds were from across Australia’s main dairy regions 
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with an intention to proportionally represent dairy cow populations. For example, two thirds of the 

herds were in Victoria aligning with the distribution of dairy cows across Australia. 

Genotyping by sequencing (GBS). Genotyping by sequencing (GBS) was used to procure 

genotypes. The GBS methodology used has previously been described by Chamberlain et al. 

(2015). Briefly, probes were designed to the flanking sequencing of 9,102 target SNP, of which 
5,119 were part of the Illumina Infinium Bovine SNP50 beadchip. The HiSeq2000 and HiSeq3000 

genome analyser platforms using single read chemistry were used for sequencing.  

Quality control steps of sequence reads were as follows: 1) poor quality bases (qscore <20) 

were removed using scripts developed in house; 2) alignment was with BWA v0.7.7; 3) Samtools 

v0.1.19 (Li et al., 2009) mpileup tool was used to create vcf files and allele counts at the 9,102 

target SNPs and 4) Allele counts were used to call genotypes, where the total count was >=6 and a 

heterozygote had a minor allele frequency > 0.167. The genotypes in UMD 3.1 forward format 

were converted to Illumina’s top-top format.  The next step was imputation of GBS genotypes to 

those used by DataGene in routine genomic evaluations (Nieuwhof et al., 2010).  

All animals were imputed to a 50K evaluation panel using Fimpute (Sargolzaei et al., 2014).  

The Ginfo project also enhanced the DataGene evaluation SNP panel to include new variants 

which were identified by whole genome sequence (WGS) analysis which were found to be located 
near new QTLs for the traits within the evaluation.  These WGS variants were added to the 

DataGene evaluation panel through the Ginfo GBS genotypes and all other animals were imputed 

for these WGS SNPs. 

Impact of Ginfo population on reliability of genomic selection. The Ginfo cows and their 

associated phenotypes were added to the genomic reference population. In April 2016, when our 

comparisons were done, the existing reference populations comprised 4,172 bulls and 10,254 cows 

for Holsteins and 1,097 bulls and 4,232 cows for Jerseys. The cows that were already included in 

the reference population were selected using similar selection criteria for phenotype quality, as 

described already for Ginfo. 

Reliabilities were estimated for all traits evaluated by DataGene using software developed in 

house for genomic selection (Nieuwhof et al., 2010) implementing the mixed model equations for 
genomic selection as described by Garrick (2007). The reliabilities of genomic bulls with no 

daughters were compared when estimated with and without Ginfo cows in the reference 

population. 

 

RESULTS AND DISCUSSION 

The number of Ginfo cows added to the reference population was 17,108 and 3,347 for 

Holsteins and Jerseys respectively. At the time the Ginfo population was added to the Australian 

national reference population, they represented 54% and 39% of the Holstein and Jersey 

populations respectively.  

On average the increase in reliability from adding Ginfo to the reference population was 5.8% 

and 2.5% for young genotyped Holstein and Jersey bulls respectively (Figure 1). The impact 

varied by trait, with gains of between 5% and 7% for Holsteins and between 2% and 3% for 
Jerseys. For example, in Holsteins, the reliability of daughter fertility increased from 41% to 46%, 

while overall type increased from 42% to 49%. This is similar to approximations derived by 

applying the equation of Daetwyler et al. (2008) to predict the reliability of genomic prediction for 

varying reference population sizes. The scores for herds that are in Ginfo are on average higher for 

Holsteins than Jerseys, which is a consequence of the relative population sizes. This could have 

partly contributed to the smaller increase in reliability for Jerseys compared to Holsteins. 

One of the main questions in the design of future reference populations is whether to focus on 

increasing reliabilities through genotyped bulls with large progeny groups, or on genotyped cows 

with their own phenotypes (Gonzalez-Recio et al., 2014; Chesnais et al., 2016). Another 
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alternative, discussed by Plieschke et al. (2016) is genotyping and phenotyping a fixed number of 

first crop daughters, as this increases the reliability of the sire. The general conclusions of 

Chesnais et al. (2016) are that when phenotypes are inexpensive and easy to measure on a large 

scale for key traits of interest, bull reference populations are better, while for expensive or difficult 

to measure traits, it is preferable to have a reference population of genotyped females. However, 
there is also a case for female reference populations, where the usual source of new phenotypes 

(i.e. the number of progeny-tested bulls) is in decline. In Australia, the number of bulls with 

sufficient daughters with publishable proofs for production traits by year of birth has gradually 

been declining, by around 60 per year.  Consequently, a genomic reference population that does 

not solely rely on progeny-tested sires is important. When large male reference populations are 

already available, the impact of adding females on reliabilities is comparatively small; so the value 

for these sorts of reference populations is more around the new traits that can be measured in 

dedicated reference populations. 

 

 
 

Figure 1. Reliabilities of traits with and without the Ginfo population 
 

The Ginfo reference population is projected to encompass approximately 60,000 milking 

animals in 200 herds to reflect the genetics, location and farm systems in the broader Australian 

dairy population. Ginfo is anticipated to become a primary source for the Australian industry’s 

ongoing evaluation of the current suite of genomic Breeding Values. In addition we are also 

investigating the collection of emerging and new phenotypes of interest to farmers particularly for 

animal health traits and traits associated with resource availability and efficiency (Abdelsayed et 

al., 2017). 
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One of the philosophies in establishing Ginfo was to develop relationships with Australian 

dairy farmers who have a shared interest in the value of high quality phenotypes and genotype 

results. Although the model we have used to date included all genotyping costs being covered 

through research funding, we envisage that this will change as we move to a model where farmers 

pay for a much larger proportion of the genotyping cost themselves. While the genotyping results 
(breeding values) of lactating cows may have limited use for decision making, there is 

considerable value in genotyping results for heifers, most notably in selecting the best 

replacements (Pryce and Hayes, 2012 Calus et al, 2013). Therefore, the investment strategy needs 

to balance the benefits to the farmer versus the benefits to the broader dairy industry. 
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SUMMARY 

The effects of experiencing difficulty at birth on the performance of animals as adult were 

estimated using data of Holstein cows that calved over two decades. Calves that experienced 

difficulty at birth showed a reduced fertility and fitness relative to those born without difficulty as 

expressed by late calving for the first time, longer calving interval and lowered survival from first 
to second lactation. However, experiencing difficulty at birth did not reduce the milk yield of the 

animal as an adult. Although the effect of birth difficulty on performance of the animal as an adult 

is small, relative to subsequent performance of cows that experienced difficulty themselves it 

should serve as an additional incentive to improve calving performance and management of calves 

born with difficulty.      

 

INTRODUCTION 

Calving is a key event in any cattle production operation and is essential for the sustainability 

of the herd. In dairy industries where statistics are available, phenotypic dystocia rates appear to 

have increased (Mee, 2008) which means that the economic and welfare implication of calving 

difficulty (CD) is also increasing. A number of studies have quantified the effect of CD on the 
productivity of cows that experienced difficulty. For example, Dematawewa and Berger (1997) 

estimated that the financial cost of dystocia to be 41% due to production losses, 31% due to poor 

fertility and 25% due to cow and calf morbidity and mortality. Several others have reported that 

the effect of CD on subsequent milk yield of cows is insignificant (Rajala and Gröhn, 1998; 

McClintock, 2004). On the other hand, the effect of difficult birth on the performance of the calf 

over its lifetime is not well documented, although a few studies exist (e.g. Eaglen et al. 2011). 

Evidence from other mammalian species including cattle (Lombard et al., 2007, Dwyer, 2008), 

shows that experiencing difficulty at birth could affect the health and development of offspring. 

The study by Eaglen et al. (2011) based on data from the UK, showed that the production and 

fertility of calves born following a difficult birth is reduced. Eaglen et al. (2011) observed that the 

milk yield of cows that experienced extreme difficulty at birth with veterinary assistance amounted 

to only 91% of those born without any difficulty. They also showed that calves that experienced 
difficulty at birth were less fertile as adults, but their estimates were associated with large standard 

errors (Eaglen et al. 2011).  

Quantifying the effect of birth difficulty is important because it can serve as an additional 

incentive to adopt both genetic and non-genetic approaches to improve calving performance. 

Therefore the aim of this study is to estimate the effect of experiencing difficulty at birth on 

performance traits such as age at first calving, milk yield, fertility and survival in Holstein cows.  

 

MATERIALS AND METHODS 

Data on calving difficulty (CD) and other performance traits including fitness and milk yield 

traits of cows that calved between 1995 and 2016 were extracted from the national dairy genetics 

database operated by DataGene Ltd. First, Holstein cows with valid CD (i.e. single female) and 
service sire and date of calving were selected from data extracted for genetic evaluations of CD. 
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Then, from the pedigree database, where all births are recorded, animals that were born on the 

same date, from the same cow (dam) and mating bull (sires) were selected. For female calves these 

data were then matched based on their national identification number to their performance as 

adults. The age at first calving for the animals selected for this study varied from 18 to 40 months. 

The number of cows with data for age at first calving (AFC), survival (Surv), calving interval (CI) 
and 305-day milk yield (305 MY) by level of birth difficulty is shown in Table 1. 

 Four levels of difficulty, as suggested by McClintock (2004), were defined. The effect of level 

of birth difficulty (i.e. 4 levels) on AFC, CI, Surv and 305 MY was assessed by fitting a model 

including herd-year-season of calving as an adult, month and year of birth as a calf and age at first 

calving for all traits except AFC. For AFC, herd-year-season of birth instead of calving was fitted. 

The effect of level of CD on milk yield traits was also estimated using test-day milk yields in the 

first 150-day of lactation. For this analysis the fixed effects fitted were herd-test date and year-

season of calving, instead of herd-year-season. In the test-day model the interaction of days in 

milk (DIM) as a covariate with the 4 levels of CD were fitted in addition to cow and sire as 

random effects. The random effect of cow was fitted to account for repeated test-day record of 

cows and the random effect of sire was fitted to estimate the effect of CD on milk after accounting 

for genetic differences among sires. To further explore possible reasons for the effect of CD on 
fitness and production traits covariance analyses were performed using multi-trait models. These 

analyses provided estimates of correlations between CD levels and MY, CI, Surv and AFC using a 

sire model with additive genetic relationships. The pedigree used included sires of animals with 

information on CD and performance and their parents going back to 1950s. All data analyses were 

performed using ASReml (Gilmour et al. 2009).   

 

Table 1. Number of calves with their level of birth difficulty and their performance 

information until the beginning of the second lactation in Holstein  

Birth difficulty & 

observations 

Traits 

Level Observations (%) Age at first 

calving 

305-day milk 

yield 

Survival Calving 

interval 

Normal  311951(92.98) 311775 291872 281793 216257 

Slight     15849 (4.72) 15843 14858 14468 10891 

Moderate 7256 (2.16) 7250 6828 6606 4962 

Extreme  442 (0.13) 442 384 342 245 

 

RESULTS AND DISCUSSION 

Table 2 shows the deviation in AFC, CI, Surv and 305 MY for CD levels from those born with 

no difficulty. The effect of CD on AFC, Surv and CI are significant but small in magnitude. On the 

other hand, the effect of CD on 305 MY is insignificant. Table 2 also shows that cows born with 

the extreme level of difficulty of 4 produced more milk in absolute terms than those born with no 

difficulty but the difference was not statistically significant because the number of cows was 

small. The lack of a clear effect of CD on MY was confirmed by analysing the total test-day milk 

yield data over the first 150-days. The 150-day milk yield analyses showed that cows that 

experienced slight and moderate difficulty produced less than those born normally (Table 2) 

suggesting that early milk yield is better suited to estimate the effect of CD. In these data we also 

observed that CD did not have significant effect on fertility traits such as pregnancy rate, first 
service non return rate and calving to first service interval mainly because the number of cows 

with data on these traits was lower than those for AFC and CI, for example. However, there was a 
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trend that in all cases cows experiencing some birth difficulty showed a reduced fertility compared 

to calves born normally. The effect of experiencing birth difficulty in later parities were not larger 

than those observed in first parity cows, so these results are not tabulated.  

Table 2. Effect of birth difficulty on age at first calving, survival, calving interval and 305 

and 150 day milk yield as deviations from normal births     

Trait Level of birth difficulty 

 Normal Slight Moderate Extreme 

Age at first calving, months  0.0a 2.44±0.79b 1.75±1.17ab 10.17±4.36b 

Calving interval, days 0.0a 2.36±0.68b 4.14±1.01b 4.82±4.17ab 

Survival (%)  0.0a -0.92±0.36b -1.81±0.54b -1.59±2.17ab 

305-day milk, Litre 0.0a 55.0±18.1b 63.45±26.8b 121.2±98.9ab 

150 test-day milk, Litre   0.0a -53.2±17.0b -75.3±25.2b 155.4±95.5ab 
a,b Solutions designated with different letters are significantly different (P<0.05) from each 

other.  

Table 3. Correlations between calving difficulty at birth and subsequent performance as 

adults 

Traits  Genetic correlation Residual correlation 

Age at first calving  0.22±0.10 0.01±0.0 

Calving interval 0.30±0.08 0.01±0.0 

Survival  -0.25±0.08 -0.01±0.0 

305-day milk  -0.05±0.07 0.01±0.0 

150 test-day milk  -0.05±0.07 0.01±0.0 

 

The results in Table 2 show that the effect of experiencing CD as a calf on all traits are small 

and may have little economic significance. In particular the effect of experiencing difficulty at 
birth is small compared to the effect on subsequent fertility and survival of cows that experienced 

CD themselves.  In the current data, CI of cows following CD category of 2, 3 and 4 increased by 

6.8, 12.3 and 24.4 days, respectively, relative to cows that did have a normal calving. Similarly 

survival from 1st to 2nd calving was reduced by 2.7, 7.2 and 13.9% when CD increased from 

category 2 to 4, respectively, compared to normal calving. On the other hand, the subsequent milk 

yield of cows was not affected by CD level of cows. Our results on the effect of CD on the 

subsequent performance of cows agree with those reported by McClintock (2004) who, using part 

of these data, observed that survival and fertility of cows was reduced following CD but that MY 

was not affected. Further analyses using test-day data also showed that the effect of CD on 

subsequent milk yield of cows that experienced difficulty is small even when observed in the first 

150-days of lactation. Cows that had extreme CD produced 77 litres less milk over the first 150-

days than cows that calved without difficulty. This limited or no losses of MY following difficulty 
agrees with some studies (Rajala and Gröhn, 1998) but disagrees with others (Dematawewa and 

Berger, 1997; Eaglen et al. 2011).   

The effect of CD on subsequent performance of cows that experience CD is well documented 

but the effect on calves born with difficulty is less well known (Eaglen et al. 2011). A few studies 

have looked at the effect of experiencing CD on the health and development of calves (Lombard et 

al. 2007; Lundborg et al. 2003). The effect of experiencing difficulty at birth on performance (e.g. 

growth) up to first calving age could not be established in the current study because we do not 
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have information on decisions after birth until age at 1st calving. Obviously a large part of the 

economic loss due to birth difficulty is the death of calves around calving. Calf deaths at about 

birth time in these data were 3%, 11%, 34% and 49%, respectively, in female calves that were 

born without, with slight, moderate and extreme difficulty, suggesting that a large number of 

animals that experienced moderate to severe CD ended up being excluded from this study. The 
selected nature the data that is available for this sort of analysis means that economic losses of 

difficulty at birth are hard to measure and cannot be compared to performance in cows that 

experienced CD.  

Eaglen et al. (2011) observed MY and fertility of animals that experienced difficulty at birth 

was reduced. Their results with regard to fertility traits were confirmed by our analyses and we 

also found that both fitness and AFC was affected by CD, suggesting the possible long-term effect 

of CD at birth on performance to at least second calving. A bigger effect of CD on AFC (Heinrichs 

et al. 2005) and MY (Heinrichs and Heinrichs, 2011) was observed in US Holsteins where 

imputation techniques were used to avoid bias due to missing data. The reasons for such long-term 

effects of CD at birth on the performance of as adult was related to epigenetic processes or other 

so-called developmental programming (Eaglen et al. 2011). Heinrichs et al. (2005) suggests that 

calves that experienced CD are likely to grow slower and calve at an older age than those born 

with no difficulty. The implication of this is that, if calves born with CD are to be used as 

replacements, they should perhaps be provided with better management.  
The results in Table 3 on correlations agree with those in Table 2 and they show that there is a 

significant genetic component to the observed reduction in fertility and survival with the increase 
in level of CD.  

CONCLUSIONS 

Although the effect of birth difficulty on the performance of the animal as an adult is small, it 

should serve as an additional incentive to improve calving performance and management of calves 

born with difficulty. However, both quantifying the effect of events such as CD and developing an 

overall herd improvement strategy requires data from birth to 1st calving age, including 

information on recruitment of replacements from dairy herds, which is currently unavailable.   
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SUMMARY 

Genomic prediction (GP) in farm livestock generally exploits SNP array genotypes. Now it is 

possible to impute from SNP chip genotypes to whole genome sequence. However, in an industry 

setting it is impractical to implement GP using millions of sequence variants. Livestock industries 

are therefore keen to leverage sequence data by selecting subsets of variants to develop custom 

SNP arrays. In this study we demonstrate that there are potential pitfalls in this approach that can 

lead to considerable bias in GP and can underestimate the potential advantages of sequence. 

 

INTRODUCTION 

Genomic prediction is becoming a popular tool for livestock breeding, and in commercial 

settings generally exploits SNP array genotypes. Recently, large numbers of animals have been 

sequenced, enabling imputation to whole-genome sequence for any animal with SNP array 

genotypes. In theory all imputed sequence variants (> 20 million) could be used for genomic 

prediction and this should include the causal mutations. However, in practice this is 

computationally impractical for livestock industries. Furthermore, prediction models that include 

many millions of imputed sequence variants have not yet increased genomic prediction accuracy 

relative to SNP array genotypes (van Binsbergen et al. 2015; Calus et al. 2016). This may be a 

result of: 1) exacerbated “large p small n” problem leading to an over-saturated model, 2) 
difficulty in precisely estimating SNP effects due to long distance linkage disequilibrium (LD) and 

3) imputation errors. A practical solution is to discover important sequence variants associated 

with key traits and then design custom SNP arrays that combine the selected variants with SNP 

from existing commercial arrays (e.g. Wiggans et al. 2016). This reduces industry problems 

associated with large genotype data sets, reduces the “large p small n” analytical issue and 

increases genotyping accuracy of important sequence variants. 

In dairy cattle, several studies have attempted to gain advantage from imputed whole-genome 

sequence by running a single SNP regression analysis (GWAS) to identify a subset of the most 

significant sequence variants, and then combining these with lower density SNP array genotypes 

for genomic prediction (Brøndum et al. 2015; van den Berg et al. 2016; Veerkamp et al. 2016). 

Similarly, Wiggans et al. (2016) demonstrated a small advantage in genomic prediction accuracy 

by pre-selecting the most informative SNP from high density SNP array genotypes and then using 
this SNP subset to train the prediction equations. In all these studies, the analysis to select the top 

variants and their subsequent analysis to train the genomic prediction equations was carried out 

with the same reference population.  

Here, we demonstrate that when pre-selected variants are discovered in the same reference 

population that is used to train subsequent genomic predictions, this approach can result in 

significant bias in the predictions. Furthermore, our results suggest that this approach may 

underestimate potential gains from using subsets of sequence variants in both accuracy and 

persistency of genomic prediction. We demonstrate that these pitfalls can be avoided by pre-

selecting sequence SNP from a population that is independent from the reference population used 
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to train the genomic prediction equations.  

 

MATERIALS AND METHODS 

We chose a data set of 21,879 dairy cattle with real genotypes and simulated phenotypes from 

the same data described in MacLeod et al.(2016). Briefly, the genotypes included 2.785 million 
imputed sequence variants and Illumina 800K Bovine HD beadChip genotypes. Sequence variants 

included only those in gene coding regions or in putative regulatory regions 5 Kb up- and 

downstream of genes. After pruning out one of all SNP pairs in perfect LD and SNP with minor 

allele frequency < 0.002, a total of 994,019 variants remained (“SEQ”). Three trait phenotypes 

were simulated for all animals by selecting 4000 of these variants to be causal mutations (QTN) 

with three different genetic architectures and a heritability of 0.6 (details in MacLeod et al. 2016). 

For each trait 3485, 500 and 15 additive QTN effects were sampled from three different normal 

distributions with a mean of zero and variances of 0.0001𝜎g
2, 0.001 𝜎g

2 and 0.01 𝜎g
2 respectively, 

where 𝜎g
2 is the additive genetic variance. Breeding values (BV) for all animals were calculated 

as:  i

i

ijj xBV 



4000

1

  , where αi is the ith QTL effect and xij represents the ith genotype (coded 0, 1 or 

2 for genotypes aa, Aa and AA) of animal j.  

The animals included 16,133 Holstein, 4861 Jersey and 885 Australian Red breed. The 885 

Australian Red and the youngest 584 Holstein were used as two separate validation populations 

(one distantly related and one closely related). The remaining animals were divided into two 

separate mixed breed reference sets: Ref1 with 7991 Holstein and 2323 Jersey, and Ref2 with 

7558 Holstein and 2538 Jersey. Pedigree records were available for both Ref1 and Ref2. We 

applied two methods of genomic prediction: GBLUP and BayesR, with the standard model 

described in MacLeod et al. (2016). In the BayesR analyses, variant effects were sampled from 

four normal distributions with mean of zero and variances as described above for simulated QTN 

effects. BayesR is a useful method for QTN discovery (e.g. MacLeod et al. 2016) so we used 
BayesR rather than GWAS to identify a subset of putative QTN.  

First we undertook QTN discovery separately in Ref1 and Ref2 using the SEQ genotypes 

(included the surrogate QTN) and then chose the top 500 putative QTN from each analysis. Then 

we created two custom SNP chips: the first combined the top putative QTN from Ref1with the 

50K Illumina BovineSNP50 chip genotypes (Chip_Ref1) and the second combined the top 500 

putative QTN from Ref2 with the 50K set (Chip_Ref2). These custom chips were then used for 

genomic prediction in reference population Ref1. Thus genomic prediction with Chip_Ref1 

mimics the approach taken by several recent studies mentioned above: i.e. the QTN discovery 

population (Ref1) was not independent of the reference population used to train the genomic 

predictions. In contrast, for Chip_Ref2 the selected putative QTN were discovered in a population 

(Ref2) that was independent of the one used to train the genomic prediction equations (Ref1). 

Finally, the two validation populations were used to test accuracy and bias of prediction equations 
derived from Ref1 with the custom SNP chips as well as the full SEQ, 800K and 50K genotypes. 

BayesR results are presented as the average of five MCMC chains and results for both GBLUP 

and BayesR were averaged across the three trait phenotypes (trends being similar). The accuracy 

of genomic prediction was calculated as the correlation between predicted and true breeding 

values, and bias was assessed by the regression of the true breeding value on the predicted value. 

 

RESULTS AND DISCUSSION 

The accuracy of genomic prediction was highest for SEQ genotypes (Fig 1) as expected 

because SEQ included all surrogate QTN variants. The relative advantage of SEQ was greater for 

the Australian Red validation compared to the Holsteins. This reflects the extra precision of the 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:141-144 

143 

prediction which is only apparent when validation animals are not strongly related to the reference 

set (Aust. Red breed animals were not in Ref1 or Ref2). The BayesR accuracy was always higher 

than GBLUP. This was not surprising because we simulated a mixture model with many small 

effects and a few large effects and Bayesian models are generally superior to GBLUP for this 

scenario. For BayesR and GBLUP there was an increase in accuracy using either Chip_Ref1 or 
Chip_Ref2 compared to 50K only. However, for BayesR this advantage was greater for 

Chip_Ref2 where the putative QTN were discovered in a population that was independent of the 

reference population that was subsequently used to train the genomic prediction equation. For 

Chip_Ref2 the accuracy of prediction exceeded the accuracy of the HD 800K and the relative 

increase was higher for Australian Reds than Holsteins. For GBLUP there was little difference in 

the accuracy from the two custom chips. However, when we created custom chips by combining 

the top 5000 SNP from the SEQ analyses with the 50K set, the accuracy of GBLUP markedly 

improved with Chip_Ref2 compared to Chip_Ref1 (results not shown).  

 

 
 

Figure 1. Accuracy of genomic prediction equations trained in Ref1 using a range of SNP 

genotypes and validated in Holsteins and Australian Reds. SEQ represents ~1million sequence 

variants, including the SNP chosen as surrogate QTN. Chip_Ref1 is a custom chip of 50K + 500 

top putative QTN discovered in the same Ref1, while Chip_Ref2 is a custom chip with 50K + 500 

top putative QTN discovered independently in Ref2.  

 

Overall, the bias of genomic prediction (Fig 2) was largest for Chip_Ref1 where the top SNP 

were discovered in the same set as subsequently used to train the genomic predictions (Ref1). The 

regression was < 1 which indicates that genomic breeding values were over-predicted. This over-

prediction can cause problems for the industry because genomic breeding values would be biased 
upwards compared to traditional breeding values. We were able to correct the bias (BayesR and 

GBLUP) in both validation sets, by using custom Chip_Ref2. We also investigated the proportion 

of variance explained by SNP in each analysis, and found that this variance was considerably over-

estimated in the case of Chip_Ref1, compared to Chip_Ref2 where the variance was more 

accurately estimated. 

This indicates that the bias is mainly due to a form of the “winner’s curse” or “Beavis effect”. 

That is, a proportion of the selected putative QTN from Ref1 were estimated to have a larger effect 

than the real effect, and when Chip_Ref1 was used for genomic prediction in the same Ref1 set, 

these effects are again overestimated. In BayesR the bias was more serious than GBLUP possibly 

because the BayesR mixture model allows for some large QTN effects, while GBLUP assumes all 

SNP effects are sampled from a single distribution so that larger effects are regressed more 
towards the mean. This phenomenon of bias was also reported by Veerkamp et al. (2016) using 
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dairy cattle data. However, in the studies by Brøndum et al. (2015) and van den Berg et al. (2016) 

the bias was less apparent, most likely because their putative QTN discovery population did not 

exactly overlap with the genomic prediction reference populations. Wiggans et al. (2016) did not 

test for bias in their study. It might be expected that bias and reduced accuracy may be exacerbated 

if a GWAS is used to select the top putative variants because the Beavis effect is likely to be more 
pronounced with SNP effects fitted as fixed effects.  

In conclusion, it is important to recognise the pitfalls of pre-selecting subsets of SNP for 

genomic prediction and to take steps to mitigate them, such as using independent reference 

populations for QTN discovery and genomic prediction. A potential alternative which does not 

require two independent populations is a new analytical approach (van den Berg et al 2017 - these 

proceedings) derived from a hybrid method of Expectation-Maximisation with BayesR (HyB_BR) 

developed by Wang et al. (2016). 

 

 
 

Figure 2. Bias of genomic prediction equations trained in Ref1 and validated in Holsteins or 

Australian Reds using a range of SNP genotypes. SEQ represents ~1million sequence variants 

and includes the SNP chosen as surrogate QTN. Chip_Ref1 is a custom chip of 50K + 500 top 

putative QTN discovered in the same Ref1, while Chip_Ref2 is a custom chip with 50K + 500 top 

putative QTN discovered independently in Ref2.  
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SUMMARY 

Selection should favour alleles which increase profitability considering their effects across all 

important traits. Therefore, understanding pleiotropy is an important aim. Obviously if traits are 

genetically correlated they must share some causal variants but it is possible that even uncorrelated 

traits share some causal variants. Here we analyse 25 traits on Australian dairy cattle. The 25 raw 

traits (RTs), covering milk production, fertility, behaviour, somatic cell count and conformation, 
of 2841 bulls were used to calculate uncorrelated principal components (PCs) and Cholesky 

transformation traits (CT). Multi-trait meta-analyses of single-trait genome-wide association 

studies (GWAS) for RT, PC and CT in these bulls were validated in 6821 cows. We observed a 

positive relationship between heritability estimates and the number significant SNPs detected in 

RTs and CTs. However, there was no relationship between the phenotypic importance of PCs and 

the number of significant SNPs detected. The major dairy cattle locus DGAT1 not only affected 

dairy production traits, also had validated small effects on fertility, milk speed and temperament. 

Our results highlight the importance of using genetic information of all traits to maximise 

pleiotropy detection and prioritise multi-trait genetic markers for the dairy industry.  

 

INTRODUCTION 
The profitability of dairy farming depends on many traits including milk production, fertility, 

diseases, workability and conformation or type traits (Byrne et al., 2015). Therefore, genomic 

selection should target genetic variants that increase an economic combination of traits such as the 

balanced performance index (BPI). When identifying genetic markers, such as single nucleotide 

polymorphisms (SNPs), associated with economic traits, we need to know the effect of the marker 

on all economic traits not just those where the marker has the biggest effect. That is, we would like 

to understand the pleiotropic effects of genes across all important traits.  

Widespread pleiotropic effects of SNPs have been observed in beef cattle (Bolormaa et al., 

2014) and sheep (Bolormaa et al., 2016). If traits are genetically correlated there must be some 

genes that affect both traits. However, it is also possible that uncorrelated traits share some causal 

variants. Principal component (PC) analysis, producing a small number of uncorrelated traits, has 

been proposed for conducting multi-trait genetic analysis (Klei, Luca, Devlin, & Roeder, 2008). If 
genes act through a limited number of physiological pathways, principle component analysis 

might capture the most important pathways in the first few PCs leading to a simple picture of 

pleiotropy.  

To further understand pleiotropy in the dairy cattle population, a dataset from the Australian 

Dairy Herd Improvement Scheme (ADHIS) with 25 traits recorded on 9662 animals was retrieved. 

These 25 raw traits (RTs), including milk production, survival, fertility, temperament and linear 

type traits, were used to construct uncorrelated PCs and Cholesky transformed traits (CTs) (Golub 

& Van Loan, 2012). RTs and generated PCs and CTs were analysed with multi-trait genome-wide 

association studies (GWAS).  
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MATERIALS AND METHODS 

Analyses included genotype of 2841 bulls as the discovery population and 6821 cows as the 

validation population from the breeds Holstein, Jersey and Australian Red. The distribution of 

genomic relatedness of bulls and cows in three breeds were shown in Figure 1. SNPs were 

genotyped by Illumina BovineLD BeadChip (7K), Illumina Bovine SNP array (54K) and Illumina 
Bovine HD genotypes (777 K). All animals were imputed to HD genotypes using Fimpute 

(Sargolzaei, Chesnais, & Schenkel, 2014) and in total, 632,002 SNPs were used. SNPs with minor 

allele frequency <0.01 or significant departure from Hardy-Weinberg equilibrium (p<0.001) were 

filtered out. The 25 phenotypic traits of these animals (trait deviations for cows and daughter trait 

deviations for bulls) were from the April 2016 genetic evaluations from the DataGene. Daughter 

trait deviations were the average trait deviations of a bull’s daughters and all phenotypes were pre-

corrected for known fixed effects. 

The generation of PCs for the nth animal (un) was based on eigen-decomposition of k=25 RTs 

(gn): 
nn gTu ' ; Where un was a k × 1 vector of PC scores for the animal n; T was an k × k matrix  

of eigenvectors such that the variance matrix of the PC Var(T’g) = D, a diagonal matrix of 

eigenvalues; gn was an k × 1 vector of RT for animal n. The CT scores for the nth animal (cn) were 

calculated based on the Cholesky decomposition: 
nn gLc 1 ; where; L was the k × k matrix of the 

Cholesky factors which satisfied LLt= V(g), the k × k covariance matrix (Golub & Van Loan, 

2012); gn was a k × 1 vector of RT for the animal n. Single-trait GWAS was performed in 
GEMMA (Zhou & Stephens, 2014) using data from the discovery population: 

eGRMSNPeffectsfixedmeany i  ; where y = vector of k RTs, PCs or CTs for bulls; fixed 

effects= breeds; SNPi = that each SNP genotype was fitted as a covariate one at a time; a polygenic 

random effect described by the GRM= genomic relatedness matrix calculated from GEMMA 

based on all SNPs; e  = error. A multi-trait meta-analysis based on either the 25 RTs, 25 PCs or 25 

CTs followed previous procedures (Bolormaa et al., 2016; Bolormaa et al., 2014). SNPs that were 

significant in the discovery sample were tested in the validation sample using an index of traits 

that maximises the effect of the SNP (Bolormaa et al., 2016; Bolormaa et al., 2014). Single-trait 

GWAS in the validation population was also used to confirm SNP effects on individual RTs.  

 

 
Figure 1. Density plot of the genomic relationship matrix between bulls and cows. 
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RESULTS AND DISCUSSION 

For both RTs and CTs, the number of significant (P<1×10-5) SNPs detected by single-trait 

GWAS generally increased with the estimated heritability of the phenotype because the power to 

detect effects increases with h2 (Figure 2A,B). (The heritability of bull phenotypes is the 

proportion of variation in daughter trait deviation explained by all SNPs jointly).  Consistent with 
previous reports (Kemper et al., 2015; MacLeod et al., 2016), the RT of milk, protein and fat yield 

had the highest heritability estimates (all h2>0.8 and se=0.02) and the largest numbers of 

significant SNPs (more than 100) detected. Survival and fertility as reproductive complex traits 

had mid-range heritability estimates (both h2>0.5 and se=0.03) with 27 and 31 significant SNPs 

detected, respectively. Mid-range heritability was also estimated for temperament and milk speed 

(both h2>0.5 and se=0.03). However, single-trait GWAS only detected 6 and 13 significant SNPs 

for temperament and milk speed, respectively. The h2 of likeability is 0.48 (se=0.03) with only 

four significant SNPs detected. The heritability estimates of dairy type traits ranged from 0.35 

(rear legs set, se=0.04) to 0.69 (front teat placement, se=0.03). However, all type traits had a small 

number of significant SNP detected. Rear legs set had 15 significant SNPs and front teat 

placement had only 1 significant SNP. This is likely to be due to the complexity of the type traits, 

i.e. a large number of causal variants each with a very small effect. Our discovery sample size may 
not be large enough to capture highly significant SNPs.  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.The relationship between heritability estimates and the number of significant SNPs 

detected by single-trait GWAS for RTs (A), CTs (B) and PC (C). D: The relationship 

between the heritability estimates of each PC and the total phenotypic variance explained by 

each PC. 

 

The 25 PCs, accumulatively explained 93% of the total phenotypic variances, showed a 

complicated pattern (Figure 2C,D). The first PC, which explained 25% of total phenotypic 

variances for all RTs, had a high estimation of heritability (0.67, se=0.03) but only 5 significant 

SNPs. This PC had loadings from many traits and perhaps this generates a very complex trait 

affected by many genes. On the other hand, PC18 with top factor loading related to milk fat yield, 
only contributed 1.7% of the variances to all traits, had a modest heritability (0.53, se=0.03), but 

had the largest number of significant SNPs (241) amongst the PCs. The last PC (PC25) with high 

positive factor loading for protein yield and high negative factor lading for milk yield, explained 

0.03% of the variances in all traits, had a modest heritability (0.50±0.03) but l53 significant SNPs. 

Our results are consistent with a previous simulation study in humans where the genetic 

information of all PCs are important (Aschard et al., 2014). Thus, only considering a small number 

of PCs might cause loss of power for genetic analysis. 

Thus the results do not support the hypothesis that genes act through a small number of 

common, physiological mechanisms. This is exemplified by SNPs within and near DGAT which 
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have significant effects on several PCs. This occurs because the effects of DGAT do not follow the 

pattern described by the overall genetic correlations. For instance, milk and fat yield are positively 

correlated but the allele of DGAT which increases milk decreases fat yield.  

Three multi-trait meta-analyses were performed based on either all RTs or PCs or CTs. The 3 

meta-analyses largely detected the same significant SNPs as they are all approximations to a full 
multi-trait analysis. They also detected many more significant SNPs than single-trait GWAS using 

the same threshold (P<1×10-5 and FDR<0.01) (Figure 3A,B).  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3. A-B: Manhattan plot of multi-trait meta-analysis. C: t values with absolute values 

>1 of DGAT1 across traits. 

 

DGAT1 was the most significant locus in the multi-trait analysis (Figure 3A,B) with effects on 
many RT, PCs and CTs. Along with the strong effects on production traits, DGAT1 also had small 

but validated effects on fertility, milk speed, temperament and type RTs, which are important 

information for the breeders (Figure 3C). This highlights the advantage of conducting multi-trait 

analysis in extending knowledge for unknown effects of known loci.  Most SNPs did not have a 

significant effect on many traits as DGAT did but this may indicate a lack of power rather than a 

lack of pleiotropic effects. If the example of DGAT is repeated for other loci it is important 

because it indicates that SNPs with a small effect on one trait may be detected by their large effect 

on another trait. 
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SUMMARY 

The objective of this study was to model the growth curves of New Zealand dairy heifers and 

to estimate breed and heterosis effects between Holstein Friesian (F), Jersey (J) and Holstein 

Friesian-Jersey crossbreed (FxJ) heifers before first calving at 2 years of age. Data consisted of 

1,653,214 liveweight (LWT) records obtained from 189,936 spring-born dairy heifers located in 
1,547 herds. A fourth order Legendre polynomial was fitted to the LWT data to model growth 

curves. At all ages F heifers were heavier than FxJ which were heavier than J heifers. The 

difference among the breeds varied over the growth period studied; F heifers were not a constant 

percentage heavier than FxJ or J heifers. This demonstrates that the breeds in this study exhibited 

different growth patterns. Breed effects, defined as F-J, were positive and ranged from 12.8 kg to 

55.3 kg. Heterosis effects, expressed in kilograms, were positive and increased up to 18 months of 

age. Expressed as a percentage of the average of the parental breeds, heterosis was greatest at nine 

months of age (3.6%) and least at 22 months of age (2.0%). In conclusion, in New Zealand dairy 

heifers, heterosis effects were different throughout the growth period and F, J and FxJ heifers 

exhibited different growth patterns. 

 

INTRODUCTION 

The predominant dairy breeds in New Zealand are Holstein-Friesian (F), Jersey (J) and 

Holstein-Friesian x Jersey crossbred (FxJ) (Livestock Improvement Corporation and DairyNZ 

2016). Holstein-Friesian is a later maturing and heavier breed compared with the lighter and early 

maturing J (Leche 1971; Hickson et al. 2012). Jersey heifers attained puberty at a younger age 

compared with F heifers (Hickson et al. 2011), further emphasising their earlier maturity. 

Heterosis is present in FxJ animals for mature liveweight (LWT) and ranges from 7.2 to 10 kg 

(Harris et al. 1996; Harris 2005), but has not been documented in growing heifers in New Zealand. 

Current target LWTs for dairy heifers are 30%, 60% and 90% of mature LWT at six, 15 and 22 

months of age (Burke et al. 2007). There are differences in the proportion of target achieved 

between breeds (McNaughton and Lopdell 2013; Handcock et al. 2016), suggesting a potential 

difference in growth pattern and therefore, indicating that appropriate target percentage may be 
different among breeds.  Due to the pasture-based farming systems in New Zealand, dairy heifers 

tend to follow a seasonal pattern of growth that matches pasture quality and quantity (Litherland et 

al. 2002; Handcock et al. 2016). The objective of this study was to use the model of the growth 

curves for New Zealand dairy heifers to estimate breed and heterosis effects.  

 

MATERIALS AND METHODS 

Liveweight records of New Zealand dairy heifers were extracted from the Livestock 

Improvement Corporation database. Heifers that were spring-born between the 2006-07 and 2013-

14 dairy seasons, had at least two LWT records between birth and 12 months of age and two LWT 
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records between 13 months of age and first calving at approximately two years of age, or 24 

months of age if the heifer did not have any recorded calving dates were considered. Initial data 

cleaning was completed by calculating the mean and standard deviation of LWT for each age (in 

months), and for each breed. Liveweight records that were more than four standard deviations 

from their corresponding breed-age mean were removed (Pietersma et al. 2006). This method was 
iterated until no more records were deleted (Pietersma et al. 2006). This left a dataset comprised of 

1,656,433 LWT records obtained from 189,936 dairy heifers located in 1,547 herds. Of these 

heifers, 48,026 were F; 12,407 were J and 129,503 were FxJ. Only heifers with known dam and 

sire and less than 2/16 (12.5%) of breeds other than F or J were included in the dataset. 

Based on recorded pedigree and sire and dam breed proportions; individual animal’s breed 

proportions were known, and were used to calculate coefficient of specific heterosis.  

 

Statistical analysis. A Legendre polynomial of order four was fitted to LWT data using 

random regression to obtain regression coefficients for each heifer using ASReml (Gilmour et al. 

2015). To remove outlier observations the relative measurement error (RME) was calculated as: 

RME = (
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑊𝑇 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝑊𝑇

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑊𝑇
) × 100 

Any actual LWT between three and 23 months of age that had an absolute RME greater than 

18% (mean + four standard deviations) was considered an outlier and removed from the dataset. 
The RME calculates the percentage deviation of the actual LWT from the predicted LWT by 

assuming that the predicted LWT is the “true” value. At birth, one, two and 24 months of age the 

accuracy of the fourth-order polynomial was low (data not shown). Records were not removed at 

these ages as the predicted LWT was not accurate enough to be defined as the “true” value. The 

cleaned dataset included 1,653,214 observations (0.2% of data removed) on the same 189,936 

animals. An order-four Legendre polynomial was fitted to the cleaned dataset and was used for 

subsequent analysis. The individual regression coefficients were used to estimate LWT at 3, 6, 9, 

12, 15, 18 and 22 months of age for each heifer. 

Breed and heterosis effects for LWT at the different ages were estimated using a linear mixed 

model in SAS version 9.4 (SAS Institute Inc). The mixed model included the fixed effect of birth 

year, dam age (2 years old, or 3 years old and older), and island (North vs South) as class effects, 
the deviation from median birthdate (within-herd), proportion of F, proportion of Other breeds (O), 

heterosis FxJ, heterosis FxO and heterosis JxO fitted as covariates, and the random effect of herd 

of birth. The estimates of the regression coefficients were used to predict the LWT of F, J and F1 

F×J cows at different ages. 

 

RESULTS 

Predicted means and standard errors of LWT at different ages for the three breed groups are 

presented in Table 1. At all ages, F heifers were heavier than FxJ which in turn were heavier than J 

heifers. Figure 1 displays the deviation of F and FxJ from J, as well as the expected average of the 

parental breeds ((F + J)/2). Holstein-Friesian heifers were 15.8% heavier than J heifers at three 

months of age; decreasing to 14.9% at nine months of age and increasing to a maximum at 17 
months of age. First cross FxJ heifers were between 10.5 and 12.2% heavier than J heifers from 

three to 19 months of age; decreasing to 7.6% by 22 months. The difference between FxJ and the 

expected average of the parental breeds ranged from 2.1 to 3.9% with the greatest difference 

occurring between 8 and 12 months of age. 

The estimates for breed and heterosis effects for LWT are shown in Table 1. Breed differences 

between F and J was estimated to be greatest at 18 months of age. Heterosis, in absolute values 

was positive at all ages and greatest at 18 months of age. Heterosis (as a proportion of parent 

average) was greatest at 9 months of age. 
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Table 1. Live weight of Holstein-Friesian (F), Jersey (J) and first cross (F1) Holstein-Friesian-

Jersey crossbred (FxJ) heifers, and estimates of breed and heterosis effects at different ages 

Age 
(months) 

Live weight (kg) Breed effect Heterosis (FxJ) 

F F1 FxJ J F-J (kg) kg % † 

3  93.5 ± 0.3 89.2 ± 0.3 80.8 ± 0.3 12.8* ± 0.2 2.1* ± 0.1 2.4% 
6  156.5 ± 0.5 150.9 ± 0.5 135.8 ± 0.5 20.7* ± 0.2 4.8* ± 0.2 3.3% 
9 193.2 ± 0.6 187.1 ± 0.6 168.1 ± 0.6 25.1* ± 0.3 6.5* ± 0.2 3.6% 
12 238.8 ± 0.7 230.0 ± 0.7 205.7 ± 0.7 33.1* ± 0.3 7.8* ± 0.3 3.5% 

15 304.6 ± 0.7 291.1 ± 0.7 259.5 ± 0.8 45.2* ± 0.4 9.0* ± 0.3 3.2% 
18 380.2 ± 0.8 362.2 ± 0.8 324.8 ± 0.8 55.3* ± 0.4 9.7* ± 0.3 2.8% 
22 430.4 ± 0.7 417.4 ± 0.7 388.0 ± 0.8 42.4* ± 0.4 8.2* ± 0.3 2.0% 

*Mean is significantly different from zero (P<0.0001). 

† Expressed as a percentage of heterosis effects relative to the phenotypic average of the parental 

breeds ((F+J)/2).  

 

 
Figure 1: Deviation of estimated live weight of Holstein Friesian (F), Holstein Friesian-Jersey 

crossbred (F1 FxJ) and the expected average of the parental breeds ((F + J)/2; Average) from 

Jersey (J) heifers (“0” line) derived from the fourth-order Legendre polynomial. Grey 

shading represents 95% confidence intervals for each breed. 
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DISCUSSION 

The LWT of F heifers was consistently heavier than FxJ and J heifers, as expected based on the 

difference in mature size (Hickson et al. 2012; Livestock Improvement Corporation and DairyNZ 

2016). However, the growth pattern was different; F heifers were not a constant percentage heavier 

than FxJ or J heifers (Figure 1). If the growth pattern was similar among the breeds the slope of the 
lines in Figure 1 would be zero for both F and FxJ. From four to nine months of age the difference 

between F and J decreased; over this same period, the difference between FxJ and J was constant. 

Furthermore, heterosis exhibited by FxJ heifers was the greatest (3.6%) at nine months of age. The 

difference indicates that at different ages, one breed has a greater potential for growth compared 

with the other and heterosis significantly contributes to the difference in growth pattern. 

Heterosis estimates for mature FxJ cows range from 7.2 kg to 10 kg (Harris et al. 1996; Harris 

2005); similar to the values in the current study from nine months of age onwards. Heterosis 

varied throughout the growth period in first generation FxJ heifers in the USA (Hilder and 

Fohrman 1949); and were similar at 3 (2.2%), 6 (3.2%) and 18 months of age (2.5%) to what was 

reported in the current study. At 9, 12 and 15 months of age, heterosis estimates for the current 

study were greater than those reported by Hilder and Fohrman (1949) (1.3, 0.4 and 1.4% 

respectively). The estimates reported by Hilder and Fohrman (1949) are from a total of 18 calves 
that were reared in a predominantly indoor system. In contrast, the results reported in the current 

study are from 189,936 heifers reared in a pasture based system, which may explain the 

differences in heterosis estimates between the two studies. 

In conclusion, New Zealand dairy heifers exhibited heterosis effects throughout the growth 

period and F, J and FxJ heifers displayed different growth patterns. The weight for age targets may 

therefore be different for these breeds, due to the differing growth patterns. 
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SUMMARY 

Residual feed intake (RFI) is a measure of the efficiency of animals in converting feed to 

products. Improving RFI in dairy cattle can reduce the costs of raising heifers and producing milk. 

However, calculating RFI requires expensive equipment to measure the feed intake for each 

individual. Since April 2015, a “Feed Saved” breeding value has been available in Australia that 
combines RFI with maintenance requirements. However, the size of the reference population used 

for genomic prediction of RFI is comparatively and consequently the accuracy of predictions are 

modest. To improve the prediction accuracy for RFI, the current reference population consisting of 

843 heifers and 236 Australian cows and 954 European cows (357 British and 597 Dutch) was 

extended by including RFI measurements of 206 Australian cows.  Furthermore, information from 

markers which were associated with RFI in 4,772 beef cattle (p < 0.001) was used to construct a 

genomic relationship matrix (GRM) for dairy cattle. We also compared the use of imputed whole 

genome sequence (WGS) data with 800K SNP-chip genotypes and 2 methods of calculating a 

GRM described by VanRaden (2008) and Yang et al. (2010). The use of the SNPs from the 800K 

SNP-chip which were associated with RFI in beef cattle improved the accuracy of genomic 

estimated breeding values (GEBVs) in dairy cattle. However, the use of imputed WGS data did 
not improve prediction accuracy, especially when the Yang et al. method of calculating the GRM 

was used. The Yang et al. method gives extra weight to rare alleles and these SNPs have low 

imputation accuracy. So it is likely that errors in imputation affect the results when using WGS 

and this effect is magnified when Yang et al. is used to construct the GRM. The best model tested 

was the GRM built using the Yang et al. method with SNP-chip genotypes and when extra weight 

was given to the SNPs associated with RFI in beef cattle. The accuracy of GEBVs for RFI in the 

best model for heifers and cows were 0.67 and 0.46, respectively. 

 

INTRODUCTION 

The efficiency of dairy cattle in utilizing feed to grow and produce milk is one of the main 

factors influencing the profitability of production (Berry and Crowley 2013). Residual feed intake 

(RFI) is one of the criteria for measuring feed efficiency. RFI is the difference between actual and 
predicted feed intake for each individual (Koch et al. 1963) which has high to moderate 

heritability in growing heifers and low to moderate heritability in milking cows (Berry and Pryce 

2014). Hence, improving the efficiency of animals in converting feed to products is feasible by 

selecting and breeding cattle which need less feed than average to gain the same weight, or 

produce the same amount of milk. However, RFI is expensive to measure because it requires 

precise measurements of individual feed consumption, weight gain, and also milk yield and its 

components in milking cows and this has limited direct selection for feed efficiency in dairy cattle 

(Beever and Doyle 2007). Moreover, due to the polygenic architecture of feed efficiency, it is hard 

to find major genes influencing RFI. Genomic selection, using single nucleotide polymorphisms 
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(SNP) genotypes to estimate breeding values without measuring feed intake on selection 

candidates, could overcome this limitation (Meuwissen et al. 2001). However, genomic selection 

still requires a genotyped reference population with phenotypes for RFI. The limited size of 

reference populations, especially for RFI in milking cows, results in modest prediction accuracies. 

Since April 2015 the “Feed Saved” breeding value has been available in Australia and is also part 
of the national selection index (Pryce et al. 2015). Feed Saved includes genomic breeding values 

for RFI in heifers and cows and maintenance requirements in lactating cows and uses genomic 

predictions of RFI using a reference population of Australian cows and heifers and European 

cows. The aim of this research is to increase the accuracy of genomic estimated breeding values 

(GEBVs) for RFI in Australian heifers and milking cows through 1) including more animals in the 

reference population, 2) RFI information from non-dairy breeds and 3) using whole genome 

sequence (WGS) instead of SNP-chip genotypes.  

 

MATERIALS AND METHODS 

Animals and RFI measurements. The RFI measurements used for this study were from 843 

Australian heifers and 440 Australian cows (139 animals had RFI measurements as heifers and 

cows), 954 European cows (357 British and 597 Dutch) and 4,772 beef cattle (Khansefid et al. 
2014; Pryce et al. 2015). In this study, the RFI measurements in Australian cows were recalculated 

after including 206 new animals to the model described by Pryce et al. (2015). 

Genotypes. The Australian heifers had 800K (Illumina HD Bovine SNP chip) genotypes 

(Pryce et al. 2012) and the rest of the dairy cattle had 50K (Illumina BovineSNP50K) genotypes 

which were imputed to HD (Pryce et al. 2014). For beef cattle, the SNP genotypes were either 

from HD or imputed from lower density (7K, 10K or 50K) to 800K (Khansefid et al. 2014). 

Moreover, for all datasets, the SNP-chip genotypes were imputed to WGS genotypes using 

FImpute (Sargolzaei et al. 2014) and RUN4 of 1000Bulls project as the reference.  

Genome-wide association study (GWAS). The GWAS was conducted using beef cattle data 

to find associations between each SNP and RFI measurements using the model described by 

Khansefid et al. (2014) but using WGS genotypes in addition to SNP-chip genotypes. 
Genomic relationship matrix (GRM). The GRMs were constructed using 2 methods (Yang et 

al. (2010) and VanRaden (2008)) for SNP-chip (GRMSNP-chip) and WGS genotypes (GRMWGS). 

Separate GRMs were also calculated from the SNP-chip (GRMSNP-chip*) and WGS genotypes 

(GRMWGS*) using the SNPs that were associated with RFI in beef cattle (p <0.001).  

Statistical model. RFI measurements for heifers, Australian cows and European cows were 

considered to be 3 separate traits and were fitted in a multi-trait model (Equation 1) to calculate 

GEBVs using ASReml (Gilmour et al. 2009), where y is a T×1 vector consisting of RFI 

measurements on 1 or more of the 3 traits for each animals, Z is an incidence matrix associating 

observations to animals and traits, g contains the breeding values for each of 3 traits  for all 

animals distributed as N(0, G⊗K), G is the genomic relationship matrix and K is a matrix of 

additive genetic variances and covariances between RFI in 3 datasets and e is a vector of residual 

terms. 
y=Zg+ e [1] 

To give extra weights to the SNPs associated with RFI in beef cattle, the average of GRMSNP-

chip and GRMSNP-chip* (i.e. GRMSNP-chip & SNP-chip*) and also the average of GRMWGS and GRMWGS* 

(i.e. GRMWGS & WGS*) were calculated and fitted in equation 1.  

Accuracy of genomic prediction. The accuracy of genomic predictions was calculated with a 

5 fold cross-validation strategy. The dataset was divided into 5 subsets, 4 of the subsets were used 

as a reference population and the 5th subset was used as a validation sample. The animals in the 5 

subsets were selected randomly except paternal half sibs were always placed in the same subset. 

Then, the GEBVs of validation animals, whose phenotypes were not included in the analysis, were 
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estimated by genomic BLUP. The accuracy of each validation set was calculated as the correlation 

between GEBVs and RFI phenotypes divided by the square root of estimated heritability (h2 for 

RFI in heifers and Australian cows were estimated 0.33 and 0.26, respectively) and the average 

across 5 validation sets was reported as the accuracy of prediction.  

 

RESULTS AND DISCUSSION 

Genotypes. In SNP-chip genotypes, 569,179 SNPs were in common between the datasets and 

had minor allele frequency (MAF) greater than 0.001. In WGS genotypes, 24,352,503 SNPs had 

MAF >  0.001. 

GWAS. Among the common SNPs that had MAF > 0.001, 1,739 SNPs in SNP-chip genotypes 

and 60,646 SNPs in WGS genotypes were significantly associated with RFI in beef cattle (p < 

0.001). So, about 0.3% of the SNPs were associated with RFI in beef cattle (p < 0.001) for both the 

SNP-chip or WGS genotypes. 

Accuracy of genomic prediction. The accuracies of genomic predictions using different 

GRMs in Equation 1, are shown in Table 1. Substituting GRMSNP-chip with GRMWGS did not 

improve the prediction accuracies. The accuracies were actually reduced when the Yang et al. 

(2010) method was used in GRMWGS construction. So, the assumption of Yang et al. (2010) that 
rare alleles are more informative for WGS data seems to be incorrect. In WGS data there are many 

more SNPs with low MAF distributed across genome than in SNP-chip markers. Moreover, the 

accuracy of imputation is lower for rare alleles and therefore giving extra weight to these SNPs 

could reduce the accuracy of genomic predictions.  

When the SNP-chip genotypes were used to construct the GRMs, there was no noticeable 

difference between the GRMs according to Yang et al. (2010) or VanRaden (2008). However, 

using WGS genotypes to make the GRMs, there was a slight superiority in constructing the GRMs 

according to VanRaden (2008). 

Giving extra weight to the SNPs associated with RFI in beef cattle by using GRMSNP-chip & SNP-

chip* improved the accuracy of predictions in heifers and Australian cows. However, using 

GRMWGS & WGS* in the model did not improve the prediction accuracy. When using WGS, the 
SNPs associated with RFI (p < 0.001) in beef cattle were distributed across the genome and 

included many low MAF SNPs. The rate of false positive associations seems to be higher for 

SNPs with low MAF because the imputation has more errors for these SNPs.. This problem could 

potentially be solved if a more stringent p-value was used to choose the SNPs for GRMWGS*, 

however due to polygenic architecture of RFI, some SNPs with small effects would also be 

excluded.   

 

Table 1. The accuracy of RFI predictions for Australian heifers and cows using different GRMs 

constructed according to Yang et al. (2010) and VanRaden (2008) (in parenthesis)  

GRM Accuracy of RFI prediction 

for heifers 

Accuracy of RFI prediction 

for cows 

GRMSNP-chip 0.57 (0.56) 0.34 (0.35) 

GRMSNP-chip & SNP-chip* 0.67 (0.65) 0.46 (0.41) 

GRMWGS 0.52 (0.55) 0.31 (0.39) 

GRMWGS & WGS* 0.50 (0.53) 0.32 (0.34) 
GRMSNP-chip is constructed from 569,179 SNP-chip genotypes.  

GRMSNP-chip & SNP-chip* is the average of GRMSNP-chip and the GRM built from 1,739 SNPs in SNP-chip genotypes which were 

significantly associated with RFI in beef cattle (p < 0.001). 

GRMWGS is constructed from 24,352,503 WGS genotypes. 

GRMWGS & WGS* is the average of GRMWGS and the GRM built from 60,646 SNPs in WGS genotypes which were 

significantly associated with RFI in beef cattle (p < 0.001). 
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The best model tested was the GRM built using the Yang et al. method with SNP-chip 

genotypes and when extra weight was given to the SNPs associated with RFI in beef cattle. The 

accuracy of GEBVs for RFI in the best model for heifers and cows were 0.67 and 0.46, 

respectively. 

 

CONCLUSION 

This study shows that giving extra weight to SNPs that were associated with RFI in beef cattle 

increased the accuracy of GEBVs in dairy cattle. However, using imputed WGS data instead of 

800K SNP-chip genotypes did not improve the prediction accuracy of genomic BLUP especially 

when the Yang et al. (2010) method was used to build GRM. The poor performance of WGS 

could be due to imputation errors and the use of BLUP rather than a non-linear method of 

calculating GEBVs. So, in order to benefit from using WGS genotypes, we need to: 1) use more 

accurate imputation, or direct genotyping of sequence variants, 2) find suitable statistical models 

such as Bayesian models, which allow a large proportion of SNPs to have zero effects and 3) use 

knowledge about the functionality of sequence variants. However, the current solution is to use 

SNP chip genotypes and to give extra weight in the GRM to the SNPs associated with RFI in beef 

cattle.  
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SUMMARY  

The aim of this research was to evaluate correlations between national selection indices and 

estimate the rates of genetic gain within and between countries, using bull breeding values from 

Australia, USA and Canada. High ranking sires in the USA and Canada do not necessarily rank 

highly in Australia. The correlations between bull proofs in Australia and either Canada or USA 

ranged between 0.74 and 0.86 for the indices assessed, implying that national breeding objectives 

and genotype by environment interactions are important. Since 2010, which is similar to the start 

of widespread use of genomic bulls, there has been considerable increase in the rate of genetic 

gain in all three countries.  

 

INTRODUCTION  

The concept that animals do not always rank the same in different environments, or that there 

is an advantage to a genotype in one environment that is not seen in another environment is known 

as a genotype by environment (GxE) interaction (Falconer and Mackay, 1996). Typically, animal 

breeders are more concerned about the re-ranking of animals than the differences in scale between 

environments. If re-ranking is substantial, then specific genotypes are required for specific 

environments, a correlation of >0.8 is often considered to be a threshold of importance, although it 

is somewhat arbitrary (Falconer and Mackay, 1996).  

International exchange of genotypes is very common in dairy cattle breeding and therefore a 

bull can sire cows in more than one country at the same time. For these bulls and their relatives, it 
is possible to calculate correlations of their proofs between countries, which is indicative of GxE. 

Interbull, the international bull evaluation service already provides some of this information for 

traits such as milk production and somatic cell count, however for national selection indices there 

are no comparisons. In Australia, in addition to the Balanced Performance Index (BPI), there are 

two other national selection indices available from DataGene (the Health Weighted Index and 

Type Weighted Index) that align with farmer philosophies (Martin-Collado et al., 2015). 

Similarly, in the USA there are five indices for farmers to choose between. The combination of 

traits within an index and their respective weights varies by country, which will reduce 

correlations between indices.  

Within country, the success of a breeding programme is often assessed as the rate of genetic 

gain achieved, especially in the primary selection tool, such as a selection index. Genomic 

selection was predicted to double the rate of genetic gain mainly through the shortening of the 
generation interval (Shaeffer, 2006). Since 2010, genomic selection programs have been widely 

adopted in genetic evaluations around the world (Pryce and Daetwyler, 2011). To date, there have 

been relatively few studies that have compared the realised rate of genetic gain before and after the 

implementation of genomic selection.  

The aim of this study was to evaluate correlations between Australian, USA and Canadian 

indices and rates of genetic gain in these indices. For comparison, a selected number of traits 

(stature, milk yield and overall type) genetic correlations between countries were also estimated. 
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MATERIALS AND METHODS  

Selection indices and breeding values of predicted transmitting abilities (PTAs) from Holsteins 

in Australia, USA and Canada were used in the analyses. The bull breeding value file from 

DataGene was used for the Australian analysis (accessed April 2015; n=9,470). The data, included 

both Australian Breeding Values (ABV) for bulls (n=7,423) and bulls that had an international 
proof determined by Interbull (ABV(i)) (n=2,047). The American data was provided by the 

Council on Dairy Cattle Breeding (CDCB) (n=287,207). Total Performance Index (TPI) is another 

USA index, that was accessed directly from Holstein USA (Tom Lawlor personal communication, 

2015) (n=4,080). The Canadian bull proof file (April 2015) was downloaded from the Canadian 

Dairy Network (CDN) in June 2015 (n=12,269).  

The bull files were merged based on their international IDs, where only bulls born after 1990 

were considered. The number of bulls that had dual proofs with Australia was 8,226 with USA 

indices (NM, CM, FM and GM), 2,981 with TPI data and 1,874 with the Canadian index.  

 

Table 1: List of indices used in the evaluation and their country of origin 

Abbreviated index Index name Country Source No. of Bulls 

BPI Balanced performance index Australia DataGene 9,470 

HWI Health weighted index Australia DataGene 9,470 

TWI Type weighted index Australia DataGene 9,470 

TPI Total performance index USA Holstein USA 4,072 

NM Net merit USA CDCB 151,246 

CM Cheese merit USA CDCB 151,246 

FM Fluid merit USA CDCB 151,246 

GM Grazing merit USA CDCB 151,246 

LPI Lifetime profit index Canada CDN 9,217 
 

Pearson correlations between indices were calculated using merged data using the statistical 

package R (R Core Team, 2013). 

The genetic trends were calculated as regressions of breeding values (or PTAs) on year of birth 

for bulls born between 1990-2000; 2000-2010 and from 2010. To make comparisons between 
countries, the genetic trends were transformed into genetic standard deviations using the genetic 

standard deviation associated with each time period. The standard deviation for each interval (e.g. 

between 1990-2000) was calculated by taking the mean standard deviations per year over the 

period, then calculating the mean of the SD values within each time interval. The regression was 

divided by this number to give the rate of genetic gain in standard deviation units.   

 

RESULTS AND DISCUSSION 

Correlations within countries were high and reasonably strong correlations exist between 

Australian indices and all the American indices (Table 2). Removing bulls that only have an 

Interbull proof had minimal effects on the correlations (below the diagonal). Correlations of the 

Canadian LPI with the Australian indices ranged between 0.83 and 0.86 (Table 3). BPI seems to 

be more closely related to LPI than NM or TPI (0.86, 0.81 and 0.77 respectively). 
The correlations presented in Tables 2 and 3 indicate the relative response to selection that 

could be expected when selecting based on a foreign index. Ranking bulls using any of the 

Australian indices will result in similar sires being selected, as the correlations between BPI, HWI 

and TWI are very high (0.98, 0.95 and 0.94). When selecting bulls in Australia using their North 

American index, sire re-ranking is expected, as the correlations between the Australian index and 

North American indices range from 0.77 for BPI and TPI, 0.81 for BPI and NM to 0.86 for BPI 

and LPI. However, the correlations between indices depend on three factors; firstly, the traits in 

the indices and their respective weights. It is very likely that genuine economic drivers differ 
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between countries. Secondly, whether true genotype by environment interactions are occurring and 

thirdly, the differences in trait definition between countries. Sires that rank highly for their 

respective indices in the USA or Canada do not necessarily rank highly in Australia. 

 

Table 2: Correlations of Australian indices (Balanced Performance Index (BPI), Health 

Weighted Index (HWI) and Type Weighted Index (TWI)) with USA indices (Net Merit 

(NM), Cheese Merit (CM), Fluid Merit (FM), Grazing Merit (GM) and Total Performance 

Index (TPI)), above the diagonal includes both domestic and interbull proofs, below the 

diagonal is domestic proof only. 
 BPI HWI TWI NM CM FM GM TPI 

BPI 
 

0.98 0.95 0.81 0.83 0.75 0.81 0.77 

HWI 0.98 
 

0.94 0.82 0.83 0.77 0.82 0.78 
TWI 0.96 0.95 

 
0.81 0.82 0.77 0.79 0.81 

NM 0.80 0.80 0.78 
 

1.00 0.99 0.99 0.97 
CM 0.81 0.81 0.79 1.00 

 
0.97 0.99 0.97 

FM 0.74 0.76 0.74 0.99 0.98 
 

0.97 0.97 
GM 0.79 0.80 0.76 0.99 0.99 0.98 

 
0.96 

TPI 0.76 0.76 0.78 0.98 0.97 0.97 0.97 
 

SEs<0.02 
 

Table 3:  Correlations of Australian indices (Balanced Performance Index (BPI), Health 

Weighted Index (HWI) and Type Weighted Index (TWI)) with the Canadian index Lifetime 

Profit Index (LPI; CAN) above the diagonal includes both domestic and interbull proofs, 

below the diagonal is domestic proof only. 

 

BPI HWI TWI LPI 

BPI  0.98±0.01 0.95±0.01 0.86±0.02 

HWI 0.97±0.01  0.94±0.01 0.83±0.02 

TWI 0.94±0.01 0.93±0.01  0.86±0.02 

LPI 0.83±0.02 0.80±0.03 0.83±0.02  
 

It should be noted, that when correlations between traits instead of indices were estimated, 

those that were objectively scored had strong correlations (stature 0.94 AUS-CAN), suggesting 

little to no GxE. Similarly, there was a moderate correlation with milk yield across all three 
countries (0.83 AUS-USA and 0.88 AUS-CAN). Composite traits, that are more subjectively 

measured, typically had lower correlations with AUS, such as overall conformation, for example 

for overall type the correlations were 0.56 AUS-CAN and 0.59 AUS-USA although there are 

differences in trait definition between countries and increased error variance (subjectivity) in some 

traits may also be driving weak correlations, there is likely to be GxE as well.  

For all indices, the rate of genetic gain has increased dramatically since 2010 (Table 4). Rates 

of genetic gain were higher when all bulls were included and analysed based on their country of 

origin compared to bulls with dual proofs (Table 4 vs. Tables 5 and Table 6) and reflects the 

overall increase in genetic gain in these countries. The rate of genetic gain for bulls with proofs in 

Australia and a North American country was faster for TPI and LPI (Tables 5 and 6), implying 

that sires in Australia are being selected based on their international proof. There has been an 
increase in the number of international bulls used in recent years, with around 45% of daughters of 

registered bulls being sired by North American bulls since 2010, which compares to 28% from 

2000-2010. The reduced rate of genetic gain seen in the Australian indices with dual proofs 

compared to North American indices could be explained by the GxE interaction that exists and 

bulls that rank highly on the USA or Canadian indices are not necessarily well suited to the 

Australian environment reflecting the lower rate of genetic gain. These rate of genetic gain since 
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2010 should be treated cautiously, as the number of years of data in the analysis was 

comparatively small. Rates of genetic gain should be re-estimated as more data becomes available. 
 

Table 4: Holstein genetic trends in genetic standard deviations calculated as the regression of 

indices on year of birth for the following time intervals; 1990-2000, 2000-2010, 2010-now; for 

all available bulls with progeny in the country of origin (Australia – BPI, HWI, TWI 

(n=7,412); USA – TPI (n=4,072), NM (n=151,246); Canada - LPI (n=5,663)) 

 
BPI  HWI  TWI TPI NM LPI  

SD of index* 66.4 56.2 66.3 220 98.2 261 

1990-2000 0.20±0.002 0.17±0.002 0.20±0.002 0.29±0.004 0.25±0.000 0.22±0.003 

2000-2010 0.22±0.005 0.22±0.005 0.24±0.005 0.30±0.007 0.32±0.001 0.32±0.007 

2010-now 0.42±0.037 0.44±0.038 0.48±0.036 0.68±0.039 0.40±0.003 N/A 

*The overall standard deviation 
 

Table 5: Holstein genetic trends calculated in genetic standard deviations as the regressions 

of indices on the following time intervals; 1990-2000, 2000-2010; for bulls with dual proofs in 

Australia and USA for all indices except TPI, the number of bulls used was 8,548. For TPI 

2,981 bulls were used that had dual proofs  

 
BPI HWI TWI TPI NM CM FM GM 

1990-2000 0.15 0.14 0.16 0.25 0.16 0.15 0.15 0.15 

2000-2010 0.15 0.16 0.17 0.30 0.25 0.07 0.23 0.24 

SEs<0.01 
 

Table 6: Holstein genetic trends in genetic standard deviations calculated as regressions of 

the following time intervals; 1990-2000, 2000-2010; for bulls with dual proof in Australia and 

Canada (n=1,874) 

 
BPI HWI TWI LPI 

1990-2000 0.14 0.13 0.14 0.19 

2000-2010 0.14 0.13 0.12 0.21 

SEs<0.01 

 

CONCLUSIONS 

Sires that rank highly for their respective indices in the USA or Canada do not necessarily rank 

highly in Australia, with correlations between BPI and NM (USA), TPI (USA) and LPI (Canada) 

being 0.81, 0.77 and 0.86 respectively. Weak correlations are driven by GxE, different trait 

weightings and definitions and the degree of subjectivity of measuring traits in the indices. Since 

2010, there has been a considerable increase in the rate of genetic gain in all countries. This could 

be a result of the introduction of genomics, the increase in the number of bulls being genomically 

tested and shorter generation intervals. 
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The development of the assembly has been a major joint effort of several groups making efficient 

use of very limited resources. Participants in this effort have been: T.P.L. Smith (USDA, ARS, 

USMARC, Clay Center, NE), B.D. Rosen (Animal Genomics and Improvement Laboratory, ARS 

USDA, Beltsville, MD), S. Koren (National Human Genome Research Institute, Bethesda, MD), A. 

Zimin (University of Maryland, College Park, MD), R.D. Schnabel (Division of Animal Sciences, 

University of Missouri, Columbia), D. Bickhart (Cell Wall Biology and Utilization Laboratory, ARS 

USDA, Madison, WI), R. Hall (Pacific Biosciences, Menlo Park, CA), S.J. Schultheiss and C. 

Dreischer (Computomics GmbH, Tuebingen, Germany). Funding for the project was provided by 

USDA/NRSP-8 Animal Genome, USDA-ARS Meat Animal Research Center, Neogen and Zoetis. 

 

SUMMARY 

There are two public cattle genome reference assemblies (UMD3.1.1 and Btau5.0.1) that were 

based primarily on the same set of data.  Both assemblies used sequences of a minimum tiling path 

of BAC clones from the CHORI-240 library (prepared using DNA from L1 Domino 99375), 

augmented by low coverage whole genome shotgun sequencing (WGS) from his daughter, L1 

Dominette 01449. Updates and new assembly releases through the years have led to significant 

improvements, but as confirmed by the recently developed cattle genome optical map (BtOM1.0), 

there are numerous differences between these assemblies that have produced ambiguities that 

continue to impact and hamper genomic analysis in cattle.   Recent advances in long-read sequence 

technology, combined with new scaffolding technologies, have made it possible to create a 

completely new de-novo Dominette assembly. An approximately 80X PacBio FALCON based de-
novo assembly, followed by scaffolding with Dovetail Genomics Chicago library/HiRise 

technology, the BtOM1.0 Optical Map of Dominette and a recombination map of 59K autosomal 

SNPs. The scaffolded assembly was then refined with independent de-novo assemblies from CANU 

and MaSuRCA, yielding chromosome length scaffolds. Preliminary assembly statistics include an 

N50 contig size of 22 Mb and an N50 scaffold size of 104 Mb representing several fold 

improvements over UMD3.1 (contig N50=0.97Mb, scaffold N50=6.4Mb). Additionally, full-length 

transcripts from 30 Dominette tissues have been sequenced with PacBio using the Iso-Seq method 

to support improved annotation. A public version of the new ARS-UCD assembly is expected to be 

released in mid 2017. An update on the status of the long-read based assembly of Dominette will be 

presented here, providing some perspective on the value of having an improved bovine reference 

sequence. 

 

INTRODUCTION 

The availability of accurate well-annotated genome assemblies in agricultural species have 

become essential tools to enable the understanding of phenotypic variation and practical applications 

of DNA technologies. In cattle, numerous opportunities exist in the application of genomic selection 

and of new technologies, like gene editing to improve production efficiency. For the  human and 

mouse genomes, enormous efforts and resources have been spent to develop what has been referred 

to as Gold (targeted finishing with haplotype resolution of critical regions) and Platinum (contiguous 

haplotype-resolved representation of the entire genome) level genome sequence assemblies. In order 
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to approach some of these advanced states of genome resolution in cattle a significant effort has 

been placed towards developing a new improved Dominette assembly. 

 

There are currently two public cattle genome reference assemblies (UMD3.1.1 and Btau5.0.1), 

that were based primarily on the same set of data.  Both assemblies used sequences of a minimum 
tiling path of BAC clones from the CHORI-240 library (prepared using DNA from L1 Domino 

99375), augmented by low coverage whole genome shotgun sequencing (WGS) from his daughter, 

L1 Dominette 01449. Subsequently, the Btau5.0.1 assembly was improved by gap filling with low 

coverage long-read WGS, and more recently with P5 PacBio reads.  Scaffolding used combinations 

of radiation hybrid map and genetic linkage map data, as well as a large number of BAC end 

sequences.  Recently, a cattle genome optical map (BtOM1.0) was developed (Zhou et al. 2015), 

which confirmed that there are numerous differences between these assemblies that have produced 

ambiguities that continue to impact and hamper genomic analysis in cattle. 

 

Two animals (Domino and Dominette) were used to produce the assemblies that resulted in an 

increased amount of diversity between haplotypes. Both assemblies, although having used 

practically the same sequenced data, are significantly different, appearing as assembly errors, 
genome segmental inversions, chromosomal placements, sequence gap numbers and discrepancies 

of sequence coverage of the bovine genome. Although there have been periodic updates of both 

sequence assemblies, many issues still remain in both. It is very difficult when one encounters 

discrepancies between assemblies to know what is correct, and this impacts genomic studies. Table 

1 shows a comparison of the genomic statistics of both assemblies, UMD3.1.1 and BTAU 5.0.1.  

 

Table 1: Comparison of current cattle genome assemblies (NCBI report) 

UMD3.1.1 (Reported April 2009 (Genome 

Biol) 

BTAU 5.0.1 (Released (11/19/2015) 

Based on 9x Sanger coverage WGS 

Dominette 

Based on 9x Sanger coverage of Dominette 

BAC path Domino BAC ends, + 19x coverage P5 PacBio 

RH map and human-cow synteny map BAC end, RH map, PBJelly2 

Genomic statistics: Genomic statistics: 

75,618 contigs  (97 kb contig N50) 42,267 

contigs  (276 kb contig N50) 

42,267 contigs  (276 kb contig N50) 

6337 scaffolds (6.4 Mb scaffold N50) 5,998 scaffolds (6.8 Mb scaffold N50) 

3,193 gaps between scaffolds 2,856 gaps between scaffolds 

 

GENOME ASSEMBLY PROCESS 
Creating a genome assembly is the process of reconstructing a genome to develop a database of 

DNA sequences that represent an example individual of the species, from a collection of short or long 

sequence reads. A de-novo assembly is performed without the aid of a reference genome and the 

genome is reconstructed by directly reconstructing the puzzle of sequence reads. One complicating 

factor in the reconstruction is the presence of repetitive sequences, particularly when using short read 
lengths that do not span the length of the repeats.  Recent advances in Pacific Biosciences Smrt single-

molecule sequencing technologies, with the generation of 20-50 kb have allowed resolving repetitive 

sequences and the creation of accurate genome assemblies (Berlin et al. 2015). 

 

The repetitive content of genomes on both large and small scales, including structures near 

centromeres and telomeres, large paralog gene families, like zinc fingers, and the distribution of 

interspersed nuclear elements such as LINEs and SINEs are the cause of many of the incorrect 

Btau5.1 

Released 11/19/2015 

Based on 9x Sanger coverage initial 

+ 19x coverage P5 PacBio data 

BAC end, RH map, PBJelly2 scaffolding 

42,267 contigs  (276 kb contig N50) 

5,998 scaffolds (6.8 Mb scaffold N50) 
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assembly problems we have had in the past. Such difficult-to-assemble content composes large 

portions of eukaryotic genomes, about 60-70% of the human genome (de Koning et al 2011). 

 

Although PacBio reads are error prone, errors are at random and can be overcome by sufficient 

coverage producing highly accurate assemblies, and it has been demonstrated from assemblies in 
humans and other organisms that single-molecule sequencing can produce de-novo near complete 

eukaryotic assemblies that are 99.99% accurate compared to the available references. In addition to 

the technical quality of the assemblies, the time to produce an assembly has been reduced by 5x and 

cost by more than 200 orders of magnitude.  

 

The creation of the final assembly is an iterative process that evolves as scaffolds and super-

scaffolds are built. The initial assembly process used in the creation of the Dominette de-novo 

assembly is shown in Figure 1. 

 

Figure 1: Initial Dominette de-novo assembly (January 2017). Approximately 321 PacBio SMRT 

cells with an average size of 20 kb were produced for a ~80x genome coverage followed by a 

hierarchical genome assembly process of PacBio long reads using FALCON, and Quiver for 

polishing.   Quiver generated consensus contigs using local realignment of reads to the assembly to 

correct short insertions, deletions and substitutions errors. Following the construction of contigs 

from pre-assembled reads, the true assembly process is dependent on the correct orientation of 

contigs into scaffolds and super-scaffolds. This required other data types, like Dove Tail Chicago 

libraries, recombination map, optical map, alignment of short read sequences and manual curation. 
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Among the initial scaffolding resources used in the Dominette assembly were a Dovetail Chicago 

Hi-Rise library, the optical map and a genetic map. The Dovetail method is based on producing 

DNA linkages of up to several hundred kb to make sequencing libraries that can link distant 

fragments. This long-range mate pair data can be used to orient contigs and largely improve 

scaffolding in de-novo assemblies (Putnam et al. 2016).  The Optical Map is a high throughput 
system that produces ordered restriction maps from individual molecules of genomic DNA (Zhou et 

al. 2015). The approach is ideal for identifying structural variants and studying genome structure. 

The recombination map used is a sex-specific recombination map of 59K autosomal SNP (Ma et al.  

2015). The map was used primarily for breaking, ordering and orienting contigs.  

 

Depending on how all the data is used and how the scaffolding resources are applied one ends 

up with several assemblies in which some super-scaffolds are better assembled or one assembly 

captures longer scaffolds and contigs. All this needs to be carefully examined in order to develop a 

stable assembly for further improvement. Early statistics after the initial scaffolding of the new 

Dominette assembly are shown in Table 2. 

 

Table 2: Early progress statistics of the new Dominette assembly ARS-UCD v1.0 (Jan, 2017) 

Based on ~80x PacBio data P6 chemistry, Falcon assembly - Quiver (PacBio) 
Scaffolding: Dovetail HiRise, Optical Map, Rec Map 

Genomic statistics: 

2816 contigs  (22.6 Mb contig  N50) 

30   scaffolds (104 Mb scaffold N50, L50 12) 

Largest scaffold length 211 Mb (Chr 1) 

460 gaps   

 

For sequence annotation, full-length transcripts spanning entire isoforms using the PacBio Iso-

Seq method from approximately 30 Dominette tissues are being developed. We expect to release 

an assembly with haplotype-resolved chromosomes. 

 

CONCLUSIONS 

 Long single-molecule reads, despite higher per-read error rate, create higher quality 

reference genomes at a fraction of the cost of earlier technologies. 

 The improvement in quality of the cow assembly will have substantial impact on many 

genetic and molecular genetic studies. 

 Many studies would benefit from re-mapping reads, and/or analysis of GWAS with 

improved marker order. 

 The improvements in the cow assembly are substantial enough that it is worth considering 

waiting for them for ongoing GWAS and WGR studies. 

 We expect to have a version of the new ARS-UCD assembly available this summer-2017, 

through NCBI. 
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SUMMARY 

Brahman cattle are well adapted to tropical environments and are extensively used for beef 

production in Northern Australia. Identifying mutations in Brahman genomes associated with 

adaptation, fertility, meat quality and growth rates would facilitate genome selection and therefore 

accelerate genetic gain for these traits, in both Brahman cattle and composite cattle with Brahman 

ancestry. In this paper, 36 million high quality variants (SNP and Indels) were discovered from 46 
whole genome sequenced Brahman bulls that represent key ancestors of the breed in Australia. As 

some infusion of Bos taurus into Brahman cattle has occurred during breed formation, we investigate 

regions of the Brahman genome that have high Bos taurus introgression. We identified multiple 

genome regions in Brahmans that were Bos taurus in origin, and investigated the roles, pathways 

and trait associations the of genes found in these regions. 

 

INTRODUCTION 

Brahman cattle are a breed of Bos indicus cattle, developed in the southern United States that are 

well adapted to tropical environments. They are a cross breed between four different types of Zebu 

cattle; Gir, Gujarat, Ongole and Krishna Valley. In northern Australia, Brahman cattle have a major 

impact on the Australian beef industry and are widely used in beef production due to their suitability 
to these harsh environments. To increase genetic diversity, Brahman cattle have been “graded up” 

from existing Bos taurus breeds in both Australia and United States. 

Identifying mutations in Brahman genomes associated with adaptation, fertility, meat quality and 

growth rates would facilitate genome selection and therefore accelerate genetic gain for these traits, 

in both Brahman cattle and composite cattle with Brahman ancestry. With this ultimate aim, 46 

Brahman cattle that were key ancestors of the breed were whole genome sequenced in this study. 

We first identified all the variants in these genomes such as single nucleotides (SNPs) and 

insertion/deletions (Indels), then annotated the variants into functional classes based on their 

locations on the genome. Finally, we used the sequence information to identify, for each bull, 

whether chromosome segments were indicine or taurine in origin.   

 

MATERIALS AND METHODS 
Bulls for sequencing were selected using an algorithm that identified 46 bulls that captured the 

highest proportion of genetic variation in the breed, based on an analysis of an extensive Brahman 

pedigree and a stepwise regression procedure to avoid double counting of ancestral genomes, and 

took into account whether DNA, extracted from semen straws or Ampules, was available for a bull 

or not (Daetwyler 2014; Druet 2014). The selected bulls were sequenced on an Illumina HiSeq 

sequencer, at an average of 12.5 times genome coverage, and a range of 10 times genome coverage 

to 30 times genome coverage. 

Reads were mapped to the bovine genome (UMD3.1) with BWA, and variants were detected in 

the sequence with a GATK pipeline (McKenna et al. 2010). The variants included single nucleotide 
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polymorphisms (SNP) and small insertion deletions (indels). 

SNP variants were filtered based on modified filtering thresholds recommended by the GATK 

Best-Practices guideline (DePristo et al. 2011) to remove SNP that had poor quality scores. 

Bos taurus and Gir variants were obtained from the 1000 bulls genomes project (Daetwyler et 

al. 2014) and from the study by (Liao et al. 2013), respectively. All SNP were obtained from each 
study and the allele frequencies for each SNP was calculated using in-house scripts and common 

SNP found in Brahman cattle were selected for. The population structure between Brahman and Bos 

taurus and between Brahman and Gir cattle was determining by calculating the Fixation value (FST) 

for each SNP in both taurine and Gir with the SNP in each individual Brahman animal, based on the 

methodology by the study (Bolormaa et al. 2011), using the following formula: 

 

𝐹𝑆𝑇 =
𝐻𝑡 − 𝐻𝑠

𝐻𝑡
 

Where: 
𝐻𝑠 = 𝑃𝐵𝑇(1 − 𝑃𝐵𝑇) + 𝑃𝑏𝑟𝑎𝑖(1 − 𝑃𝑏𝑟𝑎𝑖) 

And 

𝐻𝑡 =
2 ∗ (𝑃𝐵𝑇 + 𝑃𝑏𝑟𝑎𝑖)

2
 × 1 − (

𝑃𝐵𝑇 + 𝑃𝑏𝑟𝑎𝑖

2
) 

 

PBT is the SNP allele frequency of the alternative allele in either Bos taurus or Gir and Pbrai is 

the zygosity information of the Brahman SNP for that animal. Hs is to calculate heterozygosities in 

the subpopulation and Ht is to calculate the overall heterozygosity. This resulted in two datasets, 

one is the FST between each individual Brahman animal and the Gir SNPs and the other is between 

individual Brahman animals with Bos taurus SNPs. Following this, we grouped SNPs into fixed 

windows of 250 kilobases (kb) and calculated the average FST for all SNP within each fixed window 

across the genome. This was done by simply by adding the FST of all SNP found in the 250 kb fixed 

windows and dividing by the total number of SNP, as shown in the following formula: 

𝐹𝑆𝑇𝑎𝑣𝑔 =
∑(𝐹𝑆𝑇𝑓𝑤)

𝑛
 

 

Where FSTfw is the FST for the SNP found within a fixed window, and n is the total number of 
SNP found in that fixed window. Animals were then sorted based on date of birth (from oldest to 

youngest), and the average FST in each fixed window across all animals was calculated. 

SNP Annotation: Brahman SNPs were annotated into intergenic, intragenic, introns, exons, 

CDS, UTR (both 5’&3’), 5 kb upstream of TSS, 5 kb downstream of genes, missense, synonymous 

and splice site classes by querying the Ensembl variant database version 87 (Yates et al. 2016). CpG 

Isles annotations were from the study by (Su et al. 2014).  

         

RESULTS AND DISCUSSION 

Initial analysis of the sequence data revealed the Brahman genomes had a much higher rate of 

polymorphism than that observed in Bos taurus breeds. This is likely a reflection of a larger ancestral 

population size for Bos indicus cattle than Bos taurus cattle (pre-domestication), and the fact there 
was some infusion of Bos taurus breeds into Brahmans during breed formation. Additionally, as 

Brahman is the synthesis of 4 different indicus breed types, the impact on the breed formation is 

reduced. 

Following SNP annotation, we find that, as expected, the majority of the variants are found 

within the intergenic regions of the genome, as shown in Table 1, with close to 74 % of all SNP 

found in this class. 
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Table 1. Total number of Brahman SNP found in each annotation class 

Annotation No. of SNP Percent of Genome 

Intergenic 26,505,585 73.39 % 

Intragenic 9,608,525 26.61 % 

Intron 9,088,608 25.17 % 

Exon 433,758 1.20 % 

CDS 349,093 0.97 % 

3' UTR 69,733 0.19 % 

5' UTR 16,426 0.05 % 

5kb Downstream of TTS 692,447 1.92 % 

5kb Upstream of TSS 699,424 1.94 % 

Synonymous 128,397 0.36 % 

Missense 83,069 0.23 % 

CpG Meth 995,319 2.76 % 

Splice Sites 21,789 0.06 % 

Total 36,114,110  

 

Just over 25% of Brahman SNPs are found within the intragenic class (Table 1), the majority of 

which (95%) are actually intronic variants. The percent of variants that are found within coding 

genes (Exon and CDS class) is 1.2%. Similar results have been observed in Bos Taurus (Koufariotis 

et al. 2014).  

 
Figure 1. Number of SNP that are common or unique between the breeds 

Figure 1 shows a Venn diagram of the overlap of SNP between the breeds. We see that there are 

more SNP in common between Brahman and Gir (95%) as opposed to Brahman and Bos taurus 
(48%). This is expected as Gir, which are a indicus breed, is one of the 4 ancestors to Brahman. 

Further 6,674,591 SNP in Brahman are found in both Gir and Bos taurus, which is a total of 18.5% 

of all Brahman SNP. 

We examined the population structure between the Brahman cattle and taurine/Gir cattle to 

determine how much of the genome in Brahman is influenced, or infused with taurine and Gir. 

Overall, we find that Brahman and Gir cattle are the most similar (average FST over the whole 

genome is 0.19) compared with Bos taurus (average FST is 0.26) across the whole genome, as the 

average FST remains relatively low (is closer to 0).   

However, we do observe some interesting findings on some chromosomes in where Bos taurus 
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is more similar to Brahman than Gir, based on the FST window results. One example of this is on 

Chromosome 23 (Figure 2), in which we see a large region that is very similar to Brahman. This 

region is most likely the bovine lymphocyte antigen (BoLA) region. The BoLA regions is part of 

the MHC complex that display foreign peptides within a cell to cytotoxic T cells, triggering an 

immune response. 
This raises the question, why is Brahman acquiring Bos taurus alleles in this region? One 

suggestion is that this could be due to MHC diversity in the alleles and their heterozygosities, which 

has been observed in many other vertebrate species (Salmier et al. 2016). It must be noted though, 

that this could also be due to a miss-assembly of that region in the UMD3.1, leading to these results. 

Finally, we identified a region of Bos taurus introgression around the PLAG1 gene that was 

previously described by (Fortes et al., 2013). We find that the Bos taurus introgression in this region 

increases in frequency in younger animals, which could reflect a selection pressure on age at puberty.  

 
Figure 2: The average FST in each fixed window on chromosome 23 between Gir cattle (Orange line), 
and Bos taurus (blue line). 

The next step in this project is to link genome variation amongst the bulls to variation in key 

traits such as fertility and meat quality and to examine if variants in certain genomic regions (such 

as coding regions, non-coding regions, regulatory regions) are more likely to influence complex beef 

trait variation. 
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GENOMICS CAN CONTRIBUTE TO SELECTION TO IMPROVE BOTTLE TEATS IN 

TROPICAL BEEF GENOTYPES 
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SUMMARY 

Beef CRC research showed that a subjective score of teat size (small (1) to large (5)) was 

heritable in tropically adapted Brahman (BRAH) and Tropical Composite (TCOMP) cows, and 

that higher teat scores (bottle teats) were genetically associated with higher calf losses from birth 

to weaning. Teat traits are only expressed in females, and the research showed that they tended to 

display more variation in later life; making them ideal candidates for genomic selection. Front and 

rear teat scores (TSF and TSB respectively) were recorded in cows at calving through up to 6 

matings. From these, a trait was created which described a cows maximum lifetime teat score 

(TSM), as well as a binary trait which distinguished cows that received a teat score of 4 or 5 at any 

time through their lives (1) from those which did not (0) (MSB). Results confirmed the heritability 
of TSF and TSB (h2 = 0.30 to 0.40), and variation in both TSM and MSB was also shown to have 

a genetic basis (h2 = 0.49 and 0.46 respectively for BRAH, and 0.29 and 0.22 for TCOMP). 

Genome wide association analyses identified large numbers of significant SNPs but did not 

suggest a likelihood of identifying a small number of SNPs of large effect. It is unlikely therefore, 

that a simple diagnostic test (based a small number of SNPs) could be developed for the traits. 

Conventional genomic selection, however, is likely to present opportunities to improving teat traits 

by selection in tropically adapted beef genotypes, with accuracies of genomic prediction of 0.23 to 

0.35 for TSM and MSB across both genotypes. 

 

INTRODUCTION 

Results from the Co-operative Research Centre for Beef Genetic Technologies’ northern 
breeding project (Beef CRC) showed that a subjective score of teat size (1 (smaller) to 5 (larger)) 

was heritable (h2 = 0.30 to 0.38) in Brahman and Tropical Composite cows (Bunter et al. 2014). 

That study also showed that higher teat scores (bottle teats) were genetically associated with 

increased calf losses from birth to weaning (rg = 0.54 ± 0.18), and that teat score tended to increase 

with cow age in both genotypes. This, combined with the sexually dimorphic nature of the trait 

makes it a prime candidate for genomic selection. This study aimed to determine whether SNPs of 

large effect for variation in teat score could be identified in the Brahman and Tropical Composite 

females, and to estimate the accuracy of genomic prediction for teat traits. 

 

MATERIALS AND METHODS 

Cow management and trait definitions. A comprehensive account of cow herd management is 

provided by Johnston et al. (2009) and Johnston et al. (2014), and Bunter et al. (2014) presented a 
description of teat score measurement in the Beef CRC Brahman (BRAH: n = 969) and Tropical 

Composite (TCOMP: n = 1085) females. In brief, females were transported from their properties 

of origin (5 BRAH and 4 for TCOMP) to on one of four research properties. Defining features of 

each location were described in detail by Barwick et al. (2009), and were selected to be 

representative of the major production environments of northern Australia. Cows were first mated, 

in multiple sire groups, to calve as 3-year-olds, and were re-mated annually thereafter, unless 

culled for failing to wean a calf from consecutive matings. 

_____________________________  
* AGBU is a joint venture of NSW Department of Primary Industries and the University of New England. 
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At calving, calves and their dams were located within 24 hours of birth, and calves were 

individually identified, and their gender, date of birth and dam’s teat scores recorded. Teat scores 

were assigned for front (TSF) and back (TSB) teats on a 1 – 5 scale, with higher scores 

representing greater teat size. For this study, a trait describing a cows maximum teat score (across 

all years for which cows had a record) was created for each animal (TSM), and a binary trait 
(MSB) was also generated which  identified whether cows had a TSM of less than or equal to 3 

(coded 0) or greater than 3 (coded 1). As a cow could have teat scores recorded at multiple 

calvings, there were a total of 3661 TSF and TSB, and 939 TSM and MSB for Brahman cows; 

with 5006 TSF and TSB, and 1053 TSM and MSB for Tropical Composite females (Table 1). 

 

Modelling and variance component estimation for teat score traits. Fixed effect models for all 

teat traits initially included terms which described cohort (the location the cows were managed and 

their year of birth), the cows property of origin, cow month of birth, previous mating outcomes 

and, for TCOMP, the genetic groups of their sire and dam. For both genotypes, all first order 

interactions were also tested in the initial models. Terms were dropped sequentially from the 

models in order of non-significance (P < 0.05) to produce the final models for each trait-by-

genotype combination. Following the methods described by Bunter et al. (2014), variance 
components for teat score traits were estimated in ASReml, with animal fitted as random and 

relationships between animals described using a three generation pedigree. For TSF and TSB, 

which included repeated records from animals, a permanent animal genetic effect was also fitted as 

random in the models. 

 

Genotyping and quality control for genotype data. The genotype data used for study was a 

subset of Beef CRC genomic dataset. The database included high density Illumina genotypes (HD: 

729,068 SNPs) for 1137 animals, with a further 14, 110 imputed to this level from the results of 

Illumina 50K or 80K SNP chips using the BEAGLE software package (Browning and Browning, 

2011), with an accuracy of 90% (as described by Zhang et al. 2014). Of the 969  BRAH and 1085 

TCOMP cows with records for teat score traits, 939 and 1053 respectively had SNP genotypes 
which could be analysed for this study. SNPs with low minor allele frequencies (< 0.05) were 

excluded from the analyses, as were those which deviated significantly (P < 10-5) from Hardy-

Weinberg Equilibrium, resulting in a total of 567,445 analysable SNPs.  

 

Genome wide association study. The magnitude of individual SNP effects were estimated as a 

fixed effect in a mixed model that included animal fitted as random and all significant descriptors 

of environmental variation, as described by Hawken et al. (2012). The expected false discovery 

rate (FDR) was calculated as: FDR = p (1 - s/t) / [ (s/t) (1-p) ], where p represents the threshold 

significance level tested (e.g. 0.01), s is the number of significant markers, and t is the total 

number of markers evaluated. To account for the multiple testing inherent in the GWAS 

methodology, further rigor was applied to the testing of significance of SNPs by applying a 

Bonferroni correction. This much more stringent evaluation of significance in multiple testing 
experiments divides the significance level applied by the number of tests carried out, and sets this 

as the threshold at which significance was evaluated. 

 

Genomic prediction and five-fold internal cross validation. Genomic estimated breeding values 

(GEBV) for teat score traits were calculated using genomic best linear unbiased prediction 

(GBLUP). GEBVs were estimated with the genomic relationship matrix fitted as random (Zhang 

et al. 2014), and inverted using the Wombat software package (Meyer 2007). GEBV Accuracy 

(ACC) was calculated as: ACC = r / h,  where r is the correlation between GEBVs and phenotypes 

(adjusted for fixed effects) and h is the square root of the heritability for  the trait when estimated 
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in a model which contained all phenotypes and significant fixed effects, and with relationships 

described using a 3 generation pedigree. The accuracy reported for this study is the mean of five 

estimates from a five-fold internal cross validation of GEBV estimates (Zhang et al. 2014). 

 

RESULTS AND DISCUSSION 
Descriptive statistical and genetic parameters for teat traits. Summary statistics, additive 

variances and heritabilities for teat score traits are presented in Table 1. Means show that on 

average, BRAH cows had higher TSF, TSB and TSM than TCOMP, and that it was more common 

for BRAH cows to record a teat score of 4 or 5 than it was for TCOMP  (MSB = 0.30 and 0.21 for 

BRAH and TCOMP). For the subset of BRAH and TCOMP females with genotypes, heritabilities 

for TSF and TSB were consistent with those reported by Bunter et al. (2014), which was expected, 

as the estimates were based on very similar datasets (h2 TSF and TSB = 0.38 and 0.30 for BRAH 

and 0.37 and 0.31 for TCOMP from that study). Heritabilities for TSM and MSB were comparable 

with those for TSF and TSB. These results suggest that if breeders of tropically adapted beef cattle 

wished to apply selection to reduce teat size, or to select to reduce the incidence of high teat 

scores, this could be undertaken sucessfully.  

 

Table 1. Number of records analysed (N), mean and standard deviation (SD), with additive 

variance (σa
2) and resultant heritability (and associated standard error (s.e.)) for teat score 

traits in Brahman and Tropical Composite cows. 

 

Traits N Mean SD σa
2 h2 s.e. 

Brahman 

TSF 3661 2.81 0.89 0.27 0.40 0.08 

TSB 3661 2.70 0.82 0.18 0.32 0.07 

TSM   939 3.39 0.88 0.39 0.59 0.12 

MSB   939 0.30 0.46 0.10 0.46 0.12 

Tropical Composite 

TSF 5006 2.65 0.84 0.17 0.30 0.08 

TSB 5006 2.53 0.79 0.16 0.30 0.08 
TSM 1053 3.22 0.77 0.15 0.29 0.10 

MSB 1053 0.21 0.41 0.04 0.22 0.09 

 

Genome wide association study (GWAS) for teat score traits. Tables 2 presents the number of 

significant SNPs identified at levels of P ≤ 0.05, 0.01, 0.001 and 0.0001 for each of the teat score 

traits evaluated. Results for both genotypes suggest that there were high numbers of significant 

SNPs identified for the teat score traits evaluated. Across the four teat traits evaluated, the 

expected FDR averaged 0.41, 0.41, 0.42 and 0.52, for significance levels of 0.05, 0.01, 0.001 and 

0.0001 respectively. FDR tended to be higher for TCOMP with results suggesting that for TSF and 

TSB, none of the SNPs identified as significant were beyond the expectations of chance. For the 

remaining teat traits, however, these results demonstrate a capacity to successfully identify 

significant SNPs, and suggest that genomic selection could be undertaken sucessfully in the 
genetic evaluation for  tropically adapted beef genotypes to improve teat score. After accounting 

for the multiple testing associated with GWAS analyses through the application of a Bonferroni 

correction (P ≤ 0.05 = 8.8 E-8), there were far fewer significant single SNPs associated with the 

teat score traits evaluated. For BRAH, none retained significance, while only a small proportion of 

SNPs identified for TCOMP TSM and MSB traits were still significant (n = 0 to 24).   
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Table 2. Number of significant SNPs identified from genome wide association studies and 

accuracy of genomic prediction based on 5-fold cross validation for teat score traits in 

Brahman and Tropical Composite cows. 

 

Breed Trait Number of significant SNPs at P ≤ Accuracy of 

 0.05 0.01 0.001 0.0001 genomic prediction 

Brahman TSF 60352 11955 1063 13 0.12 

 TSB 75518 17730 2015 13 0.08 
 TSM 62820 13659 1458 12 0.30 

 MSB 64107 14253 1656   8 0.27 

Tropical TSF 67045 13971 1416     5 0.09 

Composite TSB 49633   8433   579     3 0.10 

 TSM 77891 20038 3181 136 0.23 

 MSB 66195 15211 2068   88 0.35 

 

Genomic prediction for teat score traits.  Table 2 also presents the accuracies of GEBVs 

estimated from five-fold internal cross-validation for teat score traits. The results suggest that 

GEBVs for TSF and TSB would provide only limited opportunities to change the trait by genomic 

selection, due to the low accuracies of GEBVs (ACC = 0.08 to 0.12). TSM and MSB displayed 

higher accuracies of genomic prediction (0.23 to 0.35), suggsting that genomic information could 

make a useful contribution to genetic evaluation for these traits.  
 

CONCLUSIONS  

This study confirmed the heritability of repeated measures of teat scores, and found that new 

traits, describing maximum lifetime teat score and whether cows ever recorded a high score (4 or 

5), displayed similar heritabilities (h2 = 0.22 to 0.59). A genome wide association study showed 

that variation in teat traits was associated with a large numbers of genes, and that development of a 

genomic test, based on small numbers of genes of large effect, was unlikely to be successful. 

Results indicated however, that GEBVs for teat traits had accuracies between 8 and 30 percent. 

Beef CRC research showed that high teat scores (bottle teats) were significantly genetically 

associated with early calf survival in tropical beef genotypes. The results of this study suggest that 

genomics could contribute to the genetic evaluation for teat traits, and correlated female 
reproduction traits, if they were included in the evaluation for tropical beef breeds. 
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SUMMARY 

Feed efficiency is an important trait in many beef cattle breeding programs. The current measure 

of feed efficiency used in beef cattle is net feed intake (NFI). Current measurement protocols 

stipulate a 70 day test period to obtain a reliable NFI phenotype, incurring a significant economic 

cost. This study examined the phenotypic and genetic implications of shortening the number of days 

on feed in the calculation of NFI phenotypes. Phenotypic and genetic parameters were estimated for 

5 trial lengths (14, 28, 42, 56 and 70 days) for NFI and its component traits; average daily gain 

(ADG), metabolic mid weight (MMWT) and daily feed intake (DFI). For NFI, 56 days on feed was 

highly genetically correlated with 70 day estimates. For shorter periods correlations reduced and 

variance components changed substantially. In contrast, daily feed intake could be measured well in 
short periods of time with genetic correlations of > 0.95 for lengths greater than 14 days. To 

substantially reduce the time on feed it is suggested that breeders consider collecting DFI 

information rather than NFI. If this was seen to be desirable an alternative way of balancing feed 

intake and weight gain would need to be explored. 

 

INTRODUCTION 

The cost associated with feeding animals is one of the major expenses to all livestock production 

systems. How efficiently this feed is converted into animal products is often termed feed efficiency 

(Archer 1999).  Feed efficiency (FE) is an important breeding objective trait in many beef cattle 

breeding programs as breeders attempt to find an optimum balance between increased production 

levels and costs of production. Many authors have suggested different ways of measuring feed 
efficiency which range from ratio traits like feed conversion ratio (FCR) to traits corrected for 

production like net (or residual) feed intake (Arthur et al. 2001). The current measure of feed 

efficiency used in beef cattle is NFI, which describes the difference between actual feed intake and 

the expected feed intake required for maintenance and growth (Arthur et al. 2001). This process 

makes NFI phenotypically independent of growth and maintenance; however, genetic correlations 

between each of the traits often remain (Archer 1999). 

Current industry protocols require that daily feed intake (DFI) and live weight be recorded for 

70 days so that an accurate NFI phenotype can be estimated (Archer et al., 1999). Given the large 

economic cost associated with this, most recording has been limited to small groups of animals 

recorded at central testing sites (i.e. Tullimba feedlot). This study aimed to examine the phenotypic 

and genetic implications of shortening the number of days required to obtain a reliable phenotypes 

associated with feed efficiency.  
 

MATERIALS AND METHODS 

The phenotypic data examined in this study included live weights, and DFI measures from 1725 

Angus Steers collected from 2012 to 2016 at Tullimba Feedlot. On entry to the feedlot, the animals 

in this study ranged from 470-700 days of age and weighed 400-520 kg. Initially animals were 

conditioned for 21 days and fed for an additional 70 days over which time all data was collected 

(NFI test period). All animals were weighed 6 times over the 70-day test period (fortnightly). 

Average daily gain was calculated as the regression of weight on time (days) while MMWT was 

obtained as the mid-point weight to the 0.73 power (Arthur et al., 2001; Berry and Crowley, 2013). 
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Net feed intake was estimated as the residuals from the following regression;     FI = b1(ADG) + 

b2(MMWT) + NFI (Arthur and Herd, 2008; Berry and Crowley, 2013). The regression coeffecients 

(b) were estimated across cohorts of steers. NFI, ADG, MMWT and DFI were calculated each for 5 

trial lengths (14, 28, 42, 56 and 70 days), hence we considered 20 traits in total. Each reduced trial 

length was compared to the current 70 day period using a series of pairwise bivariate animal models 
using ASReml (Gilmour et al., 2009). Fixed effects of mean, cohort, Pen (within cohort), Age and 

Dam age where fitted for each comparison. 

For each pair of traits, the following bivariate animal model was used: 

 

[1] 𝑦 = 𝑋𝑏 + 𝑍𝑎 + 𝑒 
where y is the vector of the phenotypes for two traits; X is a matrix relating phenotypes to fixed 

effects; b is vector of fixed effects for the traits analysed; Z is a matrix relating animals to the data; 

a is a vector which contains random additive genetic effects of animals; and e is a vector with 

residuals for the analysed traits. Furthermore, variance structures of random effects are described 

as: 

 𝑣𝑎𝑟 =  [
𝑎
𝑒

] =  [𝐴 ⊗ 𝐺0

0
 

0
𝐼 ⊗ 𝑅0

] 

Where 𝑮0, and 𝑹𝟎 denote 2x2 matrices containing additive genetic and residual covariance 

components, respectively; A is the numerator relationship matrix derived from pedigree 

information; I is the identity matrix; and ⊗ is the direct product of the matrix. 

 

RESULTS AND DISCUSSION 

Genetic correlations for all traits were high (>0.90) when comparing 70 day test period with 56 

day test period (Table 1, 2 and 3). Genetic (σ2
A) and phenotypic (σ2

p) variance similar when 

comparing traits recorded at 56 days and 70 days, respectively. The lowest genetic correlation, 

between 56 and 70 days on feed, was NFI whilst the highest correlations were observed for DFI. 
Phenotypic correlations between each time period were lower than the genetic correlations for all 

traits.  

 
Table 1. Variance component and heritability (h2) estimates for NFI (kg/day) across all trial lengths 

and the phenotypic (rp) and genetic (rA) correlations of the reduced days with the full 70 days trial 

 

Days on feed σ2
P σ2

A h2 SE rA SE rp SE 

70 0.25 0.05 0.20 0.06     

56 0.25 0.06 0.22 0.06 0.92 0.07 0.80 0.01 

42 0.37 0.09 0.23 0.06 0.87 0.09 0.54 0.02 

28 0.64 0.11 0.17 0.06 0.88 0.13 0.40 0.02 

14 0.94 0.20 0.21 0.06 0.75 0.16 0.30 0.02 
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Table 2. Variance components and heritability (h2) estimates for ADG (kg/day) across all trial lengths 

and the phenotypic (rp) and genetic (rA) correlations of the reduced days with the full 70 days trial 

 

Days on feed σ2
P σ2

A h2 SE rA SE rp SE 

70 0.09 0.02 0.27 0.07     

56 0.11 0.03 0.27 0.07 0.98 0.02 0.89 0.01 

42 0.17 0.04 0.22 0.06 0.94 0.05 0.76 0.01 

28 0.31 0.06 0.19 0.06 0.88 0.09 0.57 0.02 

14 1.30 0.03 0.02 0.04 0.82 0.65 0.23 0.02 

 

Table 3. Variance components and heritability (h2) estimates for DFI (kg/day) across all trial lengths 

and the phenotypic (rp) and genetic (rA) correlations of the reduced days with the full 70 days trial 

 

Days on feed σ2
P σ2

A h2 SE rA SE rp SE 

70 1.48 0.71 0.48 0.08     

56 1.56 0.75 0.48 0.08 1.00 0.00 0.98 0.00 

42 1.69 0.83 0.49 0.08 0.99 0.01 0.95 0.00 

28 1.85 0.85 0.46 0.08 0.97 0.01 0.89 0.01 

14 2.12 0.81 0.38 0.08 0.95 0.03 0.78 0.03 

 

For all traits, as the number of days was reduced the amount of genetic and phenotypic variance 
that was observed increased substantially. This was most evident for ADG where phenotypic 

variance increased such that for 28 days and 14 days on feed σ2
P was 3 times or 15 times greater 

than 70 day estimates, respectively. In contrast, MMWT was very consistent across all NFI test 

periods, with rA >0.97 and rp>0.96 across all test lengths (results not shown). The inability to 

estimate ADG accurately was a major limitation to reducing the time in which NFI can be recorded. 

The impact of this declining accuracy with reduced NFI test length can be observed in Figure 1a 

which shows that, as NFI test period is reduced, the regression coefficient relating to the adjustment 

of DFI for ADG (b1), in the calculation of NFI, is greatly reduced. Furthermore, Figure 1b shows 

that NFI gradually becomes more like DFI with phenotypic and genetic correlation between NFI 

and DFI increasing as the number of days is reduced. 

The time taken to precisely estimate ADG and therefore NFI has previously been reduced from 
140 to 112 now to 70 days (McPeake, C. A., and D. S. Buchanan. 1986, Archer et al. 1997). Results 

from this current study suggest, given the high genetic correlation between 56 and 70 days, it may 

be possible to reduce the testing period further (to 56 days). The results in this study were similar to 

those presented by Archer et al. 1997. Differences between the results of the current study and that 

of Archer et al. (1997) may be a result of test animals in that study being in an earlier growth stage 

(250 days of age) compared to a finishing stage (~500 days of age) in the current study. This may 

explain why the genetic correlation for 56 days is higher in this present study than those presented 

by Archer et al. 1997. 
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Figure 1. a) The regression coefficients (b) for ADG and MMWT used to calculate NFI, and b) the 
phenotypic and genetic correlations between NFI and DFI for reduced NFI test periods. 

In contrast to NFI and ADG, it appears that testing length for MMWT and DFI could be reduced 

as genetic and phenotypic correlations indicate that MMWT and DFI were very consistent over time. 

The time taken to record DFI could be reduced to 28 days and even short periods could be examined 

as larger amounts of data become available.  Possible alternatives to collecting NFI routinely may 
be to collect a series of DFI measurements for a single animal or test more animals for shorter test 

periods. The later would reduce the costs associated with collecting feed intake information. It is 

likely that it would also increase overall response to selection as more animals could be recorded. 

This would only be possible if growth traits (like ADG) were measured at different stages (additional 

records) in the breeding program. Some consideration is needed, prior to the reduction of the number 

of days on feed, to understand the relationship between growth and feed intake to ensure breeders 

achieve what is desired in their given breeding program. A key question is: are we happy with the 

current definition of NFI, or would a different definition of feed efficiency better serve breeders, 

feeders and processors? It could be plausible that only recording feed intake or creating an 

disconnect between feed intake and growth, by measuring both traits at different times, may in fact 

completely change the weight placed on each trait when selecting for feed efficiency.   
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SUMMARY 

Popplewell composites objectively breed tropically adapted multi-breed composite bulls for beef 

production. They recently genotyped the whole herd and this paper reports analysis of this data. The 

data was analysed using G-BLUP using a genomic relationship matrix based on 23,094 polygenic 

markers for 1,104 animals. Preliminary estimates of heritabilities and variances were close to 

published estimates for similar cattle from northern Australia. Heterozygosity effects were 

substantial for reproduction and growth.  
 

INTRODUCTION 

The Popplewell Composite program was established in 2008 using objectively selected genetics 

from Angus, Belmont Red / Bonsmara, Senepol and Brahman population. The objectives of the 

program are to deliver continuous additive genetic improvement in meat production and quality, and 

female fertility improvement through replacement of traditional Bos indicus dominated herds with 

Taurus / Sanga / Indicus tropically adapted composites (Burrow et al. 2003) in addition to 

introgression of favourable qualitative alleles such as Poll and slick coat.  

Genetic evaluation of livestock has traditionally been based on information on genetic 

relationships between animals (pedigree) and performance of animals or their relatives.  Initially this 

was using sire models, then all known relationships could be modelled using the relationship matrix 

and analysing the data using best linear unbiased prediction based on the so called animal model 
(Quaas and Pollak 1980).  There have been numerous developments to this method over the years 

(Graser et al. 2005).  However, the system has limitations when animals with limited pedigree 

information are included, especially in tropical beef populations with large use of multiple sire 

mating systems before the availability of parentage testing technology.  Genomic selection as 

proposed by Muewissen et al. (2001) with further developments (e.g. Hayes and Goddard 2011) 

enables breeding value estimation based on DNA rather than pedigree information.  Furthermore, 

for composite herds a “genetic groups” effect (Gilmour et al. 2009) is often included but a genomic 

relationship matrix can simultaneously account for both between and within-breed genetic variation. 

Female reproductive performance is an important profit driver for northern Australian beef 

production systems.  The aim of this paper is to report preliminary genetic parameters for 

reproduction, growth and carcass quality traits using a genomic relationship matrix in a tropically 

adapted composite herd.  Heterozygosity effects which reflect heterosis or dominance effects which 
are commonly large for female reproduction traits in taurine x indicine hybrids (Pitchford et al. 

1993) are also reported. 

 

MATERIALS AND METHODS 

Herd management. The Popplewell Composite nucleus cow herd is run in coastal South East 

Queensland, rotationally grazed on Seteria, Kikuya and Rhodes grass based pastures and exposed to 

tropical parasites. The herd is phenotyped for fertility, birth weight, growth, flight speed, tick 

resistance and live-ultrasound carcass traits. Semen tested yearling bulls are sold to commercial and 

bull multiplier herds in Tropical and Subtropical regions of Australia. All heifers born into the 
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program are first mated as yearlings which is not typical of tropical breed seed-stock herds.  

Prior to G-BLUP, hair and or semen samples for DNA extraction had always been collected and 

stored on all nucleus animals and DNA technology use had been limited mainly to parentage 

determination and introgression of favourable Poll genes. The commitment to storing tissue and 

collecting economic relevant phenotypes provided a bank of DNA and data ideal for whole herd G-
BLUP without the need for blending of pedigree and genomic relationships. Pedigree data allowed 

for comparison of pedigree BLUP and G-BLUP models.   

 

Processing marker data. Animals were genotyped on either the Illumina GeneSeek GGP Bovine 

LD chip (versions 3 and 4) or Illumina BovineHD chip. A matrix of AB genotype calls for 1,119 

animals and 29,464 SNPs were extracted from text output files and the minor alleles counted for 

each genotype (i.e. 0, 1, 2), where the minor allele was calculated across the 1,119 animals. Duplicate 

animals were removed, monomorphic SNPs and those with minor allele frequency less than 0.01 

were also removed, leaving 23,094 SNPs on 1,104 animals.  Heterozygosity for each animal was 

calculated by summing the number of heterozygous genotypes as a proportion of all called 

genotypes.  Heterozygosity is a measure of dominance and reflects heterosis.  The values ranged 

from 25-47%. 
A standardised matrix of counts for each SNP was generated by subtracting its mean and dividing 

by its standard deviation. Missing values were replaced by the standardised mean (0). This starting 

matrix was multiplied by its transpose and divided by the number of SNPs to generate a relationship 

matrix which was then inverted ready for analysis. 

 

Statistical analysis. Phenotypes were available for up to 3,934 animals depending on the trait but 

only 1,104 were genotyped. This paper reports analysis of a subset of phenotypes for animals present 

in the relationship matrix.  The data was analysed using a linear mixed model in ASREML-R (Butler 

et al. 2009).  Fixed effects were birth year (2008-2015), sex (male, female), dam age (2-10 years but 

coded as heifer or mature), age (by fitting birth date as a covariate within year), and heterozygosity 

(Het%).  Contemporary group was defined as management group within birth year and sex.  
Management groups for later ages were comprised of current management group and previous 

management groups as described by Graser et al. (2005).  Ultrasound traits included day of 

measurement in the contemporary group definition and included weight as a covariate within 

contemporary group.  Scrotal size included a covariate of age within contemporary group.  Lastly, 

the random animal effects were fitted as the inverse of the genomic relationship matrix. 

The traits analysed were birth weight, weights at 200, 400 and 600 days (kg), ultrasound loin eye 

muscle area (cm2), P8 fat depth, rib fat depth (mm) and intramuscular fat content (%).  Maternal 

genetic effects were not included in initial analyses but will be for birth and 200 day weights in 

future.   

Fertility was measured only on naturally mated females as days from joining to calving with 

yearling heifers (HDC) separate from those joined from 2 years old (mature, MDC).  Those that 

failed to calve had a 32 day penalty added to the maximum DC value in their management group.  
Sex, dam age and heifer age effects were not included in the analysis of HDC or MDC.  Mature 

weight was analysed using fixed effects of age in years, lactation number and heterozygosity. 

 

RESULTS AND DISCUSSION 

The population is a composite of Africander (Bonsmara and Belmont Red), Senepol, Red Angus 

and Brahman.  A summary of the genetic variation is presented based on principal component 

analysis of the SNP genotypes (Figure 1).  The G-BLUP performed well at describing both between 

and within breed variation in a single step.  Fitting calculated heterozygosity avoided bias in BLUP 

estimates resulting from heterosis, especially for fertility. 
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The combination of breeds during the development was expected to lead to large variation in 

traits that differ between breeds. However, for most traits the variances and heritabilities (Table 1) 

were very similar to those reported by Wolcott et al. (2014) and Johnston et al. (2014) for tropical 

composite cattle measured as part of the CRC for Beef Genetic Technologies.  A small exception 

would be that herein the cattle were younger when ultrasound scanning so the mean and variance in 
the fat traits was lower than the CRC cattle. 

 

 
Figure 1. Genetic variation coded by breed of origin. AX is Africander (right), AXSA is 

Africander x Senepol/Angus (middle), BB is Brahman (top right) and SA is Senepol x Red 

Angus (left).  Other combinations are minor. 

 
Numbers of cattle were a limitation for accurate heritability estimation (Table 1).  The numbers 

for growth and carcass traits was around 800 but for male (scrotal size) and female fertility traits, 

numbers were very small.  Despite this and the fact that a genomic rather than an animal relationship 

matrix was used, heritability estimates were very close to published values for equivalent breeds and 

traits (Barwick et al. 2009).  It is especially encouraging that the preliminary heritability estimates 

herein for days to calving for first parity and mature cows were almost identical to those presented 

by Johnston et al. (2014).  However, a difference herein is that heifers were joined at 15 rather than 

27 months.  To conceive to calve at 2 years, heifers need to be cycling by around 400 days.  Johnston 

et al. (2009) reported that composite heifers averaged 650 days at puberty.  Thus, the program herein 

is putting substantial phenotypic and genetic selection pressure on heifer puberty because it is such 

a large profit driver and given the number that conceived, it must be working. 
Those with greater heterozygosity were bigger and had better female reproduction (conceived 

faster, Table 1).  All of these are as expected based on heterosis in taurine x indicine crosses (e.g. 

Pitchford et al. 1993).  This would likely have a significant effect on profitability of commercial 

herds. 

The practical outcome of this work is that this breeding program should achieve significant gains 

for commercial clients. A selection index was developed based on a combination of approximate 

economic values and desired gains.  The 2016 mating decisions will lead to cattle with higher 

growth, more fat and improved fertility through both increased scrotal size and decreased days to 

calving.  In addition, there will be small decreases in birth weight and mature cow weight as well as 

a small increase in eye muscle area.  There was no direct selection for fat but this was a correlated 

response resulting from positive correlations with growth and fertility.  There is expected to be 
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ongoing improvement due to the extensive measurement program, all animals genotyped and mating 

allocations based on optimising breeding value and genetic diversity outcomes. In addition, the 

program will further accelerate in scale through strategic partnerships with bull customers using 

genotypes and phenotypes from their bull multiplier and commercial tier herds. 

 

Table 1. Summary of data, phenotypic variance, heritability and heterozygosity estimates. 

Trait No. Mean SD Min Max P
2 h2 Het% 

Birth weight (kg) 892 36.8 5.3 21 55 16.9 0.41 0.32** 
200 d weight (kg) 883 204 51 75 415 460 0.11 1.65** 

400 d weight (kg) 801 320 64 152 528 905 0.35 3.17** 

600 d weight (kg) 351 374 66 232 694 1078 0.56 2.70** 

Eye muscle area (cm2) 790 55.3 12.8 23 96 27.9 0.39 0.31** 

Rump P8 fat (mm) 790 3.8 1.6 1 10 1.18 0.23 0.060 

Rib fat depth (mm) 790 2.9 1.1 1 7 0.57 0.15 0.021 

Intramuscular fat (%) 790 3.5 1.0 1 6 0.45 0.20 0.017** 

Scrotal size (cm) 409 29.8 4.0 20 41 8.03 0.62 0.13 

Heifer DC 255 348 33 271 393 1021 0.21 -2.77* 

Mature DC 503 333 21 271 368 1099 0.14 -2.43** 

Mature weight (kg) 433 486 68 324 666 2510 0.60 2.26* 

DC is days to calving from date of joining to calving with a 32 day penalty for non-calvers. 
Het% is regression of trait on percentage of polymorphic SNPs that were heterozygous. 

Approximate standard errors of preliminary heritability estimates were large for all traits and >1 

for some.   * P<0.05, **P<0.01 

 

In conclusion, this tropical composite breeding program has been innovative in storing DNA and 

then genotyping all animals.  This has enabled genomic analysis of both traditional BREEDPLAN 

and new traits important for reproduction.  Preliminary estimates of heritabilities are similar to other 

studies and important heterozygosity effects have also been reported.   
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SUMMARY 

This paper reports breed differences for puberty attainment in Angus and Hereford sired heifers 

from the first cohort of a larger trial. Pre-joining, there were no statistically significant differences 

between the breeds in age, weight, height, fat and net weight although crossbreed heifers were 17 

kg heavier (5%), 0.2 mm fatter (5%), 15 mm taller (1%) with 8 kg more net weight  than 

purebreds. A greater number of crossbred heifers had reached puberty prior to joining (21%; 

P=0.062). Age and fat depth were significant for attainment of puberty, but height and weight were 

not. 
 

INTRODUCTION 

The reproductive performance of female breeding stock is one of the largest economic drivers 

in Southern Australian beef production systems (Wathes et al. 2014). The aim was to utilise a 

crossbreeding system to optimise fertility traits, by utilising heterosis and breed effects. These 

mechanisms effectively increase performance traits and adaptability of genetic resources to the 

climate, environment and nutritional availability (Gregory and Cundiff 1980). 

Genetic selection in temperate beef genotypes has primarily focused on the selection and 

improvement of feedlot production traits using BREEDPLAN estimated breeding values (EBVs) 

for, weight at endpoint, and more recently meat quality and yield (Hebart et al. 2016). Strong 

selection pressure on improving feedlot performance and carcass quality traits have been 
accompanied by a negative trend in fertility in some herds (Wathes et al. 2014).  

Heifer conception rates are primarily determined by the age at which puberty is attained (Day 

2015). The optimum age to reach puberty is by 13 months for joining at 15 months and calving at 

24 months (Patterson et al. 1992). Age at puberty varies largely within and between breeds, and is 

dictated by the environment (Chenoweth 1994), plane of nutrition and the genetics of both sire and 

dam (Patterson et al. 1992). Body weight is the key determinate to attain puberty (Wathes et al. 

2014), literature recommends Bos taurus breeds  reach 60% of mature cow weight (MCW), 30-45 

days prior to joining to ensure conception rates  >85% (Ahmadzadeh et al. 2011). A recent study 

by Jones et al. (2016) reports that both fat and weight are important for a successful conception 

and heavier heifers can succeed with lower levels of fat. 

The aim of this paper was to assess the factors that affect puberty attainment in a cohort of 

Angus and Hereford sired beef heifers from Angus dams. It was hypothesised that crossbred 

heifers will achieve a minimum proportion of mature cow weight earlier, and reach puberty at a 

younger age than the purebreds. 

 

MATERIALS AND METHODS 

Animals and heifer management. The 208 heifers for this study came from Angus dams joined 

to either 11 Hereford or four Angus sires using artificial insemination, resulting in 135 Hereford 
and 72 Angus sired heifers in the first cohort of the “Black Baldy” trial. The heifers were located 

at, Musselroe Bay in the north east of Tasmania. The Angus dams came from two management 



Beef I 

184 

groups that differed in age of dam (maiden-2 year old or mature-3 year old), insemination dates, 

paddock location and sire line. 

Heifer calves were born late June to early August 2015. Calves were weaned from both 

management groups in March 2016 and joined as one cohort and grown out to joining together 

under the same management. 
      Ovarian assessment was performed to define portion pubertal, by transrectal real-time 

ultrasonography at three time points when heifers averaged 300, 387 and 448 days of age, heifers 

that had reached puberty were excluded from subsequent ovarian measurements. Scanning 

involved detection of a corpus luteum (CL) or formation of a corpus albican (CA) on either the left 

or right ovary, confirming that the animal had ovulated (Monteiro et al. 2013). 

      At each ovarian measurement all heifers were weighed on a scale placed under a crush, height 

was recorded by measuring the distance from the hip to the top of the crush, this number was 

subtracted from the height from the top to the base of the crush, P8 fat depth was obtained using 

ultrasonography.  

      Body condition score is related to body weight and fat coverage, both which can be used to 

assess reproductive performance (Jones et al. 2016). This trial did not record body condition thus 

generated a new trait to define heifer condition, where weight was regressed on height at each 
measurement and the residuals were interpreted as net weight. Heifers with a positive net weight 

were considered to have a better or greater condition than expected for a given height, and 

therefore were expected to reach puberty at an earlier age. 

 

Statistical analysis. All data was analysed using GenStat 15th Edition Sp2 (VSN Int 2016) 

statistical programme. Two primary models were fitted: 

1. To determine whether there was a significant difference between the breeds in the 

attainment of puberty and other traits (age, weight, height, P8 fat depth and net weight), a 

general (generalised for puberty) linear mixed model was fitted to the data. The fixed 

effects included management group and breed, the interaction between these effects were 

also tested. A random effect of sire nested within breed was also included. 
2. To determine what traits were significantly influencing the attainment of puberty, a 

generalised linear mixed model was fitted to the data with the fixed covariates of age, 

weight, height and P8 fat depth. Age by weight, height and P8 fat interaction terms were 

also included but were not significant (P>0.05) and so were not included in the final 

model.  

RESULTS AND DISCUSSION 

      There were no statistically significant differences between the breeds in age, weight, height, P8 

fat and net weight (model 1), although crossbred heifers were 15 mm taller (1%), 0.2 mm fatter 

(5%), 17 kg heavier (5%) with 8 kg more net weight. An additional 21% of crossbreed heifers had 

reached puberty at the final scan, prior to joining, this included heifers that were pubertal at scan 

point one and two (Table 1, Figure 1). Management group effects were large for all traits (not 

presented). 
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Table 1. Predicted means and standard errors (S.E.) for sire breed pubertal by scan three  

(pre-joining) 

 

Heifer trait                                    

(units) Angus S.E. Hereford S.E. P-value 

Age (days) 449 3 448 2 0.540 

Weight (kg) 329 7 346 4 0.075 

Height (mm) 1197 7 1212 4 0.066 

P8 fat (mm) 3.7 0.2 3.9 0.1 0.594 

Net weight (kg) -8 4 0 3 0.410 

Pubertal (%) 35 7 56 4 0.062 

 

 

 
 

Figure 1. Breed differences in mean body weight and proportion pubertal (Model 1) at 

scans one, two and three (300, 387 and 448 days of age respectively). Angus heifers are 

represented by the solid line and Hereford cross Angus by the broken line. 

 

Previous studies have suggested that getting heifers to a minimum proportion of MCW 30-45 

days prior to joining, will increase first season conception rates (Patterson et al. 1992), through 

younger attainment of puberty. A complementarity advantage acquired through crossbreeding is 

heterosis, the additive genetic merit and growth inherited by the progeny from the terminal sire, 
which effects the age of puberty in offspring (Gregory and Cundiff, 1980). Wiltbank et al. (1969) 

demonstrated this in Angus and Hereford reciprical crosses reporting the Angus x Hereford and 

Hereford x Angus reached puberty earlier (29 and 55 days respectivley) than their purebred 

counter parts. Breed was almost significant in this trial for weight (P=0.075), this non-significant 

result may be due to the loss in body weight in both the Angus and Hereford x Angus between 

scan one and two when harsh environmental conditions were encountered. Average daily growth 

(ADG) was not recorded in this trial although at each measurement crossbred heifers were heavier 

with higher portions of cycling individuals. This concurs with recent literature reporting that ADG 

before 15 months can stimulate growth paths leading to early onset of puberty (Wathes et al. 
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2014). Gasser et al. (2006) demonstrated this, showing heifers with high ADG (1.2 kg/day) 

reached puberty by 271 days, compared to heifers with low ADG (0.7 kg/day) that reached 

puberty at 331 days weighing 282 kg and 367 kg respectively. The results from the current trial 

suggest that crossbreed heifers were able to cope with harsher environmental conditions, 

maintaining weight and condition more efficiently than their purebred counterpart, resulting in 
higher portions of heifers reaching puberty by the final ovarian scan prior to joining. 

Age and fat depth were associated with attainment of puberty (Table 2), but weight and height 

were not. Two-way interactions between variables were tested and were not significant and were 

not retained in the final model. Acquiring a critical fat depth was more important for heifers to 

attain puberty than age alone. Age at puberty is strongly correlated to first season conception rates, 

Byerley et al. (1987) demonstrated the importance of age reporting that heifers that attain puberty 

earlier in life, and that had cycled multiple times prior to mating, had pregnancy rates of 78% in 

comparison to 57% in heifers that had reached puberty but where only in first oestrus at joining. A 

recent study by Jones et al. (2016) concluded that both fat and muscle were important for heifer 

conception. To achieve 85% conception rates under a six week joining period, Jones et al. (2016) 

predicted that Angus heifers needed to be 52% of MCW with 8 mm of rib fat or 69% of MCW 

with 4 mm of fat. 
 

Table 2. Type 3 tests of significance (P-value) for traits affecting puberty at scan three 

 

 

CONCLUSION 

In conclusion, age and fat depth were important for attainment of puberty. Interestingly despite 
an almost significant difference in portion pubertal between breeds prior to joining there was no 

difference in net weight or fat depths. Although not significant crossbred heifers were heavier, 

taller and fatter with a higher portion pubertal at joining, this may increase first season conception 

rates. Lastly, the proportion of pubertal heifers at different weight and ages presented should guide 

future studies investigating attainment of puberty in southern Australian heifers. 
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 Age Weight Height P8 fat 

Pubertal (%) 0.021* 0.428 0.457 0.015* 
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SUMMARY 

In Korean beef industry, selection indices are currently limited to carcass weight (CWT), 

marbling score (MS), eye muscle area (EMA) and back fat thickness (BFT), which are the four traits 

used to determine the grade of a carcass. However, other important traits have received less 

attention; for example, yearling weight which influences both meat quality and the yields of the 

primal cuts that command premium prices. In this paper, we evaluate how well genomic prediction 

based on routinely measured phenotypes (body weight at different ages 6, 12, 18 and 24 months, 

CWT and EMA) can predict other commercially important traits (MS, BFT, various primal cuts and 

total percentage of meat yield) which are not usually recorded. We also compare the prediction 
accuracy of the primal cuts and yield derived from body weight and carcass weight predictors with 

the prediction accuracy using the trait itself. Our results suggest that, direct genomic prediction of 

primal cuts and yield had a higher accuracy, and in the future some consideration should be given 

to better account for primal cuts and yield in the breeding program. 

 

INTRODUCTION  

Hanwoo is the most important cattle in Korea and its history traces back 5,000 years (Jo et al. 

2012). Hanwoo beef has unique marbling characteristics which makes it highly sought after by 

consumers at premium prices (Han and Lee 2010; Kim et al. 2010; Jo et al. 2012). Korean cattle 

breeding policies are primarily focused on increasing marbling and body weight. These two traits, 

particularly marbling score, are the key determinants of the carcass’ grade and, consequently, its 
price (Park et al. 2002; Kim et al. 2010; Alam et al. 2013). Since marbling drives most of the profit 

in the Korean beef industry, producers often prolong feeding periods to achieve better marbling, 

even if at the expense of increased backfat thickness (BFT) which incurs a grading penalty.  

Considerable effort to select superior Hanwoo bulls based on the genetic parameter estimates of 

carcass traits has already been made (Lee et al. 2000; Baik et al. 2003; Choy et al. 2008). However, 

selection indices are currently limited to carcass weight (CWT), marbling score (MS), eye muscle 

area (EMA) and backfat (BFT), which are the four traits used to determine the grade of a carcass. 

However, other important traits have received less attention; for example, yearling weight which 

influences both meat quality and quantity (Lopez-Campos et al. 2012), and the yields of the primal 

cuts that command premium prices. Differences in price exist between different primal cuts (Morris 

et al. 2010)  and large variation in yield of the primals within each grade has been reported (Moon 

et al. 2003). This variation affects the accuracy of the estimates of grading and consequently there 
is significant averaging out in the payment system. Thus, the current grading scheme based on CWT, 

MS, EMA and BFT may not accurately reflect the differences within the carcass primal cuts and the 

actual realized sales price in the retail market.  

The broad adoption of molecular technologies for genomic selection in livestock species (Hayes 

et al. 2009; Goddard et al. 2010) has significantly increased the rate of genetic progress. Genomic 

selection can provide more accurate estimates of breeding values earlier in the life of breeding 

animals, higher selection accuracy and shortening of generation intervals. Additionally, hard or 

expensive to measure traits can be improved more effectively by predicting EBVs of un-phenotyped 

animals directly from their genotypes (Gondro et al. 2013). Thus, genomic selection allows new 
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traits to be selected on and provides the information needed for better indexes and payment/reward 

systems. The ability to better align the grading system with the actual retail value of the carcass can 

provide significant benefits to the Korean beef industry.  

In this paper, we evaluate how well genomic prediction based on routinely measured phenotypes 

(body weight at different ages 6, 12, 18 and 24 months, carcass weight and eye muscle area) can 
predict other commercially important traits (MS, BFT, various primal cuts and total percentage of 

meat yield) which are not usually recorded. We also compare the prediction accuracy of the primal 

cuts derived from body weight and carcass weight predictors with the prediction accuracy using the 

trait itself. 

 

MATERIALS AND METHODS 

Animals and Traits: The present study analysed the 

records of 1,092 Hanwoo males raised under the Korean 

National Hanwoo Cattle Improvement System from 

1997 to 2013. The growth and carcass traits considered 

in the present study included body weights at different 

ages (6, 12, 18 and 24 months), cold carcass weight 
(CWT), eye muscle area (EMA), back fat thickness 

(BFT), and marbling score (MS). Primal-cut yield 

(percent of carcass weight composed of both unique and 

composite meat cuts from the forequarters and 

hindquarters) included the yields of chuck (CHK), 

shoulder (SLD), brisket and flank (BAF), ribs (RIB), 

tenderloin (TLN), striploin (STLN), sirloin (SLN), top 

round (TRND), round (RND), fore- and hind-shins 

(FHS), and total primal cut (TPC, sum of all primal cuts) 

and percentage of meat yield (Meat %). Summary data 

on different weights, carcass traits and primal-cut yields 
are shown in Table 1.  

Statistical Analysis: Heritability of each trait was 

estimated using a univariate model in MTG2 software 

(Lee and van der Werf 2016). As multi-trait (3 x 3 and 

more) analyses failed to converge, a series of bivariate 

analyses using MTG2 was used to calculate the genetic correlations between the traits. Relationship 

among the animals were accounted for using a genomic relationship matrix (GRM) obtained from 

SNP data and was fitted as a random effect in the model. Phenotypic correlations were calculated as 

the Pearson correlations between the residuals of the phenotypes after removing the fixed effects 

using a liner model in R.  

Prediction of genomic breeding values were obtained from the genomic best linear unbiased 

prediction (GBLUP) method in MTG2. Prediction accuracy was calculated as the Pearson 
correlation between the adjusted phenotypes (residuals of the phenotypes after accounting for the 

fixed effects) divided by the square root of the heritability of the trait. The average of 10-fold cross 

validation with 10 replicates is reported herein. 

 

RESULTS AND DISCUSSION 

Heritabilities for the traits were all moderate to high, ranging from 0.24 for WT6m to 0.71 for 

RND. Comparing the rest of the traits, top round and round have very high heritability. Standard 

errors for the heritabilities ranged between 0.07 and 0.08. 

Genetic correlations between body weight, carcass weight and EMA with different primal cuts 

Table 1. Phenotypic mean, standard 

deviation and heritability with SE 

Trait Mean SD h2 (±SE) 

WT6m 169.07 31.08 0.24±0.07 

WT12m 320.91 41.27 0.29±0.07 
WT18m 483.93 52.08 0.39±0.08 
WT24m 634.86 67.66 0.48±0.08 
CWT 362.33 41.14 0.56±0.08 
EMA 81.28 8.72 0.49±0.07 
BFT 8.48 3.3 0.48±0.08 
MS 3.38 1.56 0.56±0.08 
CHK 12.94 3.71 0.34±0.07 
SLD 22.84 2.84 0.62±0.07 

BAF 27.92 4.95 0.38±0.08 
RIB 55.68 7.59 0.41±0.08 
TLN 5.8 0.79 0.49±0.08 
STLN 34.8 4.55 0.51±0.08 
SLN 7.46 1.08 0.50±0.08 
TRND 19.52 2.31 0.70±0.07 
RND 31.87 3.75 0.71±0.07 
FHS 14.46 2.61 0.32±0.08 

TPC 233.28 26.15 0.58±0.08 
Meat % 64.46 2.72 0.43±0.07 
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are shown in Table 2. Genetic correlations between weights and different primal cuts increase as the 

cattle become older. Although all primal cuts and the total primal cuts have medium to very high 

genetic correlations with body weight, carcass weight and EMA, Meat % has very low or negative 

correlations with these traits except for EMA. EMA has moderate generic correlations with Meat % 

(0.47±0.12) and selection for EMA can increase percentage of meat yield. WT12m had a relatively 
higher correlation with TLN and CWT had a higher correlation with STLN compared to other loin 

cuts.  

 
Table 2. Genetic correlations with SE between weight at different ages, carcass traits and primal-cut 

yields  

 CHK SLD BAF RIB TLN STLN 

WT6m 0.37±0.18 0.45±0.13 0.44±0.16 0.5±0.13 0.59±0.13 0.52±0.13 
WT12m 0.61±0.14 0.68±0.09 0.61±0.12 0.71±0.08 0.8±0.08 0.68±0.08 
WT18m 0.61±0.12 0.73±0.06 0.73±0.09 0.85±0.05 0.76±0.07 0.76±0.06 
WT24m 0.59±0.11 0.76±0.05 0.85±0.06 0.94±0.03 0.76±0.06 0.83±0.04 
CWT 0.67±0.09 0.82±0.04 0.86±0.06 0.96±0.02 0.76±0.06 0.87±0.03 
EMA 0.58±0.11 0.70±0.07 0.60±0.10 0.57±0.10 0.60±0.09 0.81±0.05 

 SLN TRND RND FHS TPC Meat % 

WT6m 0.45±0.14 0.4±0.13 0.45±0.12 0.4±0.18 0.51±0.12 -0.21±0.16 
WT12m 0.73±0.09 0.62±0.09 0.67±0.08 0.7±0.12 0.75±0.07 -0.12±0.16 
WT18m 0.77±0.07 0.75±0.06 0.76±0.06 0.74±0.1 0.85±0.04 -0.15±0.14 
WT24m 0.77±0.06 0.81±0.05 0.8±0.05 0.78±0.08 0.91±0.02 -0.1±0.13 
CWT 0.80±0.05 0.86±0.04 0.85±0.03 0.89±0.06 0.96±0.01 -0.08±0.13 
EMA 0.85±0.05 0.77±0.06 0.70±0.06 0.83±0.10 0.76±0.06 0.47±0.12 

 
Prediction accuracy of growth traits and carcass traits using weights at different ages, CWT and 

EMA are given in Table 3. Weight traits, not surprisingly, are good predictors of each other but poor 

predictors of BFT and marginally better for MS. EMA could be predicted with reasonable and 

increasing accuracy from the body weights as the animal ages and from CWT.  
 

Prediction 

accuracies 

of primal 

cuts and 

meat yield 

percentage 

using 

weights at 

different 
ages, CWT and EMA are summarized in Table 4. On average, accuracies of primal predictions 

increase as age increases (0.205 WT6m; 0.279 WT12m, 0.322 WT18m, 0.365 WT24m, 0.405 CWT) 

but always lower than the accuracies derived from the primal traits themselves (average 0.456).  

Interestingly all body weights at different ages and CWT failed completely to predict the percentage 

of meat yield. This could be explained with the fact that, we observed very low or negative genetic 

and phenotypic (data not shown) correlations between these traits and Meat% trait. However, in 

comparison to the other traits, EMA performed quite well to predict the percentage of meat yield 

(accuracy was 28%). 

The last row of Table 4 shows the prediction accuracies for the primal cuts when the trait itself 

was used in the prediction model. On average, prediction of primal cuts from the primal cuts 

phenotypes themselves increased prediction accuracies in 122.8% in relation to WT6m, 63.27% 

Table 3. Prediction accuracies of growth traits and carcass traits using body weights, 

CWT and EMA 

 WT6m WT12m WT18m WT24m CWT EMA BFT MS 

WT6m 0.34 0.31 0.25 0.22 0.23 0.18 0.03 0.09 
WT12m - 0.38 0.34 0.29 0.30 0.22 0.06 0.10 
WT18m - - 0.39 0.37 0.36 0.26 0.09 0.11 
WT24m - - - 0.41 0.41 0.29 0.08 0.12 
CWT - - - - 0.45 0.33 0.09 0.13 
EMA - - - - 0.30 0.46 -0.08 0.13 
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WT12m, 41.29% WT18m, 24.87% WT24m, 12.78% CWT and 34.42% EMA. Prediction accuracy 

of percentage of meat yield from itself had a 46% accuracy. 
 

CONCLUSIONS 

Genomic predictions from 

weights measured later in life and 

CWT are useful correlated traits to 

select on primals but come at an 
increase in generation interval (and 

CWT is essentially nonsensical in 

practice). The highest accuracies 

of selection were obtained directly 

from the primal cuts themselves 

but adoption requires investment in 

phenotyping and genotyping. 

There is good potential to make 

better use of genomics to improve 

selection for high valued cuts and 

redesign the selection indexes as 
well as the grading system to better 

reflect the true value of a carcass. 

EMA was somewhat useful to predict yield but weights were very poor predictors; here again, direct 

genomic prediction of yield had a high accuracy, in the future some consideration should be given 

to better account for yield in the breeding program.        
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WT18m 0.32 0.34 0.34 0.30 0.36 0.01 
WT24m 0.35 0.39 0.38 0.34 0.41 0.03 
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SUMMARY 

Gene editing technologies based on site-directed nucleases continue to improve at a rapid pace 

and have evolved to a point where they can be useful for direct introgression of high effect alleles 

into naïve populations of food animals.  Herein, we review basic mechanics of site-directed nuclease 

action and how this activity is deployed to produce precision bred alleles into animal genomes.  We 

also discuss the variety of traits being deployed, and differences between introducing alleles already 

found in nature versus gene knock out and other rationale design approaches for genetic 

improvement.  Finally, perspectives for regulatory approval and commercialization are summarized 

to highlight some of the obstacles, which may hinder the widespread adoption of gene editing 
technology as one of the primary tools of animal breeding. 

 

BACKGROUND 

Since the first livestock domestication events approximately 10,000 years ago, the efficiency of 

animal production in the developed world has continued to improve through selection for desirable 

traits related to protein yield.  The long tradition of selective breeding has relied on superior 

production traits emerging from the natural genetic flux. Many other advances in animal husbandry, 

like advanced reproductive techniques (ART), new animal medicines, and feed additives have 

supported production increases derived from selective breeding outcomes.  Although modern 

genetic techniques like genome selection are increasing the accuracy with which we can find and 

select for these valuable alleles, genetic improvement is still limited by the availability and 
frequency of beneficial alleles in our current breed populations and slowed by linkage disequilibrium 

(LD) and long generation intervals.  Furthermore, antagonistic effects are problematic in breeding 

practice due to tight linkages of alleles with opposite (pleiotropic) effects, e.g., the antagonistic 

effects of dairy fertility and/or disease resistance with milk production.  

 

The importance of precision in animal breeding is further underscored by challenges related to global 

food security (FAO 2017).  A burgeoning middle class of consumers estimated to be growing from 

1.8 to 4.9 billion by 2030 will significantly contribute to the increasing human demand for animal 

protein.  Furthermore, the geographical regions where this growth in consumption is highest 

underscore the inefficiencies of local adapted livestock varieties. These unrefined varieties are not 

capable of sustainably meeting demands in rapidly expanding markets, unless rapid improvements 

are made in average production output per animal.  Crossbreeding provides an alternative to rapidly 
improve production in these adapted varieties, but this strategy has historically provided only short 

term bursts of increased performance due to heterosis and the introgression of beneficial alleles. The 

long term downside of such admixture is that locally adapted or purpose-bred genetics can be 

diluted, requiring additional, lengthy backcrossing to reach the breeding objectives of a more 

productive, adapted animal.  Therefore, new technologies that augment current selection methods 

for genetic improvement must be used as part of the solution across production systems. There are 

thousands of yet to be discovered, desirable traits in animals that allow them to survive well in their 

current environments. Ultimately, solutions based on animal breeding are hampered by generation 

interval times, and economic feasibility and practicality for low input production systems. 
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The opportunity provided introgression of alleles initiated by gene editing.  Advanced breeding 

techniques based on genome editing offer an alternative method for rapid acceleration of genetic 

improvement in a single generation that is directed and sustainable.  The results can be disseminated 

in subsequent generations through traditional breeding methods.  This technology allows for 
adaptive breeding of elite production lines, rapid production improvement of adapted lines, and 

conservation of diversity by introduction of heirloom alleles lost through intensive selection for a 

single production trait.  Thus, precision genome editing as an animal breeding tools has the potential 

to be a “Game Changer”.  The possible applications and precision of site-directed nucleases (SDN)s 

could not, and were not predicted or made possible until very recently.  By breaking a DNA molecule 

at a specific site, we can induce a designed genetic change by instructing the cell’s repair 

mechanisms. The various molecular scissors provide the power previously used by plant breeders 

to introduce new traits by double stranded DNA breaks (DSB) made through treatment with 

radiation or mutagenic compounds.  SDNs, like TAL effector nucleases (TALENs) and clustered 

regularly interspaced short palindromic repeats (CRISPR)/Cas9, have improved upon the accuracy 

of gene targeting by 10,000,000,000-fold, so there is no need to wade through all the random 

undesirable mutant outcomes of random mutational breeding.  Therefore, the precision of genome 
editing presents a unique, asymmetric opportunity, with negligible risk and the potential for 

relatively very high genetic gain.  

 

The process of editing and its deployment.  Foreign DNA is often touted by the anti-biotech 

advocates as a primary reason for safety concerns, even though the average human consumes 1014 

unknown genes per day.  From a mechanistic perspective, the molecular components used to trigger 

the editing process (post-DSB) do not actually introduce or transfer any foreign material into target 

genome (Jasin and Haber 2016).  Rather, a competition for the selected repair mechanism takes 

place that is dependent on the availability of cellular factors to initiate non-homologous end joining 

(NHEJ) or homology directed repair (HDR).  HDR is facilitated but still not always favoured when 

a DNA template is provided to direct allelic information for gene conversion, whereby specified 
nucleotides can be copied in reverse-complement into the DSB site (Bozas et al. 2009; Jasin and 

Haber, 2016). There is firm experimental evidence suggesting template information can be provided 

as either ssDNA or dsDNA with potentially no size limitation just differences in efficiency for the 

gene conversion (Paix et al. 2016).  Conversion by HDR takes place by one of two components:  

invasion-mediated synthesis-dependent strand annealing (SDSA) pathway or by single-strand 

annealing (SSA).  This underscores that editing based on DSB followed by HDR is a completely 

natural process, because there is no transferred or introduced recombinant DNA constructs or 

synthetic DNA placed into the target genome. 

   

There are currently only two proven ways to deploy gene editing technology in food animals.  

These are through transfection of fibroblasts destined for nuclear transfer cloning (primordial germ 

cells in poultry) or by microinjection of mammalian one celled embryos (Tizard et al. 2016).  The 
transfection/injection of the “molecular scissors” into animal germplasm (fibroblasts/one-cell 

embryos) only increases the frequency of DNA breaks at the target locus billions fold over the 

natural processes of mutation.  The DSBs stimulate gene conversion, which is not something novel 

or unnatural.  In the case of sister chromatid repair, the template is copied, not physically acquired. 

This is analogous to gene conversion processes during meiosis, which is supported by evidence in 

yeast and Drosophila that somatic repair goes by the SDSA mechanism and involves invasion, 

copying, then withdrawal of the extended strand and re-pairing with the other end of the break 

(Bozas et al. 2009).  There is also evidence in C. elegans that indicates that the whole of a large 

insert is copied de novo (Paix et al. 2016).  This type of recombineering blurs the distinctions laid 
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out between categorizing gene edits as something mechanistically different when considering 

differences in sequence length post gene conversion (e.g.,. a 10 bp versus a 1000 bp increase in allele 

size).  The only way to separate an introduction of natural alleles from trans or cis-genesis events is 

to define these events as “could not be obtained by conventional breeding” or not, respectively.  The 

opportunities now exist to introduce any sequence without the need for a recombinant DNA 
construct. 

 

The deployment of editing tools for precision breeding has a spectrum of efficiencies depending 

on the input parameters of the editing tools, such that in most cases, many of the resultant animals 

from microinjection of IVF embryos may have no edits or be mosaic for an edit (Wei et al. 2015).  

This means some animals produced from IVF embryo injection may need to go through a Mendelian 

transmission test to confirm commercial viability as a germ plasm product.  For regulatory 

considerations and commercial viability of the technology, it would be beneficial if any animals 

produced by injection treatment of IVF embryos, which retain no edits or cannot transmit an edit by 

sexual reproduction, would be treated as conventionally bred animals.  In essence, the mutagenic 

treatment failed as if there were no treatment applied.  Furthermore, any recipient animals carrying 

edited clones or IVF embryos should have no restrictions under conventional animal quality 
measures relative to entering the food chain for human consumption. 

 

Some concern has also been raised relative to the stability of an edit and other unintended edits 

at off-target sites in the genome. This concern is raised based on past observations of some 

transgenes being lost over time from modified genomes.  However, the terms used by regulators 

regarding “genetic stability” & “genome integrity” are meaningless phrases in the context of genome 

editing.  For example, deep sequencing reveals that in a typical human genome there is an average 

of 1 mutation every 1000 bp (6X106 total), >50 Loss-Of-Function mutations in disease-related 

genes, hundreds sequence (gene) duplications and translocations, 1015 active transposons in a single 

human (>100/cell), and 60-100 new de novo mutations not from the parents (1/108 bp) with 

mutations varying from cell-to-cell in a single person.  The rates of natural mutagenesis have been 
shown to be similar in cattle (Kadri et al. 2016), and negative outcomes relative to phenotype can 

occur from such “normal” mutagenic events even though the animals are predicted to be of superior 

genetic merit (Schutz et al. 2016). 

 

Current traits and demonstration animals.  Besides the need to integrate with existing systems 

of selection, we believe commercial deployment of genome editing should initially be focused on 

those traits that are beneficial along the entire value chain from animal to consumer.  Such a strategy 

promotes animal welfare, sustainability, and consumer acceptance of the technology.  For example, 

one of the first traits deployed in cattle was introgression of the celtic polled allele into horned dairy 

animals (Carlson et al. 2016), where changes were made using natural occurring alleles; consistent 

with conventional breeding principles.  The resultant animals demonstrated that genome editing 

could benefit animal welfare by eliminating stressful management practices (dehorning), while 
achieving acceptance from animal advocacy groups that influence consumer food product decisions.  

The only remaining challenge for commercial deployment of polled by gene editing is regulatory 

approval. 

 

In addition to consumer acceptance and regulatory approval, another limiting factor for 

commercial deployment is the availability of known sequence variants for target traits that add 

substantial value to offset the costs of trait deployment by ART.  The current number of known 

variants that have both major effects on production, health and/or welfare and exist in low allele 

frequency in the most popular breeds is severely limited, especially with respect to poultry and 
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swine.  Some of this can be attributed to the fact that most livestock traits are “complex”, i.e., 

variation in phenotype is due to effects from numerous loci with additive gene action, usually in the 

range of 10-100, sometimes thousands of genes.  Whole genome selection in a breeding program 

iteratively enriches for desirable production alleles at all these loci, and the molecular markers used 

for guiding selection decisions rarely correspond to causal polymorphisms.  Identification of causal 
alleles is not necessary for substantial genetic progress by genome selection, but is necessary for 

moving alleles to new genetic backgrounds. 

   

The historical emergence and selection for major effect alleles indicates that the right mutation 

in the right gene can have a dramatic effect on a complex trait.  Indeed, our appreciation of genetic 

potential is likely limited by epistasis, pleiotropy, and small effective population sizes.  Most 

variants of this type as targets for editing have been reported in cattle.  These variants have major 

effects on traits like thermotolerance (SLICK), muscling and tenderness (double muscling), coat 

colour, milk components (DGAT1), and fertility (multiple recessive lethals like HH1 and JH1).  To 

date, these variants have only been introduced or corrected in bovine fibroblast cell lines using 

TALENs and HDR templates, and only a single Nelore bull was made with a myostatin knock out 

by IVF injection of TALENs into single cell embryos (Carlson et al. unpublished).  Eventually, these 
bovine traits will be deployed for commercialization, but they may not represent the best 

opportunities for the use of precision breeding in food animals. 

 

A strong argument can be made that genome editing for disease resistance traits represent the 

best commercial opportunity, because these traits improve animal well-being while changing 

industry inputs through reduction of reliance on antibiotics, vaccination, and other physical 

biosecurity protocols and surveillance.  Again, there are practically no known variants that 

contribute to a substantial proportion of the phenotypic variance for resistance to a specific pathogen.  

Discovery of such variants may improve with revised reference genomes that contain more accurate 

assemblies of immune complex gene clusters.  Better SNP tools and sequence alignments can then 

be applied to improve past and future variant discovery efforts.  However, until then, we must rely 
on our limited knowledge of host:pathogen interactions for editing by rationale design of candidate 

genes.  Other methods for informing rationale design and testing hypothesized causal alleles, 

especially for disease resistance, are needed.  Recent methods by Yueng et al. (2017) demonstrate 

the power of using CRISPR/Cas9 to edit candidate immune genes in stem cells that can be 

differentiated into macrophages for pathogen challenge testing to compare how variants change 

response to infection and disease.  Also, new gene targets for resistance can be identified using 

CRISPR library screening methods to interrogate gene function across an animal genome in a 

systematic and comprehensive manner (Zhou et al. 2014).  

 

Although bovine traits based on “rationale design” have received publicity for conferring 

resistance to TB (Gao et al. 2017) and bovine respiratory disease, neither case has demonstrated 

resistance through a pathogen challenge of the edited animals.  In pigs, Carlson et al. (unpublished), 
have potentially developed pigs with natural variant edits that are resistant to foot and mouth disease 

virus (FMDV).  FMDV is a member of the picornaviruses, which replicate after infection by taking 

over the host cell’s protein synthesis machinery.  The viral proteses expressed early in the viral life 

cycle target and disable cap dependent translation of mRNA to shift protein synthesis to its own 

uncapped mRNA.  The edits copied into these potentially FMD resistant pig were based on a two 

amino acid change to EIF4G1 at a predicted viral cleavage site targeted by FMDV proteases (Lpro).  

Lpro cleavage of EIF4G1 disables the mRNA bridging function that helps allow cap dependent 

proteins synthesis.  The amino acid variation in edited sequence was derived from EIF4G2; and 

thus, represents a natural variant found in swine.  We showed these edits in EIF4G1 gave pig 
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embryonic fibroblasts protection from cell death caused by active Lpro, and the edited fibroblast cells 

with altered EIF4G1 genotypes were also resistance to Lpro cleavage.  This result provides support 

for further investigation to test mutant EIF4G1 cells and animals with live FMDV challenges in a 

biosecure facility.  

 
To date, probably the best case of gene editing to make an animal resistance to a pathogen was 

reported by Whitworth and colleagues (2015), where a knockout of swine CD163 resulted in 

protection from infection by porcine reproductive and respiratory syndrome virus (PRRSV).  

However, subsequent efforts by Wells et al. (2016) to swap domains with a human paralog of CD163 

and by Burkard et al. (2017) to only delete exon 7 of CD163 suggest that the other functions of this 

gene must be maintained to make a commercially viable, healthy animal. Thus, the continued focus 

to only alter a specific portion of CD163 that facilitates infection of PRRSV into the host 

macrophage. 

 

Regulation and impediments to commercialization.  Gene editing has emerged as a powerful 

research tool that can be used to systematically test hypothesized genotype/phenotype associations, 

particularly for major effect alleles.  Furthermore, editing can be a powerful tool to study epistatic 
and pleiotropic effects, enabling the comparison of phenotypes presented when a polymorphism 

resides in the context of original versus a comparator genome.  It seems very likely that gene editing 

may serve not only as a research tool, but also a way to achieve non-meiotic introgression of high 

value polymorphisms into commercial populations, breeds, or elite individuals where they don’t 

already exist or are present at frequencies too low for effective enrichment by selection. 

 

So what is impeding widespread activity of such research towards commercialization of gene 

edited animals?  The answer is probably the uncertainty of the regulatory approval systems, which 

inhibits investment and negatively affects innovation and commercialization.  Even though 

molecular genetics is a highly precise science (an investment of over $300 Billion dollars in 

knowledge about DNA since the 1980s), our regulators in the US insist that SDN mutagenesis of 
DNA, where the cell’s DNA repair mechanisms act naturally to produce the genetic change, is not 

a breeding technique but rather a drug treatment.  Furthermore, the parameters laid out for approval 

of gene edited animals mirror those for testing efficacy of chemical compounds that may have 

residues in food products.  Editing has no residues.  Unintended mutations are possible, but requiring 

a measurement of a “Durable Genome” and the purity of the enzyme used to induce the DSB is 

scientifically a nonsensical concept.  Genome editing is very predictable (more so than sex), and the 

technological innovation based on SDN activity is exponential.  It is inevitable that over-regulation 

will always be based on outdated concepts, which opens up opportunities to amplify public fears by 

the big business of anti-biotech advocates (e.g., Greenpeace).  The consequences of lengthy, 

expensive regulation have the potential to greatly diminish the widespread use of editing in 

livestock.  If regulation is expensive, in a commercial endeavour with narrow profit margins for the 

genetics provider; then only a few “blockbuster” products will make it through regulatory approval.  
Expensive regulation leaves out countries that need gene edited animals the most, and supports a 

few multinational companies (e.g., Bayer) that can eventually overcome cost barriers to profit.  

However, if costs go down, then even farmers in small ecosystems can benefit from optimized 

agricultural animals.   

 

We have the power to improve the world –will we use it?  Today the conversation remains at a 

1980s level, due to wilful ignorance by well-meaning, intelligent people.  Challenges for acceptance 

are public “concerns” and resistance to the technology is more apparent than real.  So even though 

the science is straight forward; regulatory approval is not.  In the current schema and based on 
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previous approval of a single GMO animal for consumption, one could predict that regulation will 

be 99% of financial costs of precision breeding by genome editing in the US.  This will extinguish 

the use of gene editing for animal improvement.  The fact-based argument, that ever-increasing 

changes in micro-climates and emerging disease threats around the world supports the application 

of single generation re-tooling of animals to accommodate global demand for protein in future 
generations, seems to have no resonance with the anti-biotechnology advocates.  Their position 

blocks the intuitive need for genetic retooling of agricultural products, to better suit production in 

new environments world-wide to accommodate population increases and environmental constraints 

on agriculture. That can only happen if new, climate-adapted strains of animals are available at 

reasonable cost in poor countries.  Ultimately, most rationale well intended people want the same 

outcomes from the use of new technology - healthy people, animals and environment – worldwide.  

Genome editing offers risk-free solutions – worldwide. 
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SUMMARY 

Structural variants (SVs) have eluded easy detection and characterisation, particularly in non-

human species.  However, there is increasing evidence that SVs not only contribute a substantial 

proportion of genetic variation but have significant influence on phenotypes.  Here we present 

discovery of copy number variants (CNVs) (a subset of SVs) in a prominent New Zealand dairy 

bull using long read PacBio sequencing technology. Validation of CNVs was undertaken utilising 

whole genome Illumina sequencing of 557 cattle representing the wider New Zealand dairy cattle 
population. The ability to utilise CNVnator to “genotype” the 557 cattle for copy number across all 

regions identified as putative CNVs, allowed a genome-wide assessment of transmission level of 

copy number based on pedigree. The more highly transmissible a putative CNV region was 

observed to be, the more likely the distribution of copy number was multi-modal across the 557 

sequenced animals. This transmission based approach was able to confirm a subset of CNVs that 

segregates in the New Zealand dairy cattle population. Genome-wide identification and validation 

of CNVs is an important step towards their inclusion into genomic selection strategies. 

 

INTRODUCTION 

The introduction of genomic selection to dairy cattle breeding has increased the rate of genetic 

gain.  To date, genomic selection has largely focused on the utilisation of SNPs and very small 
insertions or deletions. Very little regard has been given to larger variations such as CNVs.  While 

SVs (including CNVs) account for the greatest amount of total polymorphic content among 

individual genomes (Weischenfeldt et al. 2013), the focus on SNPs and small indels is presumably 

due to the ease with which such variation can be genotyped at a minimal cost.  However, advances 

in genomic technologies are resulting in an increasing amount of evidence indicating that these 

larger sequence variations make important contributions to genetic and phenotypic variation 

(MacDonald et al. 2014, Zarrei et al. 2015, Sudmant et al. 2015, Weischenfeldt et al. 2013).  No 

single technology, detection strategy, or algorithm can capture the entire spectrum of SVs in the 

genome. The collective effort of the human 1000 Genomes Project has utilised both a variety of 

SV detection platforms and algorithms to generate an integrated map of 68,818 SVs in unrelated 

individuals (Sudmant et al. 2015). This is now considered the gold standard SV list in humans, yet 

the authors still state that “SV discovery remains a challenge nonetheless, and the full complexity 
and spectrum of SV is not yet understood” (Sudmant et al. 2015). 

 

The desire to have a comprehensive list of SVs in a population is not unique to human 

genomics, however, SV detection is critically dependent on the quality of genome assembly, 

which for species such as cattle, lags behind the quality of the human genome.  Furthermore, while 

SV/CNV detection algorithms invariably report the presence of large numbers of CNVs in each 

individual, these detection algorithms are plagued with a high rate of false discovery.  Without a 

gold standard with which to compare detected variants, case by case validation is a lengthy process 

and not suited for genome-wide analysis. 
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In animals such as cattle, a desire to understand the genome is driven by production traits and 

the desire to predict animal performance at an early age through genomic selection.  As 

widespread genotyping and imputation of genotypes to sequence level (Druet, Macleod, and Hayes 

2014) becomes more common, there is an increasing need to not only capture SNP variation, as 

CNVs may severely impact imputation (LIC unpublished data), and also be associated with, or 
contribute to important production trait phenotypes (Kadri et al. 2014, Xu et al. 2014). 

 

The recent availability of long read single molecule sequencing (up to 80 kilobases (kb)) 

provides a new technology for the identifications of CNVs.  This technology offers the possibility 

of single reads that span complex CNVs (Sedlazeck et al. 2015). We have utilised long read single 

molecule sequencing of a New Zealand Holstein Friesian bull with the vision of improving 

imputation and ultimately genomic selection and association studies. 

 

MATERIALS AND METHODS 

PacBio Sequence and SV Detection: PacBio long read sequences were generated from a Zealand 

Holstein-Friesian bull by Cold Spring Harbor Laboratories. The PacBio SMRT pipeline was 

used to generate filtered sub reads in fastq format. Alignment of reads to the UMD 3.1 bovine 
genome assembly was undertaken using BWA-MEM (v0.7.12; https://arxiv.org/abs/1303.3997) 

with options “–M –x pacbio”.  

SVs were called using Sniffles (v0.0.1 https://github.com/fritzsedlazeck/Sniffles). Structural 

variants displaying > 95% reciprocal overlap with a UMD3.1 contig were removed as these likely 

represent genome assembly errors. Further filtering retained only SVs present in a single contig. 

Illumina Sequence and CNV Genotyping: Illumina HiSeq sequencing of 557 animals 

representing the population structure of New Zealand dairy cattle and phenotypes of interest 

has previously been described (Littlejohn et al. 2016).  Read-depth-based CNV genotyping 

analysis was undertaken across the genome of animals sequenced on the Illumina HiSeq platform 

using CNVnator v0.3 (Abyzov et al. 2011) using a bin size of 150bp. Based on breakpoints 

identified by Sniffles, copy number was determined for each CNV greater than 100bp in length in 
each of 557 animals.  Mendelian inheritance of copy number was assessed using a mixed linear 

model.  The independent variables were the fixed effect of the mean and the random effect of the 

animal. The dependent variable was the copy number. The variance of the additive genetic effect 

of animal was based on a pedigree of each animal and their sire and dam, traced for seven 

generations.  ASREML-r (version 3.0) (Gilmour et al. 2009) was used for estimation of variance 

components. The variance associated with the animal effect is analogous to the additive genetic 

variance and heritability is additive genetic variation/phenotypic variation, however, in terms of 

CNV inheritance, “transmission level” is used instead of the term heritability. A transmission level 

of 0 indicates either a denovo mutation in Esteem, or a sequencing artefact, or alternatively a 

transmission level of 1 indicates that the copy number is inherited in a Mendelian fashion. 

Effect of CNVs on phasing allelic R2:Using sequence data from all 557 animals, phasing allelic 

R2 (AR2) was determined for, each SNP within the 936 CNV regions found to have high 
transmission levels, each SNP outside the CNVs, and each SNP 50, 100, 500, 1000, 3000bp either 

side of the CNVs. 

 

SNP tagging of CNVs: Correlations between copy numbers for each for the final 2661 CNVs and 

genotypes from 50K Illumina SNPchip or full sequence were determined. 

 

RESULTS AND DISCUSSION 

A total of 32x PacBio coverage of the bovine genome (UMD3.1) was generated. Sniffles 

software identified a total of 38,709 putative SVs of which 19,797 were CNVs (deletions 
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n=18,577, duplications n=1220). Of the 3532 CNVs (deletions n=3055, duplications n=477), that 

remained after filtering, sizes ranged from 1 – 79,450bp with a median size of 321bp (mean size of 

818bp).  CNVs smaller than 100bp (n=869) were excluded from further analysis as copy number 

could not be accurately predicted by CNVnator (2661 CNVs remained). 

 Using CNVnator in genotyping mode we were able to determine copy number at all putative 
CNV locations identified by PacBio sequence in all 556 animals. These CNV genotypes were used 

as ‘phenotypes’ in order to allow the copy number transmission level to be estimated using 

ASREML in an attempt to make a distinction between real CNVs and the many false positives 

detected when calling CNVs from short read sequencing. Putative CNVs showed a wide range of 

transmission levels. Approximately 30% of CNVs called from PacBio sequence showed high 

transmission level (936 CNVs > 0.70). Sorting CNVs by level of transmission and plotting 

distribution of copy number in the population indicated a trend of increasing multimodality of 

copy number with increasing transmission level.  Many of the CNVs with a calculated 

transmission level of greater than 0.6 showed a clear bi- or trimodal distribution of copy number 

across the 557 animals.  The multimodality of copy number, together with visual observation of 

bam files containing sequencing read-depths, insert size, and the presence of split reads are all 

consistent with the detection of bona fide CNVs, provided strong evidence that these highly 
tranmissible CNVs were likely to be present in 

our population. The observation that many  of 

these trimodal distributions represented 

deletions (0, 1, vs 2 copies) reflects, at least in 

part, the relative ease with which deletions are 

able to be detected relative to duplications, due 

to the large proportional differences in 

sequence content for deletions (Abyzov et al. 

2011). 

Figure 1 illustrates the detrimental effect of 

CNVs on the ability to correctly phase SNP 
genotypes, not only within the CNV itself, but 

also in the surrounding sequence.  Given the 

vast number of CNVs even in this one 

individual, it is expected that accuracy of 

imputation will be negatively affected by the inability to phase the reference sequence accurately.  

  While the data presented here is not a comprehensive list of CNVs in the New Zealand dairy 

cattle population, it does illustrate the potential of long read single molecule sequencing as an 

additional valuable source for identification of CNVs.  Furthermore, long read sequence 

information, combined with independent short read sequencing and pedigree information in 557 

animals representative of the population provide compelling evidence of the existence of CNVs in 

our dairy cattle population, and are not simply false positive results and allows us to begin a 

catalogue of CNVs. Characterisation of population CNVs has two major benefits to the cattle 
breeding industry.  Firstly, once identified, CNVs may be cheaply identified alongside SNPs by 

simply adding appropriately designed probes to existing SNP chip genotyping platforms and 

including CNV genotype information as an additional source of genetic variation in genomic 

prediction models. Secondly undertaking imputation in a CNV aware manner to bypass poor 

phasing and increase imputation accuracy.     

It could be argued that much of the CNV variation is already captured by SNP in linkage 

disequilibrium with CNVs. However, it is unlikely that multi-allelic CNVs would be accurately 

tagged using bi-allelic SNP, and initial reports indicate that around 20% of large CNVs identified 

from SNP chip platforms are not well tagged (Xu et al. 2014). Figure 2 illustrates the correlation 
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between CNV and SNP genotypes on the 50K 

SNPchip as well as from sequence. Our results 

indicate that very few of the 936 highly transmissible 

CNVs are tagged well by SNP on the 50K SNPchip, 

and unsurprisingly many more CNVs are well tagged 
by sequence derived SNPs.  Our current genomic 

selection protocols utilise only SNPs present on the 

50K SNPchip, and therefore, to date, only a very 

limited amount of genetic variation from CNVs is 

being captured and utilised.  As a move towards 

including sequence derived SNPs that tag CNVs 

could help in improving the accuracy of genomic 

selection 

From a practical perspective, the presence of 

CNVs may have implications for phasing and 

imputation of other classes of variants.  Given the 

increasing use of imputation of SNP chip genotypes to whole genome sequence, understanding 
where CNVs are located in the genome and ideally devising strategies for their correct imputation 

are of great importance for accurate genome-wide imputation and the generation of accurate 

genotype information to be utilised in genomic prediction models. 

 

CONCLUSION 

We present here the first step towards a gold standard list of CNVs in dairy cattle by utilising 

both long and short read sequencing technologies together with conservative filtering steps and an 

easy genome-wide strategy for assessing the Mendelian inheritance. Collectively this provided 

compelling evidence that these SVs do segregate in the population. Given the increasing use of 

imputation strategies being used in cattle breeding, identification and characterisation of CNVs 

(and all classes of SVs) will lead to improved imputation accuracy and will ultimately contribute 
to improved genomic prediction. 
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SUMMARY 

Whole-genome sequence data has several potential uses for animal breeding, including 

accelerated detection of mutations with deleterious and beneficial effects, as well as increasing the 

accuracy of genomic selection.  It is cost-effective to share data in global consortia to enable more 
powerful imputation of sequence into animal populations that have been genotyped at lower 

density.  This then facilitates more powerful downstream analyses such as genome-wide 

association and genomic prediction.  Here we describe two such projects, namely the 1000 Bull 

Genomes Consortium and SheepGenomesDB. 

 

INTRODUCTION 

Whole-genome sequence provides detailed information of an individual’s genetic make-up, 

which can be used to pinpoint genetic variants and genotypes for all animals in the sample.  The 

accuracy of the analyses is dependent on the read depth, which is the average number of short 

reads (usually about 100 basepairs (bp) in length) aligned per base on the reference genome (e.g. 

10 fold coverage). 
Sequence data has several important uses.  It can be used to track down Mendelian disorders 

and recessive alleles in affected individuals, using sequence variants from unaffected animals as 

controls enabling powerful filters to reduce the number of candidate mutations.  Secondly, it 

enables more powerful genome-wide association studies, because either the causative mutations 

are themselves a sequence variant or would be in high linkage disequilibrium (LD) with a 

genotyped variant.  Thirdly, it could improve the accuracy of genomic prediction, a benefit that 

can likely only be harnessed in multi-breed reference populations due the small effective 

population size of most commercial livestock breeds.  For the latter two applications, the cost of 

sequencing has been prohibitive to sequencing the tens of thousands of individuals needed for 

powerful genome-wide association and genomic prediction.  An alternative option is to impute 

sequence genotypes into animals that are already genotyped at lower density (preferably with a 

high density SNP chip).  While the accuracy of imputation is not perfect, especially for lower 
minor allele frequency variants, it still has been demonstrated to increase the power of analyses.  

The need therefore arises for large reference populations of whole-genome sequenced animals for 

imputation. 

The 1000 Bull Genome Project (1000 Bulls) and SheepGenomesDB Project are meeting this 

need in cattle and sheep, respectively.  Many cattle breeds use the same sires across the globe, 

which makes populations very genetically connected and, therefore, using one reference 

population for imputation is advantageous.  In addition, because sequence information captures 

even the short haplotypes shared across breeds, there is a benefit to using all breeds as a combined 

reference for imputation.  Both projects have grown quickly with the 1000 Bulls now close to 
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2800 animals in Run6 and SheepGenomesDB with 935 animals in Run2.  Described here is the 

organisation principles of both projects,  bioinformatic pipelines, and the animals included and 

number of variants discovered in the latest analyses. 

 

MATERIALS AND METHODS 
In the 1000 Bulls the lead institution is Agriculture Victoria (AgVic) and each partner 

contributes their sequence data to the project.  In turn, each partner receives all genetic variants 

and sequence genotypes discovered from animals in the project.  There are currently 36 partners 

from 22 countries.  The data is only available to participating partners and partners are expected to 

share identifying information, pedigrees and metadata for all animals where possible.  Public cattle 

sequences not already included are also downloaded from the NCBI sequence read archive (SRA) 

and incorporated.  The SheepGenomesDB project is organised differently and is jointly managed 

by CSIRO, AgResearch (AgR) and Agriculture Victoria (AgVic).  It requires all included raw 

sequence data to be public at NCBI SRA, but allows animals to have anonymous identifiers with 

meta-data giving information on breed and sex (if known).  As all input data is public, all variants 

and genotypes found are also made public. 

Processing of Sequence. 1000 Bulls – Partners are responsible for processing and aligning 
sequences, which are then transferred to AgVic in BAM format for inclusion in analyses.  

Sequence quality scores must be Phred+33 encoded. The recommended quality control (QC) and 

processing of whole genome sequences in fastq format is as follows: 1) remove Illumina reads that 

fail the chastity filter; 2) remove adaptor sequence from reads; 3) trim low quality bases (Phred 

<20) from 5’ and 3’ ends of reads; 4) discard reads with a mean Phred quality score of <20 and 

>=3 bases not called (i.e. N); 5) remove known artifacts (e.g. Illumina NextSeq are known to have 

erroneous strings of A and/or G at 3’ ends); 6) after trimming, discard reads that are too short 

(<50% of original read length).  Reads that are left unpaired after QC may be aligned. Helpful 

programs for processing are quadtrim (https://bitbucket.org/arobinson/quadtrim), Picard 

(http://picard.sourceforge.net/index.shtml), Samtools (Li et al. 2009), GATK (DePristo et al. 2011), seqtk 

(https://github.com/lh3/seqtk), and FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  
Sequences are then aligned to the UMD3.1 bos taurus taurus reference genome downloaded from 

the 1000 Bull Genomes website (www.1000bullgenomes.org) with the Burrows-Wheeler Aligner (bwa 

align or bwa mem) using default parameters (Li & Durbin 2009).  BAM files must contain sample 

identifiers in Interbull format if available.  One BAM files per animal per partner should be locally 

realigned, PCR duplicates removed, sorted, and indexed.  Mean read depth should be calculated 

using GATK DepthOfCoverage and provided.  Upon receipt of BAM files from partners, AgVic 

performs format and QC checks on files and amends them if needed where possible.  Partners are 

encouraged to submit Bovine HD genotypes and any meta-data including pedigrees along with 

sequences. 

SheepGenomesDB – The pipeline in use for this project is the same as for the 1000 Bulls 

except that all sequences must be publicly available at NCBI sequence read archive.  Raw fastq 

files are downloaded by AgR and AgVic and then processed as above.  Alignments are done to 
OAR3.1, ftp://ftp.ensembl.org/pub/release-78/fasta/ovis_aries/dna/Ovis_aries.Oar_v3.1.dna_sm.toplevel.fa.gz. Both 

AgR and AgVic, have a full set of BAM files for the project.  For each animal, a standard 

SheepGenomesID is created which provides country of origin, breed, and sex of the animals 

(naming convention document on www.sheepgenomesdb.org).  

Variant Calling, Filtering, and Refinement. 1000 Bulls – Samtools (currently version 1.3) 

mpileup is used to call single nucleotide polymorphisms (SNP) and short insertions and deletions 

(indels).  This results in a variant call format (VCF) file which contains the following information: 

variant position, reference and alternative allele, quality metrics and read depth, genotypes for all 

animals at that positions, and genotype probabilities for all possible genotypes per animal per 

https://bitbucket.org/arobinson/quadtrim
http://picard.sourceforge.net/index.shtml
https://github.com/lh3/seqtk
http://www.1000bullgenomes.org/
ftp://ftp.ensembl.org/pub/release-78/fasta/ovis_aries/dna/Ovis_aries.Oar_v3.1.dna_sm.toplevel.fa.gz
http://www.sheepgenomesdb.org/
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position.  The set of variants called at this stage will include low confidence variants for which 

there may not be enough evidence.  Filtering of variants has been shown to improve the quality of 

the variant set as judged by the concordance of sequence and SNP chip genotypes at overlapping 

positions as well as the rate of opposing homozygotes (OppHom) found in parent-offspring pairs 

(there should not be any).  Filtering is done with custom python scripts that use the VCF parser 
PyVCF (https://github.com/jamescasbon/PyVCF).  Variants are removed if they have: 1) >1 alternative 

alleles; 2) no alternate allele observations in both forward and reverse direction reads; 3) overall 

quality score QUAL <20 and mapping quality score <30; 4) < minimum read depth of 10 or >3 

standard deviations from the median read depth; 5) failed OppHom (>10% of parent-offspring 

pairs were OppHom); 6) the same bp position; 7) a proximity of <10 bp between indels or <3 bp 

between SNP in which case the lower QUAL variant was removed.   

The resulting VCF files still contain a proportion of genotypes that are missing or called with 

high uncertainty.  Imputation programs that are able to use genotype probabilities can be used to 

impute missing and refine uncertain calls using the haplotypes found in the collective set.  In the 

1000 Bulls we use Beagle 4.0 (Browning & Browning 2009) for this purpose.  In cattle two 

separate analyses (Runs) are performed, one includes only taurine cattle and the other includes all 

animals.   
SheepGenomesDB – The sheep pipeline is as above with the following differences.  AgVic 

runs Samtools and AgR calls variants with GATK UnifiedGenotyper.  Variants from both callers 

are then independently filtered as above, excluding the OppHom filter because only few Parent-

Offspring pairs exist in the sheep sample to date.  In addition, Samtools and GATK calls are 

merged to create two sets: 1) a unison set of calls with filtered overlapping variants, and 2) a 

complete set of calls that contain all unfiltered variants from both callers.  Both sets are made 

public at the European Variant Archive (http://www.ebi.ac.uk/eva), which also annotates all variants 

and connects them to dbSNP. 

Quality Control of Variants and Genotypes. Concordance of bovine HD SNP chip and 

sequence genotypes is performed for all animals in the 1000 Bulls if available.  This concordance 

is expected to be >95% for good quality sequence (depending on read depth) and can typically be 
improved using Beagle.  If concordance is <80% it may indicate that the SNP chip and sequence 

have not originated from the same animal and may highlight sample tracking issues.  Parent-

Offspring OppHom are checked for all pairs and should be less 0.1%.  Furthermore, the number of 

singletons and heterozygosity per animal are calculated.  If an animal has a very large number of 

singleton variants and it has breed contemporaries, it would indicate an issue with its data.  

Similarly, if heterozygosity is very high, it indicates that DNA has been mixed at some point 

during the generation of the sequence.    Finally, all animals are checked whether they have 

genotypes in all genomic regions. 

 

 

RESULTS AND DISCUSSION 

The 1000 Bulls has grown fast over time starting with 238 taurine animals from 4 breeds in 
Run2 (2012) (Daetwyler et al. 2014) and 1756 animals from 55 breeds in Run5 (2015) across 

taurine and indicine sub-species.  Run5 identified 67.3 million variants, of which 64.8 million 

were SNP and 2.5 million were indels.  Run6 is currently underway and includes close to 2800 

animals across more than 70 breeds (Figure 1).  A new feature of Run6 is the inclusion of related 

species such as the Gaur, Yak, turano mongolicus, ancient cattle, and an auroch.  It also has much 

expanded collection of African and indicine breeds. 

SheepGenomesDB Run1 (2016) discovered 50 million variants and contained 453 sheep and 

included many New Zealand breeds, the International Sheep Genomics Consortium global 

diversity set, and Moroccan as well as Iranian sheep from the NextGen project (available at 

https://github.com/jamescasbon/PyVCF
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http://www.ebi.ac.uk/eva/?eva-study=PRJEB14685).  Run2, for which the Samtools variant calling at AgVic 

has concluded, contains 935 sheep with the SheepCRC contributing a large number of animals 

from the main four Australian breeds (Merino, Polled Dorset, White Suffolk and Border Leicester, 

Figure 1) and the USDA contributing their Sheep Diversity Panel animals.   

 

 
Figure 1 Breeds included in Run6 of the 1000 Bull Genomes Project (left panel) and in Run2 

of the SheepGenomesDB Project (right panel).  Sheep composites are primarily crosses of 

Australian and New Zealand breeds. 

 
The 1000 Bulls data has been the basis for several studies that detected causative mutations, 

where its genomes served as controls (e.g. Daetwyler et al. 2014; Murgiano et al. 2015).  It has 

been the basis for imputation at many consortium partner institutions, which have then used the 

data to perform imputation, GWAS and genomic selection (e.g. Bouwman & Veerkamp 2014; van 

den Berg et al. 2016). Similar benefits are expected to be realised in sheep.  The two consortia are 

the most complete inventory of cattle and sheep genetic variants globally and will form the basis 

for sequenced-based animal breeding research in many countries. 
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SUMMARY 

Feed is the largest variable cost in milk production industries, thus improving feed efficiency 

(FE) will give better use of resources. To identify and select animals with high FE, it might be 

helpful to understand the biological mechanisms and the role of gene expression patterns across 
the whole genome (transcriptomics). In the present study, RNA sequencing data was used to detect 

differentially expressed (DE) genes in Danish Holstein and Jersey dairy cows having either a high 

or low FE (assessed as residual feed intake (RFI). Functional analysis was performed on these 

genes to identify molecular pathways involved in FE. Ten Jersey and nine Holstein cows were 

used in the experiment and divided into two RFI groups depending on their calculated RFI. The 

two RFI groups received a Control (C) and High Concentrate (HC) diet containing 68:32 and 

39:61 ratio of forage:concentrate, respectively. This enabled us to compare the interaction between 

RFI status and diet. The mRNA samples extracted from liver biopsies were paired end sequenced. 

The RNA-Seq gene expression data was then analyzed using a statistical-bioinformatics pipeline 

to identify DE genes and perform functional enrichment. We compared gene expressions of the 

RFI groups, and identified 70 and 19 DE genes in Holstein and Jersey, respectively. An interaction 
term (RFI x diet) detected two significantly DE genes in Jersey cows. The functional enrichment 

analysis of the DE genes showed involvement in pathways that might regulate RFI, such as 

primary immunodeficiency, retinol metabolism, starch and sucrose metabolism, arachidonic acid 

metabolism and cytochrome P450 drug metabolism. In conclusion, the transcriptomics approach 

was effective in identifying DE genes and understanding their biological functions. These findings 

could contribute to the development of biomarkers for RFI and to improving augmented genomic 

selection procedures that make use of functional information. 

 

INTRODUCTION 

Improving feed efficiency of dairy cattle can mean big savings for milk producers. One way to 

improve feed efficiency is by genetic selection for cows producing more milk for the same amount 

of feed. Residual feed intake which is the difference between actual and predicted feed intake has 
been used widely as a measure of feed efficiency in livestock (Berry & Crowley 2012; Connor et 

al. 2013; Lin et al. 2013; Tempelman et al. 2015).  

To understand the mechanisms of action affecting feed efficiency, we suggest the use of 

system genetics approach including transcriptomics techniques. This might be helpful in 

supporting genomic selection in the future (Kadarmideen 2014; Zhang et al. 2014). The liver plays 

an important role in the metabolism of nutrients (Partridge et al. 2014). Hence, liver 

transcriptomics might give insight into feed efficiency in dairy cows.  
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The objective of the study was to identify potential regulatory genes and molecular pathways 

involved in feed efficiency of dairy cattle by characterising the liver transcriptome based on RNA-

Seq technologies.  

 

MATERIALS AND METHODS 
Ten Jersey and nine Holstein cows were selected from the research herd of 200 animals in 

Danish Cattle Research Centre (DCRC), Aarhus University, Denmark. The data from this herd 

have previously been used in quantitative genetic studies regarding feed or dry matter intake (Li et 

al. 2016). Animals of both breeds were divided into two groups: high- or low-RFI. Residual feed 

intake was defined using a random regression model (Tempelman et al. 2015). Here, the random 

animal solutions were extracted from a random regression model in which dry matter intake was 

regressed on the following fixed effects: weeks of lactation, the management group in which the 

cows were held, and the interaction between weeks of lactation, breed and parity. Fixed linear 

regressions were applied to adjust for metabolic body weight, daily live weight change and daily 

body condition score change (fitted with a Legendre polynomial), and energy corrected milk yield. 

The random effects were cow within the breed and cow within the breed and parity. All cows 

received a low-concentrate [control (C)] and a high-concentrate (HC) diet in a crossover design 
with two periods. There was approximately a 30% difference in concentrate proportion on a dry 

matter (DM) basis between the C and HC diets which were 68:32 and 39:61 ratio of 

forage:concentrate, respectively. 

Approximately 10–20 mg of liver tissue were collected from all the experimental cows at the 

end of each feeding trial. mRNA was extracted from the liver tissue samples using the Qiazol, 

RNeasy® Mini Kit and MaXtract High Density and sequenced with Illumina HiSeq 2500. The 

quality of all mRNA samples was above 8 RIN (RNA Integrity Number). 

RNA-Seq data of each cow were analyzed to identify differentially expressed genes. The DE 

analysis was performed separately for each breed using R package DESeq2 setting all the 

parameters to default values (Love et al. 2014). Two different models were fitted: 

 
Model 1 Y=Parity number + Diet + RFI 

Model 2    Y=Parity number + Diet + RFI + Diet*RFI 

 

where: Y is the gene expression counts, RFI is a dummy variable that represents the feed 

efficiency of the animals (high- and low-RFI), and Parity number was included as a dummy 

variable to control for potential confounding effects. In Model 1, we assumed an additive effect 

without interaction between two treatment diet and two RFI groups. In Model 2, we assumed an 

interaction between two treatment diets by two RFI groups. Differentially expressed genes were 

considered at a False Discovery Rate (FDR) < 5%. 

Finally, functional enrichment analysis on the entire expression profile was performed using 

Gene Set Enrichment Analysis (GSEA). It has been demonstrated previously that GSEA provide 

insights into the biology behind a set of genes in terms of how the DEGs interact. 

 

RESULTS AND DISCUSSION 

On average, 91% of the read pairs (26,067,856 read pairs) were uniquely mapped to the bovine 

reference genome UMD 3.1 from Ensembl database release 82. On average, 62% of the read pairs 

mapped to exonic regions, 20% to intronic regions and almost 18% to intergenic regions. 

In total, 12,025 genes in the Holstein breed and 11,905 genes in the Jersey breed were used 

after removing low expression genes to identify the DEGs. A total of 70 Holstein and 19 Jersey 

DEGs (Table 1) were identified by comparing between high- and low-RFI directly without 

accounting for any interaction. The interaction analysis showed low numbers of DEGs in both diet 
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groups (Table 1). Among the top DEGs in Holsteins were ACACA, CYP2C9, CYP7A1, CYP11A1, 

ELOVL6, FOSL2, HCLS1, IFI6, NR1H4, RYR1, SOCS2, TBC1D8, CR2, CTH, DGAT2, FGFR2, 

SLC20A1 and TAF6. The top DEGs in Jerseys were CYP3A4, EXTL2, TMEM102, FDXR, 

GIMAP4, GIMAP8, GNG10, HLA-B and ZNF613. Most of the genes identified as DEGs in both 

breed were also found as DEGs in other RFI divergent study by (Weber et al. 2016).  In total, 22 
Holstein genes and 14 Jersey genes were detected as significant DEGs (p values < 0.05) for the 

interaction analysis. No significant genes were identified in Holstein cows for the interaction 

(Table 1). However, two Jersey genes, SEC24 Homolog D (SEC24D) and FLT3-Interacting Zinc 

Finger 1 (FIZ1), were differentially expressed (p values < 0.05) in the RFI groups depending on 

the two diet types.  

We identified seven overrepresented pathways for the set of downregulated genes and none for 

the upregulated genes in high-RFI group Holsteins. In Jerseys, two pathways were overrepresented 

for genes with negative-fold changes and three pathways for genes with positive-fold changes. The 

top KEGG pathways for the genes downregulated in the high-RFI group in Holsteins and in 

Jerseys is the primary immunodeficiency pathway, while the significant pathways identified for 

genes upregulated in the high-RFI group were only detected in Jerseys. We also identified, that 

most of the pathways within the strong indications thresholds (FDR q-value <0.05), were related to 
the metabolism of retinol, starch and sucrose, ether lipid and cytochrome P450 drug metabolism. 

 

Table 1.  Number of differentially expressed genes between high- and low-RFI in a separate 

diet group in the model with interaction term, and without interaction term  according to 

the corrected p values < 0.05 

 

 
Control High Concentrate With Interaction Without interaction 

Holstein 9 13 0 70 

Jersey 6 6 2 19 

 

The functional enrichment and pathway analysis of the DEGs contribute towards 

understanding the function of these genes in relation to feed efficiency. The steroid hormone 

biosynthesis pathway was one of the top KEGG pathways identified in the analysis of negative 

energy balance in dairy cows (McCabe et al. 2012). We also discovered that this pathway was 

overrepresented in the set of genes upregulated in high-RFI group in Jersey cows (FDR < 0.05). 

Steroid hormone biosynthesis should always occur in the adrenal glands and gonads, while the 

liver is the site of steroid hormone inactivation. The upregulation of steroid hormone biosynthesis 

pathway indicated that steroid hormone was inactivated in high-RFI group. Therefore, we would 

conclude that this pathway plays an important role in RFI. In support, both CYP11A1 and CYP7A1 

that were upregulated in high-RFI group in Holstein, which function in cholesterol homeostasis, 
were identified as DEGs in our experiments and they are part of this pathway in KEGG. 

Primary immunodeficiency pathway is a heterogeneous group of disorders. This pathway was 

the top overrepresented pathway detected by GSEA and was significantly enriched in both cattle 

breeds. The downregulation of the primary immunodeficiency pathway in both breeds of high-RFI 

cows suggests that the immunity may affect feed efficiency. (Ozuna et al. 2012) observed that 

primary immunodeficiency disorder is consistently inherited by low-feed efficient pigs. 

Consistently, Kogelman et al. (2014) and Do et al. (2013) reported a correlation between genes 

related to immunodeficiency function disorders or immunity-related diseases and low-feed 

efficiency in pigs.  

Notably, the genes identified for the interaction between RFI and diet, were also associated 

with immunodeficiency. The impact of the diet on genes belonging to the immunodeficiency 
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pathway and it paves the way for future studies to determine how to improve diet in relation to the 

genetic background of the animals. Two protein-coding genes, SEC24D and FIZ1, were 

differentially expressed in response to diet and were associated with pathways including immune 

system and transport to the golgi and subsequent modification as well as in transcriptional 

regulation (www.genecards.org). The lack of a more extensive differential gene expression 
response to diets indicate that differences in the concentrate proportions between the diets, as 

tested in this study, may not be able to disturb gene expression levels. 

In conclusion, the results reveal differences in biological mechanisms related to residual feed 

intake in Holsteins and Jerseys. The study provided 70 and 19 candidate genes involved in the 

regulation of residual feed intake pathways in Holstein and Jersey cattle, respectively. The 

functional enrichment analysis of the DE genes showed involvement in pathways that might 

regulate feed efficiency, such as primary immunodeficiency, retinol metabolism, starch and 

sucrose metabolism, arachidonic acid metabolism and drug metabolism cytochrome P450. The 

relationship between retinol metabolism and the feed conversion ratio phenotype in Nellore beef 

cattle has been previously described (de Almeida Santana et al. 2016). The candidate genes 

identified in this study might be useful for explaining biological effects of genomic markers in 

genomic selection methods utilizing functional information. 
 

REFERENCES 

Berry D. and Crowley J. (2012) Journal of animal science 90: 109. 

Connor E., Hutchison J., Norman H., Olson K., Van Tassell C., Leith J. and Baldwin R. (2013) 

Journal of animal science. 91: 3978. 

de Almeida Santana M.H., Junior G.A.O., Cesar A.S.M., Freua M.C., da Costa Gomes R., e Silva 

S.d.L., Leme P.R., Fukumasu H., Carvalho M.E. & Ventura R.V. (2016) Journal of applied 

genetics 57, 495-504. 

Do D.N., Strath, A.B., Ostersen T., Jensen J., Mark T. and Kadarmideen H.N. (2013). PloS one. 8: 

e71509. 

Kadarmideen H.N. (2014) Livestock Science. 166: 232. 
Kogelman L.J.A., Cirera S., Zhernakova D.V., Fredholm M., Franke L. and Kadarmideen H.N., 

(2014) BMC Med Genomics. 7: 57. 

Li B., Fikse W., Lassen J., Lidauer M., Løvendahl P., Mäntysaari P. & Berglund B. (2016) Journal 

of dairy science 99, 7232-9. 

Love M.I., Huber W. & Anders S. (2014) Genome biology 15, 550. 

Lin Z., Macleod I. and Pryce J. (2013) Journal of dairy science. 96: 2654. 

McCabe M., Waters S., Morris D., Kenny D., Lynn D. and Creevey, C. (2012) BMC genomics. 13: 

193. 

Ozuna A.C., Rowland R.R., Nietfeld J.C., Kerrigan M.A., Dekkers J. and Wyatt C.R. (2012) 

Veterinary Pathology. 50: 144 

Partridge C.G., Fawcett G.L., Wang B., Semenkovich C.F. and Cheverud J.M. (2014) BMC 

genomics. 15: 1. 
Tempelman R., Spurlock D., Coffey M., Veerkamp R., Armentano L., Weigel K., De Haas Y., 

Staples C., Connor E. and Lu Y. (2015) Journal of dairy science. 98: 2013. 

Weber K.L., Welly B.T., Van Eenennaam A.L., Young A.E., Porto-Neto L.R., Reverter A. & 

Rincon G. (2016) PloS one 11, e0152274. 

Zhang Z.H., Jhaveri D.J., Marshall V.M., Bauer D.C., Edson J., Narayanan R.K., Robinson G.J., 

Lundberg A.E., Bartlett P.F. and Wray N.R. (2014). PloS one. 9: e103207. 

 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:209-212 

209 

PREDICTION OF GENOME-WIDE REGULATORY REGIONS IN SHEEP 

 

M. Naval-Sanchez, Q. Nguyen, B.P*. Dalrymple**, T. Vuocolo, R. L. Tellam, L.R. Porto-

Neto, S. McWilliam, A. Reverter and J. Kijas 

 
CSIRO Agriculture & Food, 306 Carmody Road, St. Lucia, 4067, QLD, Australia; *Current 

address: Institute for Molecular Bioscience, 306 Carmody Road, St. Lucia, 4067, QLD, Australia ; 

**The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, 

Crawley, WA 6009, Australia 

 

SUMMARY 

The annotation of the regulatory genome is essential to investigate the link between genotype 

and phenotype. In this study, we applied the computational method “Human Projection of 

Regulatory Sequences” (HPRS) (Nguyen et al. 2016) to project human regulatory information to 

sheep coordinates and provide a predictive sheep regulatory genome.  

Firstly, we selected human large-scale publicly available human datasets as a reference for 

promoter and enhancer regions. Secondly, we converted the human regulatory information into 

sheep coordinates.  We successfully mapped 70% and 65% of human promoter and enhancers 

regions into the sheep genome. Finally, we evaluated whether the predicted sheep regulatory genome 

captures sheep-regulatory information by assessing its overlap with in-house H3K27ac and 

H3K4me3 ChIP-seq data from sheep brown adipose tissue. We find that our predicted regulatory 
elements are enriched for sheep regulatory regions and present high sensitivity and specificity to 

discern between promoters and enhancers.  

 

INTRODUCTION 

The human regulatory genome has been extensively characterized by large-scale genomic 

Consortiums such as the ENCODE (ENCODE Project Consortium 2012) and Epigenomics 

Roadmap (Roadmap Epigenomics Consortium et al. 2015). Meanwhile, the functional annotation 

of livestock species, specifically sheep, is lagging behind.  Projects such as the Functional 

Annotation of Animal Genomes (FAANG) (Consortium et al. 2015) aim to resolve this issue in the 

near future. Alternatively, computational approaches, in particular the “Human Projection of 

Regulatory Sequences” (HPRS) (Nguyen et al. 2016) pipeline has been successfully used to project 
human regulatory information into cattle coordinates providing high confidence regulatory 

information at the promoter and enhancer level.  

Here, we apply the HPRS pipeline to predict the sheep regulatory genome and use sheep-specific 

regulatory data to show that the method captures sheep regulatory information with high sensitivity 

and specificity.  

 

MATERIALS AND METHODS 

Human genomic databases. Human regulatory information was obtained from three distinct 

databases:  

1) FANTOM5 promoters and enhancer atlas detected by CAGE (Forrest et al. 2014; Andersson 

et al. 2014). 
URL:http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/hg19.cage_peak_phase1and2

combined_coord.bed.gz; http://enhancer.binf.ku.dk/presets/permissive_enhancers.bed.  

2) Epigenomics Roadmap enhancers from 88 human primary tissues (Roadmap Epigenomics 

Consortium et al. 2015). We use the chromatin states defined as enhancer, enhancer genic and 

enhancer bivalent.URL: http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html.  

http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/hg19.cage_peak_phase1and2combined_coord.bed.gz
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/hg19.cage_peak_phase1and2combined_coord.bed.gz
http://enhancer.binf.ku.dk/presets/permissive_enhancers.bed
http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html%20/l%20core_15state
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3) ENCODE Transcription Factor Binding Sites (TFBSs): ENCODE proximal and distal TFBSs 

by ChIP-seq for 163 TFs. URL: https://www.encodeproject.org/data/annotations/v2/. 

Human Projection of Regulatory Regions pipeline (HPRS).  We followed the same procedure as 

(Nguyen et al. 2016) (https://bitbucket.csiro.au/users/ngu121/repos/hprs/browse/). In brief, the 

program liftOver (minMatch=0.2) (Hinrichs et al. 2006) was applied to convert human regions into 
sheep coordinates. Unmapped regions or not reciprocally mapped were allowed multiple mapping 

(liftOver, minMatchMulti >=0.80). The results from different datasets were then combined into a 

single dataset with non-overlapping regions.  

 

Sheep Experimental ChIP-seq. Chromatin immunoprecipitation followed by next generation 

sequencing (ChIP-Seq) of the histone chromatin modification H3K4me3 and H3K27ac was 

performed on perirenal brown adipose tissue at 130 days post conception from three and two animals 

respectively. Sequence reads were mapped to the unmasked ovine genome sequence (Ovis aries 

Oar_v3.1.74) using the NGS core tool mapping application in CLCBIO (Peak calling comparing the 

H3K4me3 or H3K27ac ChiP-Seq versus the input control was performed using MACS (Zhang et 

al. 2008). Only peaks found in both replicates per chromatin mark, either H3K4me3 or H3K27ac, 
were further considered.  

 

Validation of the sheep regulatory information.  We produced 1,000 randomizations for each 

genomic feature using bedtools shuffle (-noOverlapping) (Quinlan 2014) set. Next, we calculated 

an empirical p-value per feature and overlap by counting how many times an equal or greater overlap 

observed in the original features was observed in the 1,000 randomizations.  

RESULTS AND DISCUSSION 
In order to annotate the sheep regulatory genome we selected human promoter and enhancer 

information from large-sequencing international consortiums such as FANTOM5, RoadMap 

Epigenomics and ENCODE (Table 1). Data from different databases differ in the biochemical 

process used to define enhancers and promoters, number of detected features, feature length and 

genome coverage (Table1). For example, RoadMap chromatin marks provide larger genome 

coverage (4.93% and 35.79% for promoters and enhancers, respectively) due to the capture of 

regulatory information from a larger number of conditions, namely 88 distinct human primary 

tissues. 
To depict a potential sheep regulatory genome we converted human regulatory information into 

sheep coordinates. Table 1 shows that for each database we were able to successfully recover from 

58.28% to 72.56% of their human regulatory information. It also shows that the recovery of proximal 

or promoter elements is higher (70%) compared to distal or enhancer elements (62%) in agreement 

with higher sequence conservation at the promoter than at the enhancer level. Based on these steps 

we captured 21.35% of the sheep genome as potentially regulatory (4.40% promoter and 16.95 % 

enhancer-like) (Table 2). 

Next, we performed H3K27ac and H3K4me3 ChIP-seq in sheep late gestation perirenal brown 

adipose tissue. These chromatin marks indicate active chromatin and promoter regions respectively. 

A total of 35,366 regions were identified by H3K27ac, whereas 16,098 regions were identified as 

promoters using H3K4me3. 26,496 regions only enriched with H3K27ac and not H3K4me3 were 

defined as enhancers.  
We assessed the recovery of sheep brown adipose H3K27ac for each converted dataset (Figure 

1A) ranging from 12% recovery from FANTOM enhancers to 93% recovery from RoadMap 

Enhancers. Finally, to evaluate if the converted datasets were enriched for sheep regulatory 

information we performed 1,000 randomizations per dataset and compared their H3K27ac recovery 

with the original features (Figure 1B). Promoter and enhancer databases showed a clear enrichment 

https://www.encodeproject.org/data/annotations/v2/
https://bitbucket.csiro.au/users/ngu121/repos/hprs/browse/
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for sheep brown adipose regulatory regions compared to random (Figure 1B). However, Enhancers 

Roadmap dataset presented a much lower enrichment probably caused by presenting a higher 

number of features from multiple tissues that appear as false positives once compared to a single 

tissue, namely, brown adipose regulatory information. Next, ENCODE TFBSs (proximal and distal) 

are depleted for general brown active chromatin. This can be explained because these datatypes 

present higher sensitivity and specificity for promoters and enhancers (Figure 1 C-D) rather than 

general open-chromatin (H3K27ac). Thus, although depleted for the overlap with the ensemble of 

H3K27ac signal they are enriched for H3K4me3 and enhancer signal respectively (data not shown). 

 

Table 1. Summary statistics of regulatory sequences 
 

 Human Sheep 

Database 
# 

Features 
#  

Merged  
Avg 
bp 

%  
Geno
me 

% 
Mapp

ed 

#  
Features 

#  
Merged 

 
Avg 
 bp  

%  
Geno
me 

Promoters 
FANTOM 

201,802 198,710 20 0.13 70.43 142,140 137,779 18 0.09 

Promoters 

RoadMap 
1,771,836 146,860 1053 4.93 68.15 1,207,522 85,378 1099 3.62 

Enhancers 
FANTOM 

43,011 43,011 288 0.39 64.13 27,583 27,532 288 1.63 

Enhancers 
RoadMap 

9,928,635 494,583 2270 35.79 58.28 5,786,318 3,80,785 2180 32.09 

ENCODE 
Proximal 
TFBSs 

384,343 384,343 150 1.84 72.56 278,883 271,308 153 1.61 

ENCODE 
Distal 
TFBSs 

1,122,364 1,122,364 150 5.37 65.05 730,112 723,645 155 4.34 

 

Table 2. Predicted sheep regulatory sequences 

 

 # Features Average bp Total bp  % Sheep genome 

Promoters  258472 441 113987479 4.40 

Enhancers  387613 1131 438586881 16.95 

 

To assess the sensitivity and specificity of each converted datatype we calculated their overlap 

with sheep promoters and enhancers (Figure 1 C-D). In this case we showed that promoters and 

ENCODE proximal TFBSs databases clearly recover most sheep adipose H3K4me3 peaks (Figure 

1C). Thus, concluding that promoter datatypes recover mostly promoter regions rather than 
enhancers.   

Alternatively, the same analysis at the enhancer level clearly showed that ENCODE Distal 

TFBSs is specific for enhancers recovering 71% of enhancers and only 33% of sheep promoters. 

However, the rest of enhancer databases do not only recovery enhancer regions but promoters as 
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well (Figure 1D). For example, RoadMap enhancers recovered 90% of sheep enhancers and 92% of 

sheep promoters. To solve that issue we only considered enhancers with no overlap to converted 

promoter datasets. This resulted in 62% of sheep enhancer recovery and only 13% promoter 

recovery.  

 

Figure 1. Recovery of experimentally defined sheep active chromatin, promoters and enhancers. (a) 

Percentage of recovery of sheep H3K27ac peaks from sheep brown adipose by the distinct sheep 

converted datatypes. (b) Fold enrichment compared to 1000 randomizations. Recovery of sheep 

promoters and enhancers, as a measure of specificity and sensitivity, by Promoter (c) and enhancer 

datasets (d). 

 

CONCLUSIONS 

Altogether, we show that the application of the HPRS pipeline successfully converts human 

regulatory information into sheep coordinates with potential regulatory function. This predicted 

regulatory map will allow the prioritization of trait-associated genetic variants, as well as further 

investigation and understanding between genetic variants, functional impact and phenotype. Further 

filtering of the dataset will be performed to increase the signal-to-noise ratio as performed in the 

original study (Nguyen et al. 2016) and then we will make this resource available to the sheep 

community. 
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SUMMARY 

The Korean Hanwoo cattle is highly regarded for its high marbling ability (intramuscular fat) 

and this trait is the key drive of profitability for the industry. The study of muscle development and 

differentiation in Hanwoo is important to improve understanding of the genes and pathways that 

regulate these processes and to identify markers for genomic selection. In this study, we performed 

a culture cell experiment using bovine muscle satellite cells combined with a time-series RNA-seq 

analysis to measure the transcriptome expression levels during the development of satellite cells 

from Longissimus dorsi (LD) and Semimembranosus (SM) muscle. RNA-seq data was collected 
on days 0, 1, 2, 4, 7 and 14 after differentiation treatment with an average of 35,727,746 cleaned 

reads per sample. Between 77% and 85% of the reads were mapped to the reference genome (Bos 

taurus UMD3.1 from Ensembl). The genes Hoxc11, Sim2, Hoxc8, Hoxb9, Zic2, Zic4, Tbx4 and 

Hoxb4 were differentially expressed between LD and SM across time, suggesting that they could 

drive specific characterization of each muscle. The levels of expression vary vastly between time 

points according to the stage of muscle differentiation and development. At the beginning of the 

experiment, the genes involved in proliferation were enriched while their expression reduced 

drastically after day 2. However, at day 4 and until day 14 there was an enrichment in the genes 

involved in actin cytoskeleton, muscle cell differentiation and structural constituents of muscle.  

 

INTRODUCTION 
Biochemical, proteomic and gene expression characterization of the various muscle depots in 

cattle can assist our efforts to find improved markers for meat traits such as marbling or 

tenderness. The differentiation of bovine muscle satellite cells is a good model for muscle 

development studies since their nuclei contribute to postnatal muscle growth remodelling of pre-

existing fibres and can provide insight into the genes involved in muscle growth and depot 

differentiation.  

In muscle development, the Myogenic Regulatory Factors (MRFs) are well known to control 

myogenesis by the modulation of the myoblast proliferation, migration and fusion (Braun and 

Gautel 2011). There are four MRFs (Myf5, MyoD, Mrf4, and MyoG), however several other 

genes contribute to the balance of growth and differentiation (Eng et al. 2013). Genes for 

myogenesis (MYL2, MYH3) and adipogenesis (PPARϒ, and fabp4) of muscular satellite cells into 

myotubes-formed cells and adipocyte-like cells were identified in Hanwoo using microarrays (Lee 
et al. 2012). 

Global RNA profiling of myogenesis in satellite cells is a good model to understand how 

changes in gene expression over time determine muscle proliferation and differentiation. However 

further work is needed to elucidate the molecular mechanisms involved in muscle differentiation 

and to understand differences between muscle types. In this study, two muscles (Longissimus dorsi 

-LD and Semimembranosus -SM) were sampled from three Hanwoo calves to extract muscle 

satellite cells (MSC). These cells were cultured and allowed to differentiate into myotubes, this 

process was studied using RNA-seq to characterize the transcriptional changes during myogenesis 

and how the gene expression profiles change between the differentiation of LD and SM.  
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MATERIALS AND METHODS 

The satellite cells were isolated from the Longissimus dorsi (LD) and Semimembranosus 

muscle (SM) of three Korean Hanwoo new born calf as described previously by Frey et al. (1995) 

and Johnson et al. (1998). LD and SM satellite cells were cultured on DMEM containing DMEM 

and 10% FBS until they reached 60% to 70% confluence. We then induced differentiation using 
DMEM with 3% horse serum for 14 days. Cell samples were collected at confluence point (day 0) 

and at days 1, 2, 4, 7 and 14 after differentiation treatment to perform histological and RNA-seq 

analysis. The stain Hematoxylin and Hoechst was used to determine the muscle differentiation 

stages. 

mRNA libraries were prepared and sequenced with the Illumina HiSeq 2000 sequencing 

system. The quality of resulting paired-end 100bp reads were assessed with FastQC v0.11.3, the 

adaptors and bad quality bases were removed with Trimmomatic v0.33. Bowtie2 v2.2.6 was used 

to map the reads to the reference genome Bos taurus (UMD3.1 from Ensembl). Bioconductor 

packages GenomicFeatures 1.22.13 and GenomicAlignments 1.6.3 performed the assembly and 

read count. We used edgeR 3.12.0 in the analysis of differentially expressed (DE) genes and 

considered significant DE genes those with a false discovery rate <0.05 and the logarithm fold 

change (logFC) ≥ 2. The functional enrichment of GO terms was performed by ClusterProfiler 
2.5.5 and the pathway analysis was done with Pathview 1.10.1. 

 

RESULTS AND DISCUSSION 

The bovine MSC reached confluence approximately after 4 to 5 days of culture and it was at 

days 1, 2, after the differentiation treatment, when the myoblast initiated the terminal 

differentiation and multinucleated myotubes started to form, however they were not notably 

visible until day 4. In the last stage of differentiation myotubes went through significant 

morphological changes while they fused to form mature multinucleated myotubes.  

   

Figure 1. Number of common DE genes between time-point contrasts for LD and SM muscle. 
 

From the sequencing data, between 77% and 84% of the reads were mapped (from average 

35,727,746 total reads per sample) to the reference genome. We identified the genes that 

overlapped in each contrast of day 0 versus the sampled time and the genes that were differentially 

expressed exclusively at each time point (Figure 1). In LD, there were more DE at the beginning 

of the experiment with 769 DE genes expressed just in day 1, while the opposite pattern was 

observed in SM were there were 1318 DE genes at day 14. These results could reflect differences 

between muscle depots due to different rates of proliferation and differentiation during 

myogenesis. 

The genes Hoxc11, Sim2, Hoxc8, Hoxb9, Zic2, Zic4, Tbx4 and Hoxb4 were differentially 

expressed between LD and SM at different time points, however some of these genes have not 
been previously directly associated with bovine muscle development.  

LD) SM) 
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Table I. GO functional annotation for the enriched terms in A) LD and B) SM muscle at days 1, 7, and 14. MF: molecular function; CC: 

cellular components; BP: biological process. Number of DE genes that are up-regulated (↑) and down-regulated (↓). 

  d1 vs d0 d7 vs d0 D14 vs d0 

  Term DE Term DE Term DE 

LD 

MF 

Calcium ion binding ↓19 Cytoskeletal protein binding  ↑7↓8 Receptor activity  ↑15↓2 

Transmembrane receptor activity  ↓15 Double-stranded DNA binding  ↑4↓6 Cytoskeletal protein binding  ↑9↓8 

Hormone activity  ↑1↓7 Microtubule binding  ↓7 Protein kinase binding  ↑6↓5 

    Peptidase inhibitor activity  ↑4↓2 

CC 

Extracellular space  ↑ 4↓31 Cytoskeletal part  ↑5↓20 Cytoskeletal part  ↑7↓16 

Myofibril  ↓25 Myofibril  ↑12 Myofibril  ↑13 

Sarcomere  ↓22 Microtubule  ↑12 Sarcomere  ↑12 
Actin cytoskeleton ↓17 Sarcomere ↑11 Microtubule organizing center  ↑1↓11 

I band  ↓13 I band  ↑7 I band  ↑6 

BP 

Regulation of multicellular 
organismal process  

↑1↓37 Cell cycle  ↑1↓33 Cell cycle  ↑3↓29 

Immune system process  ↑1↓27 Cytoskeleton organization  ↑5↓15 Phosphorylation  ↑13↓15 

Muscle structure development  ↓17 Protein phosphorylation  ↑6↓13 Cell proliferation  ↑9↓16 

Actin filament-based process  ↓14 Cell proliferation  ↑5↓13 Muscle structure development  ↑13↓3 

Muscle cell differentiation  ↓11 Microtubule-based process  ↓15 Negative regulation of proteolysis  ↑6↓4 

SM 

MF 

  Cytoskeletal protein binding  ↑12↓10 Receptor binding  ↑15↓16 

  Peptidase inhibitor activity  ↑5↓4 Receptor activity  ↑27↓3 
  Protease binding  ↑4↓2 Cytoskeletal protein binding  ↑17↓12 

CC 

Contractile fiber ↓10 Cytoskeletal part  ↑23↓13 Extracellular space  ↑34↓13 

Sarcomere ↓9 Extracellular space  ↑24↓9 Cytoskeletal part  ↑18↓24 

Myofibril ↓9 Myofibril  ↑20 Myofibril  ↑23↓1 

Actin cytoskeleton ↓9 Sarcomere  ↑18 Sarcomere  ↑21↓1 

I band ↓5 Microtubule  ↑1↓12 I band  ↑12 

BP 

Muscle structure development ↓7 Cell cycle  ↑5↓34 Immune system process  ↑36↓10 

Regulation of muscle system 
process 

↓5 Cytoskeleton organization  ↑10↓16 Cell cycle  ↑6↓36 

Striated muscle tissue development ↓5 Inflammatory response  ↑12↓3 Cell proliferation  ↑15↓23 
Regulation of muscle contraction ↓4 Muscle organ development  ↑12 Cytoskeleton organization  ↑16↓18 

  G2/M transition of mitotic cell cycle  ↑1↓4 Muscle structure development  ↑21↓5 
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The Homeobox (HOX) family genes seem to be crucial for correct development and regulate 

muscle-specific genes (Houghton and Rosenthal 1999). In a study in mouse, the knockdown of 

Zic2 resulted in a delay in the activation of Myf5 with a subsequent delay in MyoD but the 

expression of Pax3 was not affected (Pan et al. 2011). Our results suggest that these eight genes 

could be involved in muscle type differentiation leading the muscle to develop characteristics 
specific for one depot or another. 

With respect to the expression of the MRFs, we found that genes MyoG, MyoD and Myf6 

showed higher expression in myoblasts in the process of differentiation and maintained high 

expression levels in myotubes which agrees with previous studies (Rajesh et al. 2011; Tripathi et 

al. 2014). At the protein level, Tripathi et al. (2014) reported that genes Myf5 and MyoD are 

highly expressed 10 days after differentiation treatment, however, in this study Myf5 did not 

present significant change in expression during differentiation.  

In the enriched GO terms, we observed differences during the end of proliferation (day 0) 

compared with the myoblast differentiation (7 and 14 days after the differentiation treatments) 

(Table I). At the beginning of the experiment (day 0) the enriched terms were cell cycle, 

proliferation and G2/M transition of mitotic (Table I) in concordance with the proliferation events 

occurring in the myoblast. However, the expression of genes involved in these terms started to 
decrease in the subsequent days due to the shift from cell division to differentiation similar to 

previously reported in other bovine studies (Lee et al. 2012; He and Liu 2013). From the KEGG 

analysis some of the enriched pathways were dilated cardiomyopathy, cardiac muscle contraction, 

calcium signalling pathway, cell adhesion molecules (CAMs), cell cycle and adrenergic signalling 

in cardiomyocytes. 

 

CONCLUSIONS  

The differential expression of the genes Hoxc11, Sim2, Hoxc8, Hoxb9, Zic2, Zic4, Tbx4 and 

Hoxb4 suggest their implication in muscle depot differentiation during early development. 
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SUMMARY 

The polyandrous mating habits of honeybee queens, the small size of the animals themselves and 

the eusocial organisation of honeybee colonies present unique challenges for the establishment of 

genetic improvement programs. 

Here we present a method to genotype honeybee queens using pools of their male offspring as 

proxies in a Genotyping-by-Sequencing (GBS) protocol.  

GBS makes use of restriction site-associated short reads of DNA sequencing, effectively 

sampling the genome. Aligning these short reads to the reference genome provides a reliable and 

repeatable, but cost-effective genotyping protocol for honeybee queens. We found contamination of 
drone pools with unrelated drones to be an issue which can be overcome by using drone larvae 

directly from the brood comb. 

 

INTRODUCTION 

The Western Honeybee, Apis mellifera, has shifted into the focus of applied animal science due 

to the increase in importance of pollination services and rising prices for monofloral honeys. 

Simultaneously, honeybee breeding efforts have become more sophisticated, leading to the 

development of specialised elite queen breeding operations. While elite queen breeders have been 

able to adopt a number of breeding techniques from other livestock species, such as performance 

testing and artificial insemination (AI), their work is subject to a number of biological limitations.  

Honeybees are organised in colonies of up to 60,000 or so individuals, with only one reproducing 
female per colony, the queen, and a handful of reproducing males, the drones. The bulk of a 

honeybee colony is made up of functionally sterile female workers. As descendants of the same 

queen mother, workers are either half- or full sisters that are constantly being replenished. Honeybee 

queens produce up to 2,000 eggs per day, both fertilized and unfertilized. Fertilized eggs develop 

into females, while unfertilised eggs produce haploid males. The sperm stores are accumulated 

during one virginal mating flight, where the queen mates with 6 to 25 drones. 

Polyandry and the resulting diversity within the work force have been shown to be crucial factors 

for colony fitness (Mattila et al. 2007). However, they severely limit the accuracy of hive/queen 

pedigree, making it impossible to record pedigree beyond maternal line and a list of potential drone 

sources (queens presiding over colonies in the same area or used to gather drones for AI). AI can be 

a valuable tool to control mating, but if from a single drone source, it will diminish the performance 

of the resulting colony. Thus, queen genotyping is the only way to accurately determine a queen’s 
ancestry without compromising colony performance. Unfortunately, the continuous policing of the 

physical state of the queen by her workers complicates sampling for genotyping, since the sampling 

of hemolymph or body parts (e.g. tarsus, antennae) will result in death, either directly or by enticing 

workers to overthrow the impaired queen.  

In light of these obstacles, a new approach to the genotyping of breeder queens is necessary. 

With the haploid male drones arising from unfertilised eggs, they potentially provide a sample of 

the queen’s genome without interfering with her physically. This paper describes results of a pilot 

study to evaluate the efficacy of assessing the DNA of a queen through genotyping her haploid drone 

offspring.  
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MATERIALS AND METHODS 

Honeybee samples. 7 samples of multiple drones and corresponding queens were obtained from 

a commercial beekeeping operation in Marlborough, New Zealand, between January 2016 (drones) 

and April-May 2016 (queens). In January, 10-14 adult drones were removed from each colony, 

immediately put on ice in the field and subsequently frozen at -20° C. Simultaneously, basic 
information about the colonies was collected.  

At arrival in the laboratory, drones were transferred into a -80° freezer until required for DNA 

extraction. The same collection and storage procedures were followed for the queens. In addition, 1 

old breeder queen (sample 8) was sampled with no corresponding drones, resulting in 8 samples. 

DNA extraction and Drone Pooling. Genomic DNA (gDNA) was extracted using the “ZR-96 

Tissue & Insect DNA Kit” (Zymo Research, Irvine, CA, USA). Due to known issues with PCR 

amplification of DNA extracted from honeybee heads (Boncristiani et al. 2011), thorax was chosen 

as the standard substrate for gDNA extraction from both drones and queens.  

The standard protocol for the ZR-96 Tissue & Insect DNA Kit was followed, with a 2010 

GenoGrinder® (SPEX® SamplePrep, Metuchen, NJ, USA) serving as tissue homogenizer, set to 

1,200 rpm for 8 minutes.  

For each of the 7 drone/queen samples, DNA from 5, 6, 7 and 8 drones was pooled, as well as 
from all drones in the sample. DNA concentrations for the pools via Qubit® dsDNA HS Assay Kit 

(ThermoFisher Scientific, Waltham, MA, USA) ranged from 11.1μg/ml to 62.9μg/ml. 

Evaluation of different body parts. For sample 8, DNA was extracted from thorax, legs, wings 

and head, to evaluate the option of using a part of the body that would require a less time-consuming 

insect dissection protocol.  

Genotyping-by-Sequencing. A 96-well plate, containing DNA from the following was prepared 

for subsequent genotyping by GBS: 7 samples with 5 drone pools (5x, 6x, 7x, 8x, all drones) and 1 

(sample 1), 2 (sample 4) or 3 (samples 2-3, 5-7) repeats of corresponding queens, as well as a set of 

DNA from queen sample 8 (3x legs, 1x head, 1x thorax, 1x wings). The plate also contained DNA 

from 20 individual drones from samples 6 and 7. 

Following enzyme selection and adapter optimisation (data not shown), GBS was carried out 
using a double digest with ApeK1 and Msp1, following an optimised version of the original GBS 

protocol (Elshire et al. 2011, Dodds et al. 2015). 100 ng of DNA per “sample” was utilised to prepare 

an 80-sample indexed GBS library that was subsequently further purified using the Pippin Prep 

(SAGE Science, Beverly, MA, USA) with size selection to generate a 150-500bp DNA sequencing 

library. Single-end sequencing (1x100) was performed on an Illumina HiSeq2500 with v4 

chemistry, yielding approximately 25Gb of raw sequence data per lane. Raw fastq files were quality 

checked using FastQC v0.10.1 (Andrews 2010). 

Data analysis, SNP calling and alignment. Approximately 260 Million raw reads were 

processed with UNEAK, Tassel version 3.0.170, (Lu et al. 2013) to detect variants and report 

reference and alternative allele counts at variant sites. The resulting ~27,800 called SNPs were 

further processed to construct a relationship matrix using R software (KGD; Dodds et al. 2015). 

KGD unbiased estimates of relatedness were calculated via method 1 of VanRaden (2008) adjusted 
to account for sequence read depth at each individual SNP location including SNPs with 

zero/missing reads.  

In order to create a more consistent methodology that can be evaluated across GBS runs with 

potentially different restriction enzyme cut patterns, the sequencing data were additionally analysed 

using TASSEL 5 GBSv2 (Glaubitz et al. 2014) and the Burrows-Wheeler Aligner (Li et al. 2010). 

In this process, the short reads were aligned to the A. mellifera reference genome (Weinstock et al. 

2006) before SNP calling. After alignment, ~46,400 SNPs could be fed into the KGD R software. 
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RESULTS AND DISCUSSION 

GBS of honeybee drone pools and corresponding queens. Samples 1 and 2 showed consistent 

internal relationships (> 0.98), while for sample 3, the relationship dropped markedly with the 

addition of drone #6 (to ~0.86) and recovered with the addition of more drones (to ~1.1). In all three 

cases, the observed relationships between drone pools and queen were similar to the relationships 
between queen repeats.  

Two samples (4 and 5) showed strong relationships both within the drone pools and within the 

queen repeats (~1.1), but not between the drone pools and the queen from the respective hives (~0.6). 

For samples 6 and 7, all drones contributing to the pools were genotyped individually to 

determine if they had been sampled correctly. These individual assessments showed that for sample 

6, only 6 out of the 10 drones were in fact sons of the queen from the corresponding hive; for sample 

7, this was true only for 4 out of the 10 drones. As a result, relationships between drone pools and 

the queen diminished with the addition of more drones. 

Drone pools as queen proxies. Evaluation of the relationships within and between samples 

consisting of pools of varying numbers of adult drones and corresponding queen mothers showed 

that there is considerable variation in the accuracy with which the drone pools reflect the genome of 

the hive queen.  
Under ideal conditions, when the sampled drones are descendants of the targeted queen, drone 

pools appear to be a valid way to genotype their queen mother (see Table 1).  

 

Most of the variation in the 

results could be traced back to 

the accidental sampling of 

unrelated drones as outlined 

below.  

Sampling of adult drones in 

a recently re-queened colony. 

Samples 2 and 3 showed a 
pattern of strong relationships 

between drone pools, but 

weaker relationships between 

drone pools and queen. Queens 

in these colonies had been 

replaced prior to sample 

collection, and sampled drones 

were descendants of the old queen, not the one presiding over the colony at collection. This 

highlights the importance of knowing the history of the hive before sampling. 

Displacement of adult drones. Samples 5 and 7 showed limited relationships between drone 

pools and corresponding queens due to the fact that only 6 of 10 and 4 of 10 drones respectively 

were sons of their putative mothers. Both of these colonies were situated in a very tightly-packed 
yard in which adult drones returning to the hive could potentially drift over to another hive and end 

up in foreign colonies.  

These two problems with the accidental sampling of mismatched drones can be overcome by 

switching from adult drones to drone brood as the source of DNA. 

GBS of different honeybee body parts. There were 3 repeats of DNA extracted from the legs 

of queen 8; one of these failed to give a GBS result for unknown reasons. However other than this, 

relationships between different genotypes generated based on DNA extracted from different body 

parts were consistently over 0.87 (see Table 2). 

 5x 6x 7x 8x total queen queen queen 

5x 1.33 1.00 0.98 0.99 1.00 0.98 1.01 0.98 

6x   1.31 0.99 0.99 0.99 0.98 0.99 0.99 

7x     1.31 0.99 0.99 0.97 0.98 0.97 

8x       1.25 0.99 0.99 0.99 0.99 

total         1.30 0.98 1.02 1.00 

queen           1.28 1.00 0.99 

queen             1.32 1.00 

queen               1.27 

Table 1. Relationships between drone pools and their 

mother queen (results shown for sample 2) 
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These results are consistent with repeats of the 

same DNA extract. Moreover, the good GBS 

result based on DNA extracted from the queen’s 

head suggests that with the use of the ZR-96 Insect 

& Tissue DNA Kit, DNA of a sufficient purity can 
be generated to avoid the PCR-inhibiting effects of 

honeybee compound eyes. 

The use of wings as a non-lethal way to 

genotype bees has been suggested previously 

(Chaline et al. 2004). If sampling of an unmated 

queen is desired (e.g. to plan an AI mating), wings 

could present a valuable alternative to the proxy-based protocol presented here. Wing-origin DNA 

from queen 8 showed similar relationships to the other body parts both within and between samples 

(data not shown), but only 3.4 μg DNA per ml. Due to the low DNA concentration, wing clippings 

(~1/3 of the wing, removed to mark a queen) are unlikely to be a reliable source of DNA for GBS, 

but our findings show that it is possible to use whole sets of wings in cases where wings are not 

necessary for a queen‘s success (e.g. virgin AI queens). 
 

CONCLUSION 
GBS of pooled drones is a reliable non-invasive genotyping method for honeybee queens, 

provided that a certain time has passed after a new queen is introduced into the hive and drones are 

sampled before emerging from the brood comb. Furthermore, by aligning the short reads generated 

via GBS to the Apis mellifera reference genome, this method can be used across populations. These 

findings will enable breeders of elite honeybees to take their breeding programs to the next level; 

for example, by controlling inbreeding without the use of restrictive breeding techniques such as 

single-drone AI. 
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  legs legs head wings thorax 

legs 1.17 0.90 0.88 0.90 0.91 

legs 
 1.21 0.87 0.90 0.90 

head 
  1.30 0.90 0.89 

wings 
   1.24 0.92 

thorax 
    1.20 

Table 2. Internal relationships for queen 8 
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SUMMARY 

The main objectives of this paper will be to quantify the impact of gut microbiome 

composition on lean growth in swine and to quantify the heritability of relative taxa abundance in 

swine. The gut microbiome absorbed a significant portion of the phenotypic variation, ranging 

from approximately 3% for microbiome composition at weaning on ADG15 to more than 65% for 

microbiome composition at week 15 on ADG15. Point estimates for the heritabilities of the 57 

taxonomical families ranged from low to moderately high ranging from less than 5% to almost 

50%, according to family and time point. Different patterns of h2 (from low to high and vice versa) 

were observed across time for different families possibly reflecting the overall abundance of a 
particular family across the trial. 

 

INTRODUCTION 

Efficiency of producing saleable meat products is largely determined by costs associated with 

feed and by the amount of and quality of lean meat produced(Hoque et al., 2009),(Hoque et al., 

2008),(McGlone and Pond, 2003). Utilizing feed resources more efficiently has become a clear 

challenge that faces the livestock industry. Recent efforts have been devoted to identify and 

exploit the genomic variability of individual pigs in increasing feed efficiency(Jiao et al., 

2014a),(Jiao et al., 2014b) (Howard et al., 2015). While partially successful this approach presents 

limitations. First, feed efficiency is not a directly measurable trait. Instead it must be obtained from 

its components and it includes all traits associated with the efficiency of feed utilization, typically 
feed conversion ratio (FCR) or its reciprocal (feed:gain ratio) or RFI (Koch et al., 1963). These 

commonly used measures have inherent flaws (Arthur and Herd, 2008). More importantly, a 

continued effort concentrating only on the pig variability for efficiency will inevitably result in 

diminished marginal gains, incurring in concomitant losses of overall fitness and diversity over 

time(Colleau and Tribout, 2008). The amount and type of bacteria present in the gut of individuals 

represent a key part of all mammalian organisms (Gill et al., 2006). The makeup of the 

microbiome represents a vast pool of genomic diversity that contributes to the individual 

physiology and health (Pflughoeft and Versalovic, 2012). Particularly, the intestinal microbiome 

directly affects the degradation of carbohydrates, provides short chain fatty acids, mitigates and 

alter the effect of potential toxic compounds and produce essential vitamins(Gill et al., 2006). 

Different composition of the gut population in humans has been linked to the ability of degrading 

enzymes, maintain a certain population balance and influence the overall health status(Cho and 
Blaser, 2012). Relatively few full microbiome sequencing studies have been conducted in swine to 

date (Isaacson and Kim, 2012), while many studies have focused on either humans or model 

organisms. There is nonetheless a striking physiological similarity between the human and the 

swine intestine such that the second is currently successfully employed as model for the first (Odle 

et al., 2014), (Heinritz et al., 2013), (Zhang et al., 2013). Several studies comparing different 

geographical populations of humans and studies comparing different animal species have found 

that host genetic differences play a significant role in the composition of the microbiome. One 

study of tilapia, toads, geckos, quail, and mice tested changes in the microbiota of the colon and 

cecum after periods of fasting (Kohl et al., 2014). The study found that in most species, there was 
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more genetic diversity in the colon microbiome during a fast compared to a regular diet (Kohl et 

al., 2014). This suggests how environmental factors such as diet are not the only features keeping 

the microbiota balance but that other factors are at play most likely related to genetic. In the same 

study, results from the cecum found that in tilapia and toads, although there were initial changes in 

genetic diversity after the start of the fast, the microbiotic species returned to normal later in the 
fast (Kohl et al., 2014), again suggesting how the microbiota seem able to “self-regulate” without 

input from the environment. In the same study, mice showed no changes in the microbiotic 

composition during fasting (Kohl et al., 2014). In this case it appears that the microbiota might be 

completely controlled by the host genetic. Similar studies have been conducted in humans. For 

example Goodrich et al.(Goodrich et al., 2014a) found that twins’ fecal samples have a more 

similar microbiota composition than unrelated individuals, with monozygotic twins having a more 

similar composition than dizygotic. This again suggests that genetics might play a significant role 

in the microbiome composition. A study of samples of Columbian gut microbiome found that 

samples of people with a higher BMI had less Firmicutes while European gut microbiome did not 

show decreased Furmicutes (Escobar et al., 2014). Differences in microbiome between individuals 

of different BMIs seem to indicate a direct genetic influence.  A study of data from a twin study 

(Goodrich et al., 2014b) further linked human genotype and the composition of the gut 
microbiome. The study identified Christensenellaceae group as central to a network of co-

occurring heritable microbes that has been associated with lean body mass index (BMI)(Ley, 

2015). Numerous studies of rodents suggest that the gut microbiota populations are sensitive to 

genetic, and can produce or influence signals that directly or indirectly impact energy balance 

(weight gain or loss) and energy stores (Parks et al., 2013). Thus, the microbiota is certainly 

implicated in the development of obesity, and with tissue deposition in general. There are 

compelling arguments for the existence of a genetic control over the abundance of taxa in different 

species and the link of these with energy balance and growth. Currently some evidence has been 

presented in pigs. 
The main objectives of this paper will be to quantify the impact of gut microbiome 

composition on lean growth in swine and to quantify the heritability of relative taxa abundance in 
swine. 

 

MATERIALS AND METHODS 

From a Duroc closed-nucleus population 28 boars were selected to be sires of the individuals 

used in this trial. Sires were mated to crossbred sows to generate terminal-cross piglets. These 

were weaned at an average of 19 days of age and grouped in single-sire-gender pens (groups). 

During the nursery, growth and finish period, all pigs will be fed standard diets. End of test was 

declared on a pen-specific basis, entire pens of pigs were taken off test and sent for harvest at a 

pen mean live weight of 304.6 ± 5.51 lb.  

Live weight measurements were taken on individual pigs at the start (weaning) and end of the 

study and weeks 15, 18 and 22 post-weaning. Ultrasound back-fat depth and Longissimus muscle 

depth and area at approximately the 10th rib were measured on the right side of the pig on a 
transverse ultrasound scan taken at weeks 15, 18 and 22 post-weaning and at the end of the study. 

Fecal samples were taken for a total 1300 individual pigs at three time points. After editing, there 

were 3,783 fecal samples collected, including 15-24 days of age (1205 individuals), 115-124 days 

old (1295 individuals), and 180-217 days old (1283 individuals). Microbiome composition was 

obtained by amplifying the V6-V8 region of the 16S rRNA genes of the stool samples through 

pyrotag sequencing. After sequence processing and QC, there were 10,000 sequence reads per 

sample. Reads were organized into 2,026 phylotypes (operational taxonomic units, OTUs). Any 

taxonomic identifier with a confidence score below 80% was grouped as “unassigned”. The 2,026 

phylotypes were classified into 14 known phyla, 57 families, 112 genera and 213 species.  
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The bacterial composition of 3,783 samples was determined in each taxonomic level according 

to the read counts of the 2,026 taxonomically-annotated OTUs in each sample. The 3,783 samples 

were statistically compared according to their age range using the Kruskal-Wallis test. Further 

discrimination of grouping of the different taxonomical units was performed through principal 

component analysis (PCA). 
To investigate the divergence of microbial community at taxonomic species level, samples 

were clustered by age group and sex. All taxonomic units with unassigned genus and/or species 

were removed, leaving a total of 380 OTUs for this analysis.  

To highlight potential association between particular taxa combinations and 

growth/composition phenotypes, pseudo-enterotypes were obtained for growth and carcass 

composition through clustering of individuals and families.  

The overall contribution of microbiome to phenotypic variability was investigated through 

linear mixed models. Two traits were considered, average daily gain at market weight (ADGM), as 

well as average daily gain at 15 weeks (ADG15). For each of the traits a model that included fixed 

effects of sex, dam-line, contemporary group, back fat at market weight and random effects of 

permanent environmental effect, animal additive genetic effect (A), and residual, were fitted. This 

base line model was compared to a model that a random Microbiome (M) effect. Three 
microbiome compositions were fitted separately to the models representing the populations present 

at weaning 15 weeks of age and off-test.  

The host genetic control over microbiome composition was investigate at the family level. 

Second-degree polynomial random regression models utilizing 57 family abundance as the 

dependent variable were fitted. The models included time and sex and their interaction as fixed 

effect and random regression on animal and permanent environmental effects. All models were run 

with ASREML v.4.0.  

 

RESULTS AND DISCUSSION 

The bacterial composition of 3,783 samples was determined in each taxonomic level according 

to the read counts of the 2,026 taxonomically-annotated OTUs in each sample. The 3,783 samples 
were statistically compared according to age range. The Kruskal-Wallis test for differences in 

bacterial composition among the three age groups showed that 55 out of 57 bacterial families had 

significantly different (P<0.005) abundance counts between 15-24d and the rest of the samples. 

The proportion of the 10 most different families is presented in Figure 1. Similarly, the 115-124d 

and 180-217d groups were significantly different by 45 out of 57 families. The bacteria proportion 

of the 6 most different families is shown in Figure 2. At 15-24 d, the fecal bacteria were presented 

by three main phyla, Firmicutes (39.38%), Bacteroidetes (29.93%) and Proteobacteria (22.16%). 

Over time, the proportion of bacteria in the two phyla Bacteroidetes and Proteobacteria decreased, 

while the proportion of bacteria in the phylum Firmicutes pronouncedly increased to 72.71% and 

77.26% at 115-124 d and 180-217 d, respectively. Our findings agree well with the reports by Kim 

et al. (2011), Ivarsson et al. (2011), Dicksved et al. (2015).   
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Figure 1. Bacteria proportion of the 10 

most different families between 15-24d 

and 115-124d & 180-217d 

Figure 2. Bacteria proportion of the 6 most 

different families between 115-124d and 180-

217d groups 
 

Using principal component analysis (PCA), family-level bacterial composition data of 3,783 
samples over 3 time points were decomposed into two factors that explained 44.03% of the 

variance (Figure 3). Principal component 1 (PC1), which explained 31.26% of the variance, was 

heavily negatively loaded with Enterobacteriaceae, Bacteroidaceae, Fusobacteriaceae, 

Enterococcaceae, and Pasteurellaceae. Principal component 2 (PC2) was heavily loaded with 

Clostridiaceae and Enterobacteriaceae, and negatively loaded with Prevotellaceae and 

Fusobacteriaceae. 

 

 

Figure 3. Principal component analysis of bacterial families and 

the 10 largest loadings of bacterial families for PC1 and PC2. 
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Figure 4. Calinski-Harabasz indexes for number of clusters of samples from 115-124 d males 

(left) and 180-217 d males (right). Number of clusters on X-axis. The index on Y-axis. 
 

Samples of 115-124 d and 180-217 d female pigs clustered best into 3 groups whereas the male 

samples fit best into 5 groups as shown in Figure 4. Though the number of clusters by sex was 

similar between the 2 age groups, animals that grouped together during 115-124 d did not appear 

to remain in the same group in the later stage.  
We investigated the relationship between clusters of the OTUs and 180-217d animals with 

regard to fat depth measures. Animals and OTUs were clustered into 5 and 20 groups, 

respectively, as shown in Figure 5. Average estimated breeding values (EBV) was calculated for 

each animal cluster. The relative abundance of OTUs in groups 3, 5, 6, 8, 13, 16, 17 and 19 

appeared to be significantly correlated with fat depth EBV. 

 

 

Figure 5. A heatmap of relative abundance of bacterial clusters within pig’s fecal 

microbiome. Five animal clusters, 1 – 5, with animal counts of 10, 153, 180, 174, 92 

respectively. Average breeding value of fat depth for animals within each animal cluster is 

presented in parentheses next to cluster number. The 380 taxonomic units were clustered 

into 20 groups. Within each OUT cluster, level of redness shows average OTU count relative 

to other animal clusters. 

  

Microbiome contribution to the overall daily gain variability is reported on tables 1 and 2. For 

both traits measured (ADGM and ADG15) the gut microbiome absorbed a significant portion of 
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the phenotypic variation, ranging from approximately 3% for microbiome composition at weaning 

on ADG15 to more than 65% for microbiome composition at week 15 on ADG15. In both cases 

the largest amount of variance was absorbed when the composition at week 15 was fit. The 

microbiome effect eroded the most variance from the residual effect and PE, while a significant 

portion was also absorbed from the animal genetic effect.  
 

Table.1 Proportion of variances estimated for ADGM 

 A A+M (1) A+M (2) A+M (3) 

AIC 9855.71 9856.75 9842.15 9842.95 

PE (%) 11.52 10.47 7.15 6.54 

A (%) 13.20 12.65 6.07 7.29 

M (%) N/A 6.26 57.21 46.64 

Residual (%) 75.28 70.62 29.57 39.53 

N/A: Not available. 

AIC: Akaike information criterion. 

 (1), (2), and (3), representing microbial data at weaning, 15 weeks of age, and off-test, respectively. 

 

Table.2 Proportion of variances estimated for ADG15 

 A A+M (1) A+M (2) A+M (3) 

AIC 10217.89 10219.40 10182.36 10215.58 

PE (%) 15.36 14.40 7.20 12.88 
A (%) 11.11 10.90 3.51 9.60 

M (%) N/A 2.74 66.14 13.68 

Residual (%) 73.53 71.96 23.15 63.84 

N/A: Not available. 

AIC: Akaike information criterion. 
(1), (2), and (3), representing microbial data at weaning, 15 weeks of age, and off-test, respectively. 

 
 

Point estimates for the heritabilities of the 57 taxonomical families ranged from low to moderately 

high ranging from less than 5% to almost 50%, according to family and time point. Different 

patterns of h2 (from low to high and vice versa) were observed across time for different families 

possibly reflecting the overall abundance of a particular family across the trial. A plot of the h2 for 

a sample of the families fitted is presented in figure 6. 

 

 
Figure 6. h2 for a sample of the 57 microbiome taxonomical families represented 
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SUMMARY 

Gilts from two maternal lines were recorded for flight time (FT, N=8854) and scored for the 

count of lesions resulting from fighting 24 hours after selection and mixing into new groups 

(N=3238). Anterior (ANT) and posterior lesion counts were scored on a progressive four point 

scale representing none to multiple lesions (0-3), and aggressive gilts (0/1 scores) were defined by 

ANT>1. Lesion counts over the whole body were subsequently rescored pre-farrowing (PFBLES). 

Genetic correlations were estimated between these behavioural traits and average daily gain 

(ADG), gilt removals without a farrowing event and first parity litter size (TB: total born; NBA: 

number born alive) and birth weight. All behavioural traits scored for gilts and pregnant sows pre-

farrowing were lowly to moderately heritable (h2<0.15), implying that selection could alter FT or 
reduce fighting behaviour and hence skin lesions at different time points. However, lesion scores 

for gilts were not highly correlated with later PBFLES, reflecting changes to individual 

participation in fighting behaviour over time. Skin lesion traits were also uncorrelated with FT. 

These traits therefore represent assessment of different behaviours. Flight time was genetically 

correlated with ADG (rg: 0.24±0.10) only. All behavioural traits were generally not significantly 

correlated (either genetically or phenotypically) with subsequent reproductive performance, 

implying a neutral association between behavioural phenotypes and selection criteria in maternal 

lines. However, low adverse phenotypic correlations between lesion and locomotion scores or gilt 

removals illustrate a detrimental impact of fighting on welfare. Using management strategies to 

reduce fighting and developing a better understanding of the genetic basis for long term behaviour 

remain important for ongoing improvement of welfare and performance of group housed sows. 

 

INTRODUCTION 

Relative to stall housing, reintroduction of group housing for sows during gestation has several 

positive welfare benefits, but also enables negative interactions between sows. In particular, 

aggression amongst sows within groups can compromise their welfare and reproductive 

performance (Anil et al. 2006; Spoolder et al. 2009). However, observing behaviours of individual 

pigs directly is time consuming and impractical, and therefore an individual’s contribution to 

aggression is frequently unknown. In addition, aggressive behaviours alter as the social hierarchy 

is established within stable groups (Anil et al. 2006), so the timing of observation is important. 

Behavioural indicators previously studied in commercial growing pigs include flight time (Crump 

2004; Hansson et al. 2005) and the counting of skin lesions resulting from fighting, with anterior 

lesions in particular used as an indicator of participating in reciprocal fighting (Turner et al. 2006, 
Turner et al. 2009). In this study I investigated the genetic basis of behavioural traits recorded for 

purebred pedigreed gilts at selection, and their associations with lesion scores recorded again pre-

farrowing, along with first parity reproductive performance under group housing during gestation. 

 

MATERIALS AND METHODS 

From January 2013 through to December 2014, approximately 10000 gilts from two maternal 

lines (Large White and Landrace) were recorded at a single site for lifetime average daily gain 

(ADG, g/day) at 24 weeks of age. Behavioural traits recorded concurrently included flight time 

and shortly after skin lesion scores resulting from fighting. Flight time (FT, s) was recorded upon 
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release from weigh scales at the end of performance testing (N=8854)(see Crump 2004), while 

skin lesion counts were scored (N=3238) 24 hours after mixing into new groups <1 week later. 

Skin lesions resulting from fighting were scored on a progressive four point scale separately for 

each quarter, as 0: no lesions; 1: 1-5 lesions; 2: 6-10 lesions; and 3:10+ lesions. Scores were 

summed into anterior (ANT) and posterior (POS) quarters and regrouped (0, 1-2, 3-4, 5-6) into 4 
scores for analyses. Gilts with ANT>1 were classified as an aggressive behavioural type (AGRO). 

Gilts selected as breeding replacements were subsequently exposed to boars after 28 weeks of 

age and mated using AI. Gilts removed from the herd without a farrowing event were identified 

(REM0=0/1; removed=1). Pregnant gilts were housed in small static groups throughout gestation. 

A subset (N=1929) were re-scored for the count of skin lesions over their whole body upon 

transfer to the farrowing house (PFBLES) using the same scale as above (0-3), along with 

locomotion (PFLOCO: 0-3) and condition scores (-1,0,1) representing under-, at target, or over- 

condition. Reproductive performance traits recorded in the first parity included total born and 

number born alive (TB and NBA, pigs/litter). A subset of sows had records for average piglet 

weight at birth (ABWT, kg/piglet). Historical and male sibling data for ADG, all contemporary 

gilt reproductive data and 4 generations of pedigree were used to estimate genetic parameters. 

Parameter estimates were obtained using linear mixed models under an animal model with 
ASREML software (Gilmour et al. 2009). Systematic effects included year-month of recording (24 

levels), line (2 levels), and gender (M vs F, for ADG only). An additional random effect for birth 

litter was fitted when significant (P<0.05) based on a likelihood ratio test. Correlations between 

traits were estimated using a series of bivariate analyses. 

 

RESULTS AND DISCUSSION 

Raw data characteristics are provided in Table 1, along with heritability estimates for each 

trait. Behavioural traits scored for gilts (FT, ANT, POS and AGRO) and pregnant sows pre-

farrowing (PFBLES) were lowly to moderately heritable, at the lower end of the range in 

heritability estimates reported for FT (Hansson et al. 2005) or lesion counts (Turner et al. 2009; 

Desire et al. 2015) for growing pigs. Scoring was preferred to lesion counts from the perspective 
of increasing the number of animals which could be recorded in a commercial setting, but reducing 

continuous traits to scoring categories can reduce estimates of heritabilities. The relatively lower 

heritabilities in our study could also indicate that as animals mature the genetic contribution to 

aggressive behaviours decreases (e.g., through learned behavioural responses to mixing). 

Flight time was not significantly correlated, genetically (rg) or phenotypically (rp) with lesion 

score traits (not shown). This suggests that variation in FT is not associated with aggressive 

behaviours implied by lesion scores. Flight time was significantly correlated with ADG in this and 

previous studies (Hansson et al 2005), but the correlations with reproductive outcomes were 

negligible (Table 2). Growth is genetically uncorrelated with litter size traits (Bunter et al, 2010), 

supporting this result. Therefore, FT did not seem to yield any behavioural information strongly 

associated with either welfare or future sow reproductive performance. 

With respect to skin lesion scores, relatively few gilts remained unmarked (0 scores) by 24 
hours after mixing. Lesions were more common on the anterior than posterior parts of the body, 

but greatly reduced over the whole body before farrowing (Table 1) (see Bunter and Boardman, 

2015). Anterior scores and POS were highly correlated with each other (rg: 0.99±0.05; rp: 

0.66±0.05) but not significantly correlated with PFBLES observed approximately six months later 

(range rg: 0.20 to 0.30±0.23; range rp: 0.01 to 0.02±0.02)(Table 2). The genetic correlation 

between AGRO and PFBLES was stronger (0.42±0.26), but rp remained negligible. Lesion counts 

greatly decreased in the time interval between selection and farrowing because gilts were 

regrouped after mating and subsequently housed in stable groups. Aggressive interactions are 

known to reduce over time within stable groups (Anil et al. 2006). Lesion score traits had low 
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positive genetic correlations (rg: 0.11 to 0.23, P>0.05) with ADG, similar in magnitude to those 

presented by Desire et al. (2015) and rp were negligible. 

 

Table 1. Raw data characteristics including the distribution across scores (Distribution: 

%×100), along with heritability (h2), common litter effects (c2) and the phenotypic variance 

(2
p). (na: not applicable; ns: P>0.05; PF: pre-farrowing) 

   Distribution Parameters 

Trait N Mean (SD) -1/0/1/2/3 h2
SE c2

SE 2
p 

Flight time: FT (s) 8854 1.00 (0.54) na 0.070.02 ns 0.324 
Anterior score: ANT (0-3) 3238 2.82 (1.59) na/8/38/39/15 0.140.04 0.070.03 2.34 
Posterior score: POS (0-3) 3237 2.05 (1.34) na/16/52/28/4 0.120.04 0.110.03 1.62 
Aggressive type: AGRO (0/1) 3238 0.54 (0.50) na/46/54/na/na 0.120.03 ns 0.235 
Av. daily gain: ADG (g/day) 30926 575 (79.4) na 0.190.02 0.070.01 4935 
Gilt removal: REM0 (0/1) 3575 0.25 (0.43) na/75/25/na/na 0.100.03 0.060.03 0.180 
PF lesion score: PFBLES (0-3) 1929 0.92 (0.74) na/29/54/14/3 0.100.04 ns 0.516 
PF locomotion: PFLOCO (0-3) 1945 0.34 (0.58) na/72/23/5/0 0.050.04 0.080.04 0.333 

PF condition: PFCS (-1/0/1) 1950 0.01 (0.38) 7/85/8/na/na 0.090.04 ns 0.139 
Total born: TB (pigs/litter) 5097 11.8 (2.94) na 0.110.02 ns 8.38 
Born alive: NBA (pigs/litter) 5097 11.1 (2.86) na 0.100.02 ns 7.95 
Av. birth weight: ABWT (kg/pig) 2154 1.38 (0.22) na 0.360.05 ns 0.042 

 

Table 2. Genetic (1st row) and phenotypic (2nd row) correlations (SE in subscript) between 

behavioural traits (FT: flight time; ANT: anterior scores; POS: posterior score; AGRO: 

aggressive phenotype; PFBLES: PF lesion score) and performance outcomes 

Traits FT ANT POS AGRO PFBLES 

Av. daily gain 0.240.10 
0.070.01 

0.160.12 
-0.010.02 

0.220.12 
-0.010.02 

0.110.14 
-0.010.02 

0.230.15 
-0.000.02 

Gilt removal 0.180.17 
0.020.02 

0.210.21 
0.030.02 

0.190.21 
0.010.02 

0.260.18 
0.040.02 

-0.150.25 
0.010.03 

PF locomotion 0.420.27 
0.040.03 

-0.020.32 
-0.000.02 

-0.200.33 
-0.010.02 

0.410.28 
-0.010.03 

0.920.25 
0.100.02 

PF condition 0.110.21 
-0.000.03 

0.070.23 
-0.020.02 

0.140.23 
-0.000.02 

-0.250.26 
-0.050.03 

-0.090.27 
-0.060.02 

Total born -0.140.15 
0.010.02 

0.150.17 
0.010.02 

0.100.17 
-0.020.02 

0.100.17 
0.000.02 

0.010.22 
-0.000.02 

Born alive -0.110.16 
0.020.02 

0.110.18 
0.010.02 

0.040.18 
-0.020.02 

0.040.19 
0.000.02 

-0.050.22 
-0.000.02 

Av. birth weight 0.090.13 
0.020.03 

-0.120.15 
-0.040.03 

-0.170.16 
-0.050.03 

-0.010.16 
-0.040.03 

-0.300.20 
0.040.04 

 

The most significant phenotypic associations were between AGRO and REM0 and PBFLES 

with PBLOCO. These particular combinations represent traits measured close together in time. 

Low positive phenotypic correlations between these traits indicated that fighting of gilts post-

selection increased undesirable (forced) removals. This association is not linear, however, because 
the highest scoring gilts are more likely to be removed (Bunter, 2015). Since correlations represent 

linear associations, non-linear associations can lower estimates. Similarly, sows which engaged in 

fighting pre-farrowing showed evidence of compromised locomotion and elevated rates of 

lameness pre-farrowing (Lumby et al. 2015). Genetic correlations between these trait 

combinations mirrored the direction of phenotypic correlations, but standard errors were large. 
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Behavioural traits were generally not significantly correlated with reproductive outcomes for first 

parity sows. The exceptions were low negative phenotypic correlations between POS and ABWT, 

and between AGRO and ABWT or PFCS, which suggest that gilts engaged in fighting post-

mixing were more likely to have poorer condition and lighter piglets at their first farrowing. 

The overall lack of significant genetic correlations between the behavioural and other traits 
resulted from the relatively low magnitude of most estimates combined with large standard errors. 

Negligible phenotypic correlations also reflect accompanying near zero residual correlations. In 

combination, these results imply that measures of behavioural traits on gilts will not provide much 

information on later behaviour, or indirectly on reproductive outcomes of group housed sows. This 

included skin lesion traits, which directly reflect detrimental interactions between animals. Studies 

which have reported positive correlations between skin lesion counts repeatedly recorded younger 

animals over a short time frame without remixing in the interim (eg. Desire et al. 2015; Turner et 

al. 2009). Results from this study support the conclusions of Turner et al. (2009) that selection 

against high lesion counts would reduce aggression at mixing. However, while rg tended to be 

positive between repeated scores, results from this study throws some doubt on interpreting longer 

term outcomes from selection based on earlier lesion scores. Our results do not support strong 

genetic associations between the behaviour of finisher gilts and their later scores pre-farrowing or 
their reproductive performance outcomes, but do support some more immediate consequences 

from fighting (eg removals). Therefore, management strategies to reduce fighting and 

understanding genetic contributions to long term behaviour remain important for improving 

welfare of group housed sows. Overall, genetic correlations between behavioural traits and 

reproductive outcomes were generally favourable, implying that selection on maternal attributes 

would be expected to have neutral to favourable effects on the fighting behaviour of gilts. 
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SUMMARY 

Growth is known to be lower for gilt progeny in comparison to progeny from multiparous sows. 

Information about the effects of dam parity on other performance traits is often limited. The aim of 

this study was to quantify the effects of dam parity on performance traits and to evaluate genotype 

by parity interactions for growth rate of pigs. Dam parity had strongest effects on growth. Estimates 

of growth were 14 to 22 g/day lower in gilt progeny in comparison to progeny from older sows. 

Feed intake and feed conversion ratio were -0.023 to -0.066 units lower for progeny from older sows 

in comparison to gilt progeny. Dam parity had no biological importance for backfat and muscle 
depth. Growth was defined as a different trait for progeny from the first to the fifth parity of dams 

for analyses of genotype by parity interactions. Heritabilities varied from 0.13 to 0.20 for the three 

growth traits. Maternal genetic effects were low and slightly higher for progeny from older sows 

(0.047). Genotype by parity interactions for growth of pigs were not found based on high estimates 

of genetic correlations between different growth traits (range:0.83 to 0.98) and current selection 

practices that define growth as the same trait for progeny from different dam parities can be 

continued based on the results of this study. 

 

INTRODUCTION 

Progeny of gilts grow more slowly than progeny from older sows (Standal, 1973). This fact has 

long been known in pig industries although scientific studies quantifying this effect are sparse. 
Recently, Hermesch and Li (2013) showed that the reduction in growth rate of pigs from gilt litters 

varied between herds. Growth rate of gilt progeny was 6.7 to 21.1 g/d lower than progeny growth 

from third-parity litters. The exact reasons for this variation in the reduction of growth rate of gilt 

progeny between herds are unknown. 

The gap in performance of gilt progeny relative to progeny of older sows may widen if the 

implications of continued selection are not fully understood in regard to optimal gilt management 

on farms. Selective breeding continues to focus on improving efficient lean meat growth and 

reproductive performance of sows. This selection emphasis affects characteristics of sows and 

genetic improvement of growth and backfat will lead to larger and leaner sows. For example, 

associations between estimated breeding values and sow characteristics estimated by Hermesch et 

al. (2010) indicate that sows have the genetic potential to be 30 kg heavier every 10 years as a result 

of genetic improvement of progeny growth of about 100 g/day over 10 years. Downward selection 
of backfat of 5 mm in progeny implied that sows had the genetic potential to be 7.5 mm leaner. 

These genetic associations, however, are often not fully expressed due to management of gilts and 

sows. For example, feed intake may be restricted in gilts and sows reducing the weight of gilts and 

sows relative to the genetic potential for weight gain in breeding females. Gilts are now considerably 

heavier and leaner at mating and first farrowing due to selection, and may be less able to support the 

lean meat growth potential of their progeny. It was the aim of this study to investigate the effects of 

dam parity on performance of progeny and to estimate genotype by parity interactions for growth. 

 

  



Pig & poultry 

234 

MATERIALS AND METHODS 

Data. Performance of progeny were recorded from 2000 to 2015. These data were combined with 

information about reproductive performance of sows. Editing procedures focused on good cross-

classification of effects and completeness of litter and sow characteristics for progeny performance. 

Only progeny from the first 6 parities of sows were considered. These conditions were fulfilled for 
262,193 pigs in total which were recorded in two locations and included male and female pigs from 

6 genetic lines. Pigs were recorded at an average age of 151.90 (± 8.94) days and an average body 

weight of 91.21 (± 13.05) kg to obtain information about average daily gain (ADG), fat depth (FD) 

and muscle depth (MD). 

A proportion of pigs were tested for daily feed intake (DFI) using electronic feeders. Feed intake 

records collected from 2003 to 2010 were included in the analyses. Entire-male pigs entered 

electronic feeders at an average age of 120.60 (± 5.47) days and a body weight of 70.92 (± 8.01) kg. 

The test period was 35.75 (± 2.54) days long and pigs were fed ad libitum. Additional traits available 

for these pigs were average daily gain prior to test (ADG1) and growth rate during test (ADG2) as 

well as DFI and feed conversion ratio (FCR). Records exceeding 3 standard deviations from the 

mean were deleted for all traits. 

 
Analysis. The GLM (SAS 2014) procedure was used to derive the fixed effect model for each trait 

and to estimate least squares means for the effect of dam parity on performance traits. Dam parity, 

which had 5 levels because parity 5 and 6 were combined into 1 level, was added as an additional 

fixed effect to the base model for each trait. The base model included line and contemporary group 

based on week of birth at each location for all traits. Sex was fitted for ADG, FD and MD only 

because other traits were only available for entire males. Backfat and MD were adjusted for the 

weight at recording which was fitted as a linear and quadratic covariate. Weight of pigs at start of 

test to record DFI was only significant for DFI as a linear and quadratic covariate.  

Genotype by parity interactions were evaluated for growth which was defined as a separate trait 

for progeny from each parity (ADG-P1 to ADG-P5). Variance and covariance components were 

estimated with ASReml (Gilmour et al. 2009) in univariate and bivariate analyses fitting an animal 
model. Additional random effects fitted in univariate analyses were maternal genetic and permanent 

environmental effects of dams. For bivariate analyses, only additive genetic and permanent 

environmental effects of dams were fitted because estimates of maternal genetic effects were low 

and partially confounded with permanent environmental effects of sows. Further, the residual 

covariance was fixed at zero because growth traits were recorded on different animals and it was not 

possible to estimate residual and subsequently phenotypic correlations. 

 

RESULTS AND DISCUSSION 

Effects of dam parity. Estimates of growth for gilt progeny were 22 g/day lower in comparison to 

progeny from second and third parity sows (Table 1). This difference in growth was reduced to 17 

and 14 g/day between progeny from gilts versus progeny of fourth and fifth-parity sows. Further 

analyses showed that growth of gilt progeny in comparison to progeny from the second to third 
parity was 16 to 18 g/day lower in 2004 and 2009 for ADG, while the difference increased to 26 to 

32 g/day in 2013 to 2015 (for details see Hermesch, 2015). In comparison, growth of gilt progeny 

was 5 to 20 g/day lower than growth of progeny from third-parity sows in the 9 herds investigated 

by Hermesch and Li (2013). 

Early growth is expected to be more strongly affected by characteristics of the dam. Growth prior 

to test (ADG1) was affected by dam parity, which conversely had no significant effect on growth 

during the test period (ADG2) (P values, Table 1). Dam parity affected DFI and FCR significantly 

and gilt progeny had inferior performances in these traits. Progeny from multiparous sows ate -0.025 

to -0.066 kg less feed per day than gilt progeny and had a better FCR (difference of -0.015 to -0.058 
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kg/kg). However, these differences in performance of gilt progeny to progeny from older sows were 

not observed in a second independent herd analysed by Hermesch (2015). The effects of dam parity 

on performance traits should be investigated for each population because estimates of dam-parity 

effects on growth of progeny were variable between herds and over time.  

 

Table 1. Number of observations (n), means and standard deviations (SD) as well as predicted 

differences between first and subsequent parities for performance traits observed in progeny. 

 
Trait n Mean SD Parity 2 Parity 3 Parity 4 Parity 5/6 P value  

ADG (g/d) 261,919 600 77 22 22 17 14 < 0.0001 
ADG1 (g/d) 7,679 588 62 18 16 13 13 < 0.0001 
ADG2 (g/d) 7,679 860 197 1 7 -5 -7 0.41 
DFI (kg) 7,537 2.44 0.47 -0.025 -0.044 -0.045 -0.066 0.0003 
FCR 7,537 2.06 0.43 -0.013 -0.058 -0.023 -0.050 0.004 
BF (mm) 215,066 10.2 2.29 -0.14 -0.13 -0.12 -0.13 < 0.0001 
MD (mm) 214,172 43.4 5.87 -0.09 0.24 1.08 0.71 < 0.0001 

Abbreviations: ADG: average daily gain, ADG1: ADG until 70 kg prior to feed-intake test, ADG2: ADG during 
feed-intake test, DFI: daily feed intake, FCR: feed conversion ratio, BF: backfat, MD: muscle depth. 
 
Genetic parameters. Heritability estimates for growth were 0.16 for progeny from 3 parities in 

comparison to estimates of 0.13 (± 0.01) and 0.20 (± 0.02) for ADG-P3 and ADG-P5 (Table 2). 

Maternal genetic effects were consistent for ADG-P1 to ADG-P4 and slightly higher for ADG-P5 

(0.047 ± 0.013). Common litter effects were higher for ADG-P1 to ADG-P3 (0.09 and 0.10) in 

comparison to lower estimates of 0.07 and 0.04 for ADG-P4 and ADG-P5. Heritability estimates 

and common litter effect estimates obtained in this study for different growth traits were within the 

range of estimates presented by Hermesch and Jones (2012) for overall growth based on subsets of 

the data used in the current study. Inclusion of maternal genetic effects as an additional random 

effect decreased heritability estimates by 0.01 for all traits. Meanwhile, the permanent 
environmental effect of the dam was reduced by the magnitude of estimate of the maternal genetic 

effect for each growth trait, demonstrating high sampling correlations between these 2 random 

effects for these growth traits. These changes in variances between models indicate that data 

structure were not sufficient to disentangle these two maternal effects when traits were defined 

separately for each dam parity. However, maternal genetic effects are generally low for growth in 

pigs (e.g. Johnson et al. 2002) and estimates of variance components for the 5 growth traits followed 

expectations.  
 

Table 2. Number of observations (n), heritabilities (h2, with standard errors (se)), maternal 

genetic (m2) and permanent environmental effect of dam (c2) as well as phenotypic variance 

(Vp) for average daily gain (ADG) of progeny from the first (ADG-P1) to the fifth (ADG-P5) 

parity of dams.  

 
Trait n h2 (se) m2 (se) c2(se) Vp 

ADG-P1 100,662 0.16 (0.01) 0.024 (0.005) 0.10 (0.005) 4811 
ADG-P2 72,298 0.16 (0.01) 0.025 (0.006) 0.09 (0.006) 5022 
ADG-P3 44,430 0.13 (0.01) 0.021 (0.008) 0.10 (0.009) 4898 
ADG-P4 25,732 0.16 (0.02) 0.029 (0.014) 0.07 (0.014) 4885 
ADG-P5 24,320 0.20 (0.02) 0.047 (0.014) 0.04 (0.013) 4826 

 

Estimates of genetic correlations were high, ranging from 0.83 to 0.98 between traits (Table 3). 

Genetic correlations tended to decrease as the difference in parities increased for definitions of 
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growth traits. Overall, these estimates indicate that a genotype by parity interaction can be ignored 

in pig breeding programs as is currently the case. No estimates of genotype by parity interactions 

were found in the literature. A comparable investigation may be the analyses of genotype by sex 

interactions because sex of pigs is another systematic effect for performance traits. This interaction 

was investigate by Crump et al. (1997), who found no significant genotype by sex interactions. The 
magnitude of genotype by environment interactions depends on the difference between 

environments that genotypes experience. Differences in environments provided by dams to progeny 

in different parities were not large enough for the detection of genotype by parity interactions. 

 

Table 3. Genetic correlations (above diagonal, with standard errors (se)) and correlations due 

to permanent environmental effect of dam (below diagonal) for average daily gain (ADG) of 

progeny from the first (ADG-P1) to the fifth (ADG-P5) parity of dams.  

 
Trait ADG-P1 ADG-P2 ADG-P3 ADG-P4 ADG-P5 

ADG-P1  0.94 (0.02) 0.96 (0.03) 0.93 (0.04) 0.83 (0.04) 
ADG-P2 0.25 (0.03)  0.98(0.03) 0.97 (0.04) 0.90 (0.04) 
ADG-P3 0.26 (0.04) 0.25 (0.04)  n.e.1 0.93 (0.05) 
ADG-P4 0.24 (0.06) 0.23 (0.06) n.e.1  0.89 (0.05) 

ADG-P5 0.26 (0.07) 0.34 (0.06) 0.40 (0.06) 0.31 (0.08)  
1 Correlations could not be estimated 

 

CONCLUSIONS 

Dam parity had the greatest effect on growth. Gilt progeny grew more slowly than progeny from 

older sows and differences were larger in more recent years. Further, a higher DFI and higher FCR 

was observed for gilt progeny in the current population. Estimates of dam-parity effects on 
performance of progeny were variable and this effect should be evaluated on farms to ensure 

management of gilts and sows is optimal for each genotype. No genotype by parity interactions were 

found for growth and current selection practices for growth can be continued.  
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SUMMARY 

Environmental descriptors based on contemporary group estimates of average daily gain 

(ADG), backfat (BF), daily feed intake (DFI) and muscle depth (MD) were used to evaluate sire 

by environment interactions (S×E) for growth rate of pigs. Further, these descriptors were 

combined using principal component analysis and the first principal component (PC1) was used as 

an overall environmental descriptor. Use of the environmental descriptors based on MD, BF and 

DFI did not detect any S×E for growth. However, significant S×E was detected using the 

environmental descriptor based on ADG and also the overall descriptor based on PC1, where the 

S×E variance components accounted for 2.1% and 1.8% of the phenotypic variance. While an 

environmental descriptor that encompasses more traits is expected to capture more environmental 

variation, use of the environmental descriptor based on ADG alone may be adequate to describe 

phenotypic variability attributed to S×E for growth. 

 

INTRODUCTION 

Environments can be quantified by contemporary group (CG) estimates of performance traits, 

adjusted for systematic and genetic effects. Environmental descriptors based on CG estimates of 

multiple production traits have been used in dairy cattle, which have been applied to the evaluation 

of genotype by environment interaction for fertility traits (Strandberg et al., 2009). In pigs, 

estimates of CG effects based on number born alive and numbers weaned have been used to 

quantify disease environments affecting sow reproductive performance (Herrero-Medrano et al., 
2015). Meanwhile, use of CG estimates to describe growth rate of the pig has been limited to 

lifetime average daily gain (ADG) and backfat (BF) (Guy et al., 2015; Li and Hermesch, 2016).  

The objective of this study was to extend the traits used to derive environmental descriptors, to 

also include daily feed intake (DFI) and muscle depth (MD). These environmental descriptors will 

be used individually, as well as combined into an overall descriptor, to describe variation in the 

growth performance of sire progeny across different environments, i.e. sire by environment 

interaction (S×E) for growth. It is hypothesised that use of more traits will capture additional 

variation in the environment, and hence the ability to detect S×E will improve.  

 

MATERIALS AND METHODS 

Data. Pedigree and production records were available from a commercial piggery, located in the 

Riverina region of NSW, Australia. Only pigs that had records for all traits of interest were 

included in the study. Feed intake was only recorded from between 2004 and 2010 for entire males 

from 2 lines. These boars were housed in the normal production environment until 112 days of age 

on average, then moved to pens equipped with electronic feeders. After an adjustment period of 5-

7 days, boars were weighed and classified 'on test'. Only boars with a test age of between 109 and 

133 days were included in analysis. The average weight at start of test was 71.3 ± 7.6 kg (mean ± 

SD). Boars were on test for an average of 36 days. For analysis, DFI was defined as the average 
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amount of feed consumed per day during the testing period (kg/day). Measurements for BF 

(average of measurements at last rib and base of tail, mm) and MD (between the 3rd and 4th last 

ribs, mm) were taken at the end of the test period with real-time ultrasound. For inclusion in the 

analysis, all production traits were restricted to within 4 standard deviations of the raw mean. 

Boars that were tested in the same week and year were assumed to be under the same 
managerial and environmental conditions, and were therefore allocated to the same CG. The 

minimum size of the CGs was set at 15 pigs, giving a total of 255 CGs. The CG sizes ranged from 

16 to 107 pigs, with an average of 30 pigs. There were on average 11 sires represented in each CG.   

After data cleaning, there were 7,746 individual records, representing 448 sires and 2,565 dams 

from 4,245 litters. The average weight at the end of the test period was 102.5 ± 10.7 kg, at an 

average age of 157 ± 7 days.  

 

Analysis. In the first step of analysis, environmental descriptors were derived from animal models 

for the 4 production traits using ASReml (Gilmour et al., 2009): 

ADGijklm= + Linei + Seasonj + Animalk + Litterl + CGm +ijklm 

BFikmn =  + Linei + EndWeightn + Animalk + CGm + ikmn 

DFIijklmp =  + Linei + Seasonj + StartWeightp + Animalk + Litterl + CGm + ijklmp 

MDikmn =  + Linei + EndWeightn + Animalk  + CGm + ikmn 

where is the overall mean for the trait of interest. All models contained the fixed effect of the ith 
Line (2 levels), and random additive genetic effect of the kth animal, random effect of the mth test 

week-year CG and random residual effect , which was unique to each trait. Litterl as a random 
effect was significant only for ADG and DFI. Additional fixed effects included Seasonj (4 levels) 

for ADG and DFI, covariate of weight at end of test period (EndWeightn) for BF and MD, and 

covariate of weight at start of test period (StartWeightp) for DFI.  

Estimates of CG effects were extracted from each of these models and combined through 

principal component analysis using the prcomp() function in R (R Core Team, 2016). Principal 
component analysis combines variables by producing weighted linear combinations that capture 

maximum variation. It is therefore dependent on scale, so CG estimates were scaled to a variance 

of 1. The first principal component (PC1) was used as the overall descriptor. Environments were 

categorised by partitioning each environmental descriptor into quintiles. Pigs were assigned an 

environment according to the CG they belonged to, with each pig having an environment based on 

the CG estimates of the 4 traits, as well as the overall descriptor. 

In the second step of analysis, S×E for growth was evaluated using the environments 

characterised from the 5 environmental descriptors derived in the first step. A separate sire model 

was used for each descriptor:  

yijklmnp =  + Linei + Seasonk + Sirel + S×Elm + Littern + CGp + ijklmnp 

where yijklmn is the ADG of the jth progeny of sire l in the mth environment (E). The amount of S×E 

for growth was quantified by the S×E variance component.  

 

RESULTS AND DISCUSSION 

Boars had a mean ADG of 653.8 ± 65.0 g/day, a mean BF measurement of 8.8 ± 1.8 mm, a 

mean DFI of 2.10 ± 0.37 kg/day and a mean MD of 45.5 ± 5.8 mm.  

Estimates of CG effects ranged from -53.5 to 56.6 g/day for ADG, -1.66 to 2.18 mm for BF,     

-0.46 to 0.49 kg/day for DFI, and -5.04 to 10.49 mm for MD. Pearson's correlations between these 

CG estimates were all positive and less than 0.15, except for between ADG and DFI (0.39). This 

suggests these 4 traits capture different aspects of the environment.  

Genetic parameter estimates for each trait are presented in Table 1 to assess the fitted models 

used to derive environmental descriptors. Heritability estimates for the 4 traits align with previous 
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studies (Hermesch, 2008), although they were slightly lower due to the inclusion of CG variance 

component in the calculation of the phenotypic variance estimate. The estimated common litter 

effect was lower than expected, which may be due to a low average of 1.8 boars/litter tested.  

 

Table 1. Genetic parameter estimates of average daily gain (ADG) (g/day), backfat (BF) 

(mm), daily feed intake (DFI) (kg/day) and muscle depth (MD) (mm), using models from 

which contemporary group estimates were used as environmental descriptors  

 

Trait  
2ˆ
P  ± SE 2ˆ

 ± SE 2ĥ ± SE 2ĉ ± SE 
2î ± SE 

ADG 4063.2 ± 87.6 2328.3 ± 82.7 0.22 ± 0.03 0.06 ± 0.01 0.15 ± 0.01 
BF  2.34 ± 0.06 1.16 ± 0.05 0.29 ± 0.02 - 0.21 ± 0.02 

DFI 0.12 ± 0.003 0.06 ± 0.002 0.22 ± 0.03 0.04 ± 0.01 0.23 ± 0.02 
MD  28.8 ± 0.95 13.7 ± 0.50 0.21 ± 0.02 - 0.31 ± 0.02 

Abbreviations of estimates: 2ˆ
P

 = phenotypic variance, 2ˆ


 = residual variance, 2ĥ = heritability,  
2ĉ = proportion of phenotypic variance attributed to common litter effect, 2î = proportion of phenotypic 

variance attributed to contemporary group effect 
 
 

 
The CG estimates based on the 4 traits were combined through principal component analysis. 

The first principal component (PC1) explained 37.5% of the variation, and the second principal 

component (PC2) explained 26.1%. For PC1, the greatest emphasis was placed on ADG and DFI, 

with loadings of 0.60 and 0.64 respectively. The PC1 loading for BF was 0.35 and 0.31 for MD. 

Meanwhile, PC2 placed the greatest emphasis on the carcass traits, with loadings of 0.59 for BF, 

0.65 for MD, -0.40 for ADG and -0.26 for DFI. These loadings suggest associations between the 

descriptors based on ADG and DFI, and also between the descriptors based on BF and MD. 
The environments characterised by the 5 descriptors were used in sire interaction models to 

evaluate S×E for growth rate, and results are presented in Table 2. Estimates of additive genetic 

variance using descriptors based on BF and MD were larger but not appreciably different, 

considering their standard errors. Other variance components, except for the S×E term, remained 

fairly consistent across models using different environmental descriptors.  

 

Table 2. Genetic parameter estimates for the analysis of sire by environment interaction 

(S×E) for growth rate, using environmental descriptors based of average daily gain (ADG), 

backfat (BF), daily feed intake (DFI), muscle depth (MD), and all 4 traits combined using the 

first principal component (PC1) 
 

Descriptor 2ˆ
A  ± SE

 
2ˆ
CG ± SE 

2

×
ˆ

ES ± SE
 

2ˆ
P  ± SE 2ĥ ± SE 

2ĉ ± SE 

ADG 1022.1 ± 173.9 532.1 ± 65.6 87.0 ± 37.9 4060.3 ± 87.5 0.25 ± 0.04 0.10 ± 0.01 

BF 1104.9 ± 171.5 586.8 ± 68.3 12.6 ± 28.9 4099.0 ± 90.1 0.27 ± 0.04 0.11 ± 0.01 
DFI 1067.5 ± 171.6 584.1 ± 68.3 32.4 ± 30.9 4095.1 ± 89.9 0.26 ± 0.04 0.11 ± 0.01 
MD 1123.4 ± 171.5 587.3 ± 68.3 0.28 ± 30.2 4099.2 ± 90.1 0.27 ± 0.04 0.11 ± 0.01 
PC1 1009.5 ± 173.9 561.0 ± 67.0 74.1 ± 36.5 4079.8 ± 88.8 0.25 ± 0.04 0.10 ± 0.01 

Abbreviations of estimates: 
2ˆ
A

 = additive genetic variance (calculated as 4 times the sire variance component estimate), 
2

×
ˆ

ES
  = sire by environment interaction variance component. Other abbreviations as explained in Table 1. 

Note: Significant S×E in bold  

 

There was no or minimal S×E for growth detected using the environmental descriptor based on 

MD, BF, and DFI, with the interaction terms accounting for 0.01%, 0.3% and 0.8% of the 

phenotypic variance, respectively. However, there was significant S×E for growth when using the 

environmental descriptor based on PC1, which accounted for 1.8% of the phenotypic variance. 
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Although not substantially different, the environmental descriptor based on ADG accounted for 

even more phenotypic variance at 2.1%. Therefore, the ability to detect S×E for growth rate was 

greatest using either the environmental descriptor based on ADG or the overall descriptor. 

The trait used to quantify the environment is usually based on the same trait that is being 

modelled. For example, numbers born alive was used to quantify disease environments, in which 
sow reproductive performance was assessed using numbers born alive (Herrero-Medrano et al., 

2015). This was also the case for the environmental descriptor based on ADG used in this current 

study. While ADG appears to be the driver of PC1, this overall descriptor may appear to be a more 

objective measure of the environment as it does not solely depend on the trait being modelled. 

However, use of PC1 does not appear to capture more variation in the environment to increase the 

ability to detect S×E, and the descriptor based on ADG alone appears sufficient.  

Estimates of heritability for ADG were lower using the animal model in the first step of 

analysis compared to the sire model estimates in the second step of analysis, although they were 

not appreciably different when taking standard errors into account. Other variance components 

were stable across models except for estimates of litter effect and residual variances, which were 

both larger in the sire model. Higher estimates of litter effect in sire models may be attributed to 

the dam genetic effect being absorbed by the litter component.  
The environmental descriptors were partitioned into quintiles to allow for ~ 1,500 pigs 

classified in each environment. This resulted in 10-17% of sires with progeny across all 5 

environments, and 22-25% with progeny in only 1 environment. The ability to detect S×E is 

greatest when sires are represented across all environments, which can be achieved if the 

descriptor is partitioned into fewer environments. However, this needs to be balanced out with the 

need for sufficient differences between environments in order to detect S×E for growth.  

 

CONCLUSIONS 
This paper considers CG estimates of alternative production traits as a practical way to 

quantify the pig environment. The sire interaction model provides a simple method to evaluate the 

presence of S×E for selection decisions, where estimated breeding values for sires are available 

across all environments, as well as for specific environments. While a descriptor that encompasses 

alternative traits may be a more objective measure of the environment, use of the environmental 

descriptor based on ADG alone may be sufficient to capture most of the phenotypic variability 

attributed to S×E.  
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SUMMARY 

Selective breeding may result in higher inbreeding levels which can lead to inbreeding 

depression and limit future genetic gain. This study quantified inbreeding levels and evaluated 

effective population sizes for Large White (LW), Landrace (LR) and Duroc (DU) populations in 

Australia. Pedigree data from 1994 to 2015 representing about 12 generations on average were 

explored with the software package PopRep by Groeneveld et al. (2009) which provides multiple 

population parameters. Pedigree completeness was highest in 2004 and 2005 when it reached about 

95% and 80% in the third and sixth generation. Average inbreeding levels were highest for these 
years with averages of 0.031, 0.034 and 0.050 in LW, LR and DU, respectively. Two herds joined 

the across-herd genetic evaluations at that time and pedigree completeness varied from 80 to 90% 

and from 60 to 70% in the third and sixth generation in subsequent years leading to lower estimates 

of inbreeding levels. Estimates of effective population size varied from 64 to 98 in LW, from 52 to 

108 in LR and from 42 to 61 in DU over time. These estimates of effective population size are 

imprecise and an underestimate of true effective population sizes given the limited time period 

considered and the extent of missing pedigree. 

 

INTRODUCTION 

Selective breeding may result in higher inbreeding levels leading to inbreeding depression, 

which is a decrease of the population fitness, because of the accumulation of deleterious recessive 
alleles (Falconer & Mackay 1996; Ouborg et al. 2010). Higher inbreeding levels may also limit 

future genetic gain because of a lack of genetic variation between individuals. It is therefore 

important to be able to quantify inbreeding levels in order to estimate population structure and avoid 

these problems. Moreover, if very few sires (compared to dams) are used for artificial insemination, 

the effective population size (Ne) is lowered, which increases inbreeding. According to Kimura and 

Crow (1963), “the effective population size is defined as the size of an idealized population that 

would have the same amount of inbreeding or of gene frequency drift as the population under 

consideration.” The aim of this study was to estimate inbreeding levels and to evaluate effective 

population size of 3 Australian pig populations. 

 

MATERIALS AND METHODS 

Pedigree for the Large White (LW), Landrace (LR) and Duroc (DU) breeds were extracted from 
the National Pig Improvement Program database (http://npip.une.edu.au). Data were recorded from 

January 1994 to September 2015 for LW, and from January 1995 to September 2015 for LR and 

DU (Table 1). The pedigree of these 3 breeds were explored using the software package PopRep by 

Groeneveld et al. (2009).  

 

Pedigree Completeness. The pedigree completeness statistically quantifies the percentage of 

missing animals over generations. It is important to quantify completeness of pedigree because 

estimates of inbreeding levels and effective population sizes are affected by this parameter. If there 

are too many missing animals, the results will be biased because the inbreeding coefficients will be 
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underestimated. This will also affect estimates of effective population size as they depend on the 

rate of inbreeding per generation. Pedigree completeness was computed with the following formula: 

𝐼𝑑𝑘
= 

1

𝑑
 ∑ 𝑎𝑖

𝑑

𝑖=1

 

where d is the number of generations considered, k represents the paternal or maternal line of the 

individual I, and ai is the proportion of known ancestors in the generation i (MacCluer et al. 1983). 

Pedigree completeness ranges from 0 to 1 and increases for later generations as more pedigree 
information becomes available over time. For the first generation, pedigree completeness is often 

100% because pedigree of parents is known.  

 

Table 1: Data structure for the Large White (LW), Landrace (LR) and Duroc (DU) breeds 

 

 Number of 
animals 

Number of 
males 

Number of 
females 

Number of 
sires 

Number of 
dams 

Number of 
herds 

Period of 
recording 

LW 264,296 133,020 131,276 2,287 13,206 11 1994-2015 

LR 147,160 74,727 72,433 1,351 6,995 8 1995-2015 

DU 53,931 27,511 26,420 643 2,445 8 1995-2015 

 

Effective population size and inbreeding level. PopRep uses 6 different methods to compute 

inbreeding levels within population, leading in turn to 6 estimates of effective population size (Ne). 

The standard method (Falconer and Mackay, 1996) to calculate Ne is Ne = 1/(2ΔF), where ΔF is the 

rate of inbreeding per generation. In order to decide which method is the best to use, PopRep 

computes 2 side conditions which have to be met for the method to be reliable. These 2 side 

conditions require positive estimates of Ne for at least 4 years and impose a limit on the variation of 

estimates of Ne over time. Based on these conditions, the method by Gutiérrez et al. (2009) was the 

only one to be reliable for the 3 breeds based on the 2 side conditions (data not shown). This method 

provided most consistent estimates of Ne over time because it considered the complete pedigree 

length.  
 

RESULTS AND DISCUSSION 

The amount of pedigree data available affects maximum levels of inbreeding and subsequently 

effective population size. The current study was based on data from 20 years. Given the average 

generation interval of 1.8 in LW and LR and 1.7 in DU, these data represent about 12 generations 

on average. A longer time period of 35 years was considered by Welsh et al. (2010) who reported 

results for 19 generations equivalent of an average generation interval of 1.8 years. In comparison, 

Krupa et al. (2015) used pedigree data over 25 years from 1988 to 2013 and the maximum number 

of generations traced varied from 20 to 25 between breeds. These differences in number of 

generations should be taken into account when comparing inbreeding levels. 

 
Pedigree Completeness. Pedigree information was complete (100%) for the first generation in 12 

(LW), 13 (LR) and 10 (DU) years of the 20 years from 1995 to 2014. In the first year when data 

were available (1994 for LW and 1995 for LR and DU), pedigree completeness started with 33% for 

the third generation and then increased linearly for about 6 years as fewer generations were censored 

(Figure 1). Similarly, pedigree completeness started with 17% for the sixth generation and increased 

linearly for the following 10 years of pedigree recording. Maximum pedigree completeness 

plateaued at about 95% in the third generation for DU and LR and decreased to a range of 80 to 90% 
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in subsequent years. In comparison, maximum pedigree completeness was about 80% in the sixth 

generation and decreased to a range of 60 to 70% afterwards. The trend in pedigree completeness 

over time was slightly different for LW in comparison to LR and DU. Pedigree completeness was 

initially lower and reached its highest value at a later point while pedigree completeness was slightly 

higher in later years. Animals with unknown pedigree were introduced in 2004 and 2006 when 2 
new herds joined the scheme and some importation of unknown animals continued over time. These 

importations of unknown animals reduced pedigree completeness in the Australian populations. 

Specific time points for importation of unknown animals into Czech pig breeds were also visible in 

the trends for pedigree completeness shown by Krupa et al. (2015). These importations occurred in 

the early 1990s and until 2013, pedigree completeness converged to nearly 100% for all 6 

generations in LW and LR populations. Czech DU and Pietrain had further importations over time 

and in 2013, pedigree completeness varied from 75 to 90% in the third to sixth generation in these 

2 breeds. Overall, these trends demonstrate the extent of missing pedigree observed in pig breeding 

populations. 

 

 
 Figure 1. Pedigree completeness for the 3 breeds in the a) third and b) sixth generation. 
 

Effective population size. Pedigree data was not complete for 2015 and population estimates for 

that year are not shown because the computation of Ne may be incorrect. Similarly, not all herds 
were represented in the 1994 data for LW and the high Ne estimated for this year was likely an over-

estimate (Figure 2a.) From 1995 until 2014, estimates of Ne varied from 64 to 98 in LW, from 52 to 

108 in LR and from 42 to 61 in DU. Effective population sizes varied from 30 to 225 across years 

and breeds in the study by Krupa et al (2015). In 2012, population sizes were more stable and varied 

from 35 for DU to 83 in Pietrain, similar to the range observed in this study.  

 

Inbreeding. Average inbreeding levels of all animals increased until 2004 and 2005 (Figure 2b). 

For these years average inbreeding levels were highest with averages of 0.031, 0.034 and 0.050 in 

LW, LR and DU, respectively. Since then, breeds were less stable with herds leaving or joining the 

recorded populations which is reflected in lower pedigree completeness and more variable estimates 

of average inbreeding coefficients over time. In comparison, mean inbreeding levels were about 
0.045 for Yorkshire, Duroc and Hampshire, about 0.065 for Landrace and about 0.075 for Berkshire 

after 12 generations in a US study (Welsh et al., 2010). Approximately 12 generations were 

considered in the current study and mean inbreeding levels continued to increase after 12 generations 

for the US pig populations. Considering a longer time period and more generations with more 

complete pedigree information is expected to result in higher estimates of mean inbreeding levels 

and lower estimates of effective population size. 
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Figure 2. Evolution of a) effective population size and b) average inbreeding over years for the 

3 breeds using the complete pedigree to estimate rate of inbreeding per generation. 
 

CONCLUSION 

Maximum estimates of inbreeding levels varied from 0.031 to 0.050 for the 3 breeds and 

effective population sizes varied from 42 to 108 over years for these breeds. These estimates were 

similar to estimates presented in other studies. However, pedigree was incomplete and estimates of 

inbreeding levels and subsequently effective population sizes are imprecise and an under-estimate 

of true population values. Pedigree data is often incomplete in livestock populations and estimates 
of effective population size based on pedigree information should only be regarded as ‘guestimates’. 

Further research should focus on evaluation of the benefits of using genomic information for 

estimating inbreeding levels more accurately and the impact of higher inbreeding levels on 

performance and fitness traits.  
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SUMMARY 

The heritabilities and genetic correlations for body-weights measured at day-old (BW1D), and 

at 4 (BW4), 8 (BW8), 12 (BW12), 16 (BW16), 20 (BW20) and 24 (BW24) weeks of age, and also 

at first egg (BWFE) of Thai native chickens (Lueng Hang Kao Kabinburi, LHKK) were estimated 

using Restricted Maximum Likelihood (REML) procedures. Data were from the Kabinburi 

Livestock Research and Breeding Center, Thailand and the records contained five generations of 
performance records on 11,588 birds born from 2003 to 2007. Estimates of heritabilities for additive 

genetic effects of body-weight traits ranged from 0.10 to 0.51. Heritabilities for maternal genetic 

effects ranged from 0.04 to 0.25, except for BWFE, which had no significant maternal genetic 

effects. Significant maternal permanent environmental effects were observed for all traits, except 

for BW24 and BWFE. Estimates of additive genetic correlations between the body-weight traits 

ranged from 0.25 to 0.99. Estimated heritabilities and genetic correlations between body-weight 

traits suggest that the growth performance of LHKK chickens can be improved by selection on one 

or more juvenile weight traits. 

 

INTRODUCTION 

Poultry production in Thailand can be categorised as a) intensive poultry production using 
commercial strains (80%), and b) backyard poultry production using native chickens (20%) 

(Information and Communication Technology Center 2016). The Thai native chicken (TC) has been 

very popular among Thai backyard poultry farmers for many centuries. This is because the TC 

expresses high disease resistance and can be raised with low-quality feed. Moreover, they are a 

source of household income and protein supply for rural Thai farmers. The TC has had increased 

importance since the avian influenza outbreak in Thailand in 2004 (Avian Influenza Control Center 

2006). During the outbreak, TC was an important source of poultry meat for domestic consumption 

due to import and export restrictions imposed on poultry products. 

TC meat is preferred by Thai consumers due to its unique taste and texture. However, the meat 

is 2 to 3 times more expensive than commercial broiler meat. This is because the TC meat production 

does not adequately support domestic consumption and also it’s tastier than broiler meat. The TC 

has low mature body-weight and reaches 1.5 to 2 kg at 7 months of age (Thummabood et al. 2000). 
Lueng Hang Kao Kabinburi (LHKK) is one of the most popular breeds of the TC and therefore, 

identified by the Department of Livestock Development (DLD), Thailand to improve its meat 

production. 

The heritability and genetic correlations of production traits are important factors in developing 

any selection scheme. However, knowledge about genetic parameters for native chickens under 

tropical climate condition is limited. Therefore, the objective of this study was to estimate genetic 

parameters on growth traits at different ages for LHKK under tropical condition in Thailand.  

 

 



Pig & poultry 

246 

MATERIALS AND METHODS 

Animal and Data. Pure-bred dual-purpose LHKK chickens were housed on a Thai government 

farm at the Kabinburi Livestock Research and Breeding Center, between 14.0478º North latitude 

and 101.3725º East longitude in the Eastern region of Thailand. Data were recorded for five 

generations from 2003 to 2007. Chickens were randomly mated and mainly selected for breed 
specific plumage characteristics.  Seventy males and three hundred and fifty females were 

maintained each year to produce 21,500 mixed sex chicks. About 4,000 chicks were retained as 

replacements and the rest (17,500) were issued to farmers. The replacement chicks were grown on 

deep litter housing from one day-old to 21 days of age at 7.5 chicks per one square meter and fed 

with diet containing 18% crude protein and 2,900 Kcal ME/Kg of energy. They moved to grower 

pens at 21 days of age. During the growth period, chicks were allowed to scavenge during daytime 

and were sheltered at night. At 22 weeks of age, selected chickens were moved to individual battery 

cages until culling after 1 year of laying. Traits considered in this study were body-weights at day-

old (BW1D), and at 4 (BW4), 8 (BW8), 12 (BW12), 16 (BW16), 20 (BW20), and 24 (BW24) weeks 

of age, and body-weight at first egg (BWFE) mean age of 28 weeks. Records more than 3 standard 

deviations from the mean of the data were eliminated. The total number of birds in the pedigree were 

17,883 and the number of birds with records were 11,588 from 1,461 dams and 486 sires.  
   

Statistical analyses. SAS (SAS Institute Inc., Cary NC USA) was used to calculate descriptive 

statistic and to identify significant fixed effects. Genetic parameters were estimated via Restricted 

Maximum Likelihood (REML) using a mixed linear model and WOMBAT software (Meyer 2007). 

A log likelihood ratio test was used to test significance of random effects and to identify the best 

model. For all body weight traits, except for BW24 and BWFE, the model was:  

Yijklm = yi + hj + sk + al + mm+ pem + eijklm 

Where: Yijklm is one of the six body-weight traits measured on animal l, in hatch j within year i with 

sex k, al is the random additive genetic effect of animal l, mm is maternal genetic effect of dam m, 

pem is permanent environmental effect of dam m and eijklm is the random error associated with this 

observation. The covariance between additive and maternal effect was assumed to be zero. Only 
additive genetic and maternal genetic effects were fitted for BW24 and only additive genetic effect 

was fitted for BWFE. A series of bivariate analyses were used to estimate genetic and phenotypic 

correlations. 

 

RESULTS AND DISCUSSION 

Descriptive statistics. The descriptive statistics for the eight body-weight traits of LHKK chickens 

measured for five generations are summarized in Table 1.  The mean weights observed for the eight 

traits were similar to the means reported by the Bureau of Animal Husbandry and Genetic 

Improvement (2016) for four breeds of TC. However, the mean weights of BW8, BW12 and BW16 

were slightly heavier (200g) than those of another popular dual-purpose Thai indigenous chicken 

breed called Pradu Hangdum (Na-Rungsri et al. 2007). The higher BWFE of LHKK compared to 

other native chickens (Sangdaoreung et al. 2005) suggests that LHKK chickens could be improved 
as a dual-purpose chicken.  

 

Genetic parameters. For most weight traits, direct heritability estimates were generally higher than 

maternal heritability estimates, or the ratio of permanent environmental dam effects variance to total 

variance (Table 1). Estimates of direct heritability varied from 0.10 (±0.02) to 0.51 (±0.06). The 

highest heritability was estimated for BWFE and the lowest was for BW1D. Estimated heritabilities 

for body-weight traits were within the range reported in previous studies. For Pradu Hangdum, Na-

Rungsri et al. (2007) reported heritabilities of 0.43, 0.46 and 0.39 for BW8, BW12 and BW16, 

respectively. For BWFE, Boonkum et al. (2014) estimated a heritability of 0.51. Estimated maternal 
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heritabilities were low to moderate and ranged from 0.04 (±0.02) to 0.25 (±0.04) for all traits, except 

for BWFE, for which no significant maternal effects was found. Estimated variance ratio for 

permanent environmental effects of dams were low to moderate for all traits and ranged from 0.11 

(±0.02) to 0.28 (±0.03), except for BW24 and BWFE. Slight increase in permanent environmental 

effect of dam from BW8 to BW20 might be due to difficulty in portioning maternal and permanent 
environmental effects with few repeated observations for dams. 

 

Table 1 Descriptive statistic, and estimated heritabilities (±SE) for direct (h2 
d), and maternal 

genetic effect (h2 
m), the variance ratio for permanent environmental effects (c2) of dam and 

phenotypic variance (σ2
p) for body-weight traits of LHKK chickens 

 

Traits1    No. of records Mean SD      h2 
d    h2 

m    c2         σ2
p 

BW1D (g) 11588 30.93 3.38 0.10±0.02 0.25±0.04 0.28±0.03 12.03 
BW4 (g) 11201 218.91 56.68 0.28±0.03 0.05±0.02 0.11±0.02 1473.90 
BW8 (g) 10807 642.08 138.74 0.33±0.03 0.04±0.02 0.11±0.02 9609.67 

BW12 (kg)   9777 1.10 0.21 0.38±0.03 0.05±0.02 0.13±0.02 0.03 
BW16 (kg)   8948 1.49 0.31 0.32±0.03 0.08±0.03 0.17±0.02 0.06 
BW20 (kg)   7643 1.81 0.41 0.28±0.03 0.05±0.02 0.19±0.03 0.09 
BW24 (kg)   6157 2.12 0.47 0.28±0.04 0.11±0.02  0.10 
BWFE (kg)   1428 2.05 0.25 0.51±0.06   0.06 

1 BW1D, body-weight at day-old; BW4, BW8, BW12, BW16, BW20 and BW24 are body-weights 

at 4, 8, 12, 16, and 20 and 24 weeks of age, respectively; BWFE, body-weight at first egg. 

 

Table 2 Direct genetic (a), maternal genetic (m) and permanent environmental of dam (pe) 

correlations (above diagonal) and phenotypic correlation (below diagonal) between body-

weights at day-old (BW1D) and 4 (BW4), 8 (BW8), 12 (BW12), 16 (BW16), 20 (BW20), 24 

(BW24) weeks of age, and body-weight at first egg (BWFE) of LHKK chickens  

 

Trait Effect BW1D BW4 BW8 BW12 BW16 BW20 BW24 BWFE 

BW1D a  0.37 0.29 0.27 0.30 0.25 0.35 0.65 
 m  0.65 0.80 0.67 0.67 0.71 0.66  
 pe  0.31 0.03 -0.13 -0.17 -0.14   

BW4 a 0.22  0.86 0.74 0.60 0.67 0.52 0.55 
 m   0.98 0.97 0.79 0.89 1.00  
 pe   0.81 0.58 0.57 0.59   

BW8 a 0.16 0.68  0.97 0.90 0.89 0.81 0.77 
 m    0.97 0.98 0.93 1.00  
 pe    0.90 0.84 0.80   

BW12 a 0.14 0.56 0.79  0.98 0.95 0.92 0.78 
 m     1.00 1.00 1.00  
 pe     0.97 0.93   

BW16 a 0.14 0.47 0.70 0.85  0.99 0.97 0.81 
 m      0.99 1.00  

 pe      0.99   
BW20 a 0.12 0.47 0.66 0.79 0.90  0.99 0.85 

 m       1.00  
BW24 a 0.19 0.39 0.59 0.76 0.85 0.90  0.93 
BWFE a 0.14 0.29 0.48 0.58 0.57 0.64 0.63  

Estimated standard error for genetic and phenotypic correlations varied from 0.01 to 0.18 and 0.00 

to 0.02, respectively. 
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Phenotypic correlations and correlations for additive, maternal genetic and permanent 

environmental effects of dam between the body weight traits of LHKK chickens are presented in 

Table 2. The phenotypic correlations between weight traits at different ages varied from 0.12 to 0.90 

and were highest for body-weight traits at adjacent age points. The additive genetic correlations 

among body-weight traits were generally high and positive, except for correlation with BW1D. 
Genetic correlations varied from 0.25 to 0.99. Moderate genetic correlations were observed between 

BW1D and other weight traits, except with BWFE. The highest genetic correlations (0.99) was 

observed between BW20 and BW16 and BW24. Correlations between maternal genetic effects at 

different ages ranged from 0.65 to 1.00 and the correlations between permanent environmental 

effects of dam ranged from -0.17 to 0.99.  

Genetic correlations between body-weights at different stages of growth are lacking in literature 

for the native chickens. However, Lwelamira et al. (2009) reported high correlations for additive 

genetic effects (0.60-0.93) and for phenotypic effects (0.54-0.74) for body-weights at 8, 12, 16, and 

20 weeks of age of local chickens in Tanzania. Niknafs et al. (2012) reported moderate to high 

genetic correlations between BW1D and BW8 (0.57) and BW12 (0.36) for local chicken in Iran. 

The high genetic correlation between BW1D and BWFE suggest that selection for heavy mature hen 

will indirectly increase the weight of day-old chicks. Moreover, high genetic correlations between 
body-weights at early growth with BWFE suggest that selecting heavier juvenile birds would 

increase mature weight in LHKK chickens.  

Moderate to high heritabilities for direct additive genetic effects on body-weight traits suggests 

that selection for higher body-weight will increase growth rate and meat production of LHKK. This 

will improve its value as a dual-propose breed. Furthermore, high genetic correlations between 

body-weights measured during the growth period and the weight measured at maturity suggest that 

selecting for higher body-weight between 8 to 24 weeks of age would increase the mature weight of 

LHKK chickens. However, before implementing selection for growth rate, the correlated responses 

in egg production of LHKK chickens need to be investigated.  
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SUMMARY 

We compare four low-density SNP panels containing 151, 400, 1,000 (1K) and 3,000 (3K) SNP 

selected from a higher density chip of 50K SNP in their ability to correctly infer 7 kinship 

relationships (from self-self to grand-mother – grand-offspring) in 4,217 commercial broiler 

chicken. Self–self relationships estimated from the diagonal elements of the genomic relationship 

matrix (GRM) were symmetric and centred at 1.0 regardless of the panel used. However, genomic 

relationships for other relationships were centred slightly left to the expected value indicating 
possible genotype or pedigree errors. Relationships estimated using either the 1K or the 3K SNP 

panels were almost undistinguishable from those estimated using the whole 50K chip. However, the 

two lowest density panels produced relationships with long-tailed distributions. We conclude that a 

SNP panel of 1K SNP is a cost-effective tool to estimate relationships among individuals. 

 

INTRODUCTION 

The ability to correctly infer relationships among individuals underpins the utility of SNP 

genotype data. This ability is of particular relevance in the development of low-density panels for 

the implementation of cost-effective genomic strategies. Judge et al. (2016a) have recently explored 

the optimal use of low-density SNP panels for breed assignment in Angus and Hereford cattle. The 

authors conclude that at least 300 to 400 SNP are needed to accurately predict breed proportions. 
Similarly, working with various cattle and sheep populations Strucken et al. (2016), concluded that 

at least 700 SNP are needed to fully exclude false positives in parentage assignments. Other authors 

have evaluated the use of low-density panels for imputation to higher density in cattle (Ogawa et al. 

2016), sheep (Ventura et al. 2016), pig (Badke et al. 2014), and chicken (Wang et al. 2013).   

Here we present four low-density SNP panels containing 151, 400, 1,000 and 3,000 SNP and 

compare them with the higher density chip of 50K SNP based on their ability to estimate 

relationships in a population of 4,217 commercial broiler chicken from 22 overlapping generations. 

 

METHODS 

Animal resources and relationships considered. We used a total of 4,217 broiler chicken 

(3,139 females and 1,078 males) from 22 overlapping generations of a commercial line of Cobb-

Vantress Inc. The birds were selected from a larger population to ensure parents and grandparents 
contained within the sample had genotypes for ~50,000 (50K) SNP from the high-density Avian 

chip from Illumina Inc. 

In total, there were 795 dams with genotypes, 117 sires with genotypes and 133 grand-dams with 

genotypes. With these, seven types of animal to animal relationships were explored including (1) 

self – self (N = 4,217); (2) full-sibs (N = 29,599 pair combinations); (3) Father – offspring (N = 

2,915 pairs); (4) Mother – offspring (N = 2,708 pairs); (5) Paternal half-sibs (N = 186,716 pairs); 

(6) Maternal half-sibs (N = 1,560 pairs); and (7) Grand-mother – grand-offspring (N = 5,327). 

Using the Method 1 of VanRaden (2008) we built the genomic relationship matrix (GRM) across 

the 4,217 birds using the 50K chip, as well as with the four low-density SNP panels described next. 
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Low-density panels. For the formation of the low-density SNP panels, we developed a 6-

component fitness function to be optimised that included (1) minor allele frequency (MAF); (2) 

equidistance to ensure uniform genome coverage; (3) distance to known gene; (4) significance of 

the association to feed-related phenotypes; (5) pleiotropy test statistics; and (6) connectivity in a co-

association network. 
We used simulated annealing for the optimisation process. Simulated annealing (Kirkpatrick et 

al. 1983) is a heuristic search algorithm for global optimization, using iterative random movements 

to approximate optimum solution and has gained popularity in the context of livestock genetics and 

genomics including studies with cattle (Schierenbeck et al. 2011) and poultry (Chapuis et al. 2016).  

Initially, three SNP densities were considered: 400 SNP, 1,000 (1K) SNPs and 3,000 (3K) SNPs. 

Importantly, these panels were nested such that the 400 SNP in the small panel were contained in 

the 1K SNP of the medium panel, and these were themselves contained in the larger 3K panel. 

In addition, a smaller panel of only 151 SNP was developed. This panel was made of SNP (1) in 

the coding region of genes reported to be of relevance in the feed efficiency literature; (2) significant 

(P< 0.01) in the GWAS for at least one of seven feed-related phenotypes previously undertaken; and 

(3) Included in the 3K SNP panel. 

  

 
Figure 1. Distribution of genomic relationships for self-self (diagonals elements of the genomic 

relationship matrix) and full-sibs estimated based on SNP panels of various densities. 

 

RESULTS 

Table 1 shows the summary statistics (including mean, standard deviation, minimum and 

maximum) for genomic relationships estimated using either the high-density 50K SNP chip or the 

four low-density SNP panels considered is this study and for the seven types of pedigree-based 

kinships available in our dataset of 4,217 broiler chicken. 
Self-self relationships based on the diagonal elements of the GRM were all centred at the 

expected value of 1. However, the spread was much higher for the panels with only 400 or 151 SNP. 

Indeed, across all types of relationships considered, the very low density panels of 400 and 151 SNP 

yielded estimated relationship with higher variation compared to the panels of higher density. 

This deviation from expectation is made apparent in Figure 1 for the case of self-self and full-

sib relationship in the five SNP panels. 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:249-252 

251 

Table 1. Summary statistics for genomic relationships estimated using the high-density 50K 

SNP chip and four low-density SNP panels for seven types of pedigree-based kinships 

KinshipA Panel No Pairs Mean SD Min. Max. 

SS 50K 4,217 1.009 0.055 0.837 1.404 
 3K 4,217 1.001 0.044 0.853 1.267 
 1K 4,217 0.999 0.050 0.834 1.259 
 400 4,217 0.997 0.066 0.759 1.238 
 151 4,217 1.008 0.099 0.723 1.423 

FS 50K 29,599 0.469 0.061 0.134 0.769 
 3K 29,599 0.470 0.060 0.133 0.749 
 1K 29,599 0.470 0.064 0.158 0.739 
 400 29,599 0.470 0.075 0.114 0.804 
 151 29,599 0.481 0.110 0.045 1.003 

FO 50K 2,915 0.467 0.047 0.335 0.727 
 3K 2,915 0.469 0.042 0.358 0.719 
 1K 2,915 0.469 0.045 0.334 0.710 
 400 2,915 0.469 0.056 0.320 0.743 
 151 2,915 0.469 0.087 0.187 0.826 

MO 50K 2,708 0.466 0.045 0.344 0.736 

 3K 2,708 0.468 0.039 0.363 0.727 
 1K 2,708 0.472 0.046 0.322 0.731 
 400 2,708 0.474 0.057 0.297 0.728 
 151 2,708 0.462 0.089 0.168 0.798 

PHS 50K 186,716 0.236 0.053 -0.072 0.575 
 3K 186,716 0.235 0.054 -0.092 0.566 
 1K 186,716 0.232 0.058 -0.109 0.585 
 400 186,716 0.231 0.070 -0.205 0.622 
 151 186,716 0.241 0.103 -0.214 0.765 

MHS 50K 1,560 0.251 0.091 0.082 0.621 
 3K 1,560 0.252 0.090 0.071 0.637 
 1K 1,560 0.248 0.096 0.045 0.633 
 400 1,560 0.250 0.112 -0.014 0.697 
 151 1,560 0.254 0.122 -0.154 0.760 

GMGO 50K 5,327 0.239 0.059 0.063 0.539 
 3K 5,327 0.234 0.058 0.048 0.499 
 1K 5,327 0.233 0.062 0.014 0.484 
 400 5,327 0.231 0.075 -0.008 0.523 
 151 5,327 0.233 0.106 -0.100 0.634 

ASS = self-self; FS = full sibs; FO = father – offspring; MO = mother – offspring; PHS = paternal 

half-sibs; MHS = maternal half-sibs; GMGO = grand-mother – grand-offspring. 

 

Notably, the distribution of estimated genomic relationship for full-sibs was not centred at the 

expected value of 0.5 and instead averaged ~0.47 for all SNP panels considered (Figure 1, left panel). 

This same anomaly was reported by Lourenco et al (2015) and was attributed to both genotype and 

pedigree errors. Indeed, with the possible exception of genomic relationships estimated for self-self 

and for maternal half-sibs which was centred at the expected value of 1.0 and 0.25, respectively, all 

other relationships were centred at a value slightly lower than the expectation. Further research is 

needed to ascertain whether errors in pedigree and/or genotypes are responsible for this anomaly. 
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Table 2 presents the correlation between genomic relationships estimated using the 50K SNP 

chip and the four low-density SNP panels. On average, this correlation decreased from 0.864 when 

using the 3K SNP panel to 0.465 when using the 151 SNP panel. However, the decrease was not 

linear, with the smallest being by 10.7% from the 3K to the 1K panel (0.864 to 0.771), and the largest 

by 27.1% from 400 to 151 SNP panels (0.638 to 0.465).  
 

Table 2. Correlation between genomic relationships estimated using the high-density 50K SNP 

chip and four low-density SNP panels for seven types of pedigree-based kinships 

Panel Type of KinshipA Average 

SS FS FO MO PHS MHS GMGO 

3K 0.752 0.892 0.834 0.807 0.889 0.966 0.905 0.864 
1K 0.607 0.808 0.729 0.699 0.797 0.933 0.828 0.771 
400 0.455 0.682 0.595 0.501 0.654 0.869 0.713 0.638 
151 0.292 0.484 0.411 0.341 0.470 0.732 0.525 0.465 

Average 0.526 0.716 0.642 0.587 0.702 0.875 0.743  
ASS = self-self; FS = full sibs; FO = father – offspring; MO = mother – offspring; PHS = paternal 
half-sibs; MHS = maternal half-sibs; GMGO = grand-mother – grand-offspring. 

 

Averaged across the four low-density panels, self-self relationships (from diagonal elements of 

the GRM) were the least correlated (r = 0.526) with the ones obtained with the 50K panel, followed 

by mother-offspring (r = 0.587) and father-offspring (r = 0.642). The highest average correlation 

was observed for maternal half-sib combinations (r = 0.875).   

 

CONCLUSIONS 

In contrast to other livestock species, broiler chicken have large full-sib families implying a large 

benefit in adopting genomic evaluation compared to pedigree-based evaluation. However, this 

benefit relies on accurate estimation of relationships among individuals. This accuracy is affected 
when using low-density panels as a cost-effective alternative to genomic evaluation with a 50K 

panel. We conclude that a panel of 1,000 SNP can be used to reliably estimate relationships. 

However, further research is needed to ascertain the potential impact on the breeding goal of a 

selection line when the SNP in a low-density panels have been selected according to a fitness 

function that includes the association of SNP to traits in the breeding objective.   
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SUMMARY 

I will review the progress and prospects of risk prediction for disease in people. Fundamental to 

this progress is that data sharing is now common-place for both association study summary statistics 

and of individual-level measures. 

 

GENETIC RISK PREDICTION 

The methodology of genetic risk prediction of human disease parallels genetic evaluation in 

livestock. However, fundamental differences reflect the data structure available for generating and 

validating predictors, and that the prediction goal is of an uncommon binary phenotype of an 

individual, rather the mean value of a quantitative trait in the next generation. Genetic predictors of 
common complex genetic diseases, can never be diagnostically accurate for an individual, but 

genetic risk stratification could have clinical utility. For example, risk stratification could identify a 

high-risk class that includes the majority of those who will become affected in their lifetime (high 

sensitivity) even though the majority of those in this high-risk class will not be affected (poor 

specificity). Accurate prediction of a phenotype, requires the genetic predictor to be enhanced to 

include non-genetic risk factors. The genomics era allows the inclusion genomic biomarkers, which 

could reflect the downstream consequences disease and of non-measured environmental risk factors. 

I will review the progress and prospects of risk prediction for disease in people. Fundamental to 

this progress is that data sharing is now common-place for both association study summary statistics 

and of individual-level measures. For example, the UK Biobank (Sudlow et al. 2015; 

www.ukbiobank.ac.uk) study of 500,000 people with deep phenotyping and genome-wide genotype 
data now presents opportunities for quantitative genetics methods common in livestock to be applied 

to human data, and provides new opportunities for cross-fertilisation of ideas between disciplines. 

While disease risk prediction receives much hype in the era of personal or precision medicine it is 

important to not to oversell what can be realistically achieved.   
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SUMMARY 
Compared to dairy cattle, beef cattle genomic selection is in an early stage. Nevertheless, good 

perspectives and opportunities for its application are foreseen or are already underway. Genomic 

selection is expected to benefit beef production by allowing identifying genetic superior animals 

earlier and more accurately as well as to select for traits that are difficult and expensive to measure 

such as meat quality and feed efficiency, among other applications. We started this paper 

discussing the importance of beef cattle production in the tropics, than we presented some results 

from genomic studies and applications of genomic selection in the tropics, using the Nellore breed 

(Bos indicus) as a case study. 
 

BEEF CATTLE PRODUCTION IN THE TROPICS 

Tropical regions correspond to the Earth territories situated between the Tropic of Cancer 

(northern hemisphere) and the Tropic of Capricorn (southern hemisphere), covering countries 

from Central (25 countries) and South America (10 countries), Africa (47 countries), Asia (15 
countries) and Oceania (17 countries), with over 4779 million ha in extent of land, in which, 

around 40% correspond to forest ecosystems (Chidumayo and Gumbo 2013). These regions 

are important for the world food production and security (Foley et al. 2011) and cattle are a 

vital source of animal protein (Porto-Neto et al . 2014). According to FAO (Food and 

Agriculture Organization of the United Nations), there are in the world around 1.47 billion 

head of cattle and about 65 percent are located in tropical areas. The two countries with the 

largest number of cattle in the world, India (302 million head) and Brazil (219 million head), 

are situated in the tropics. The number of cattle is also expressive in other tropical regions 

such as Africa (312 million head), Central America (47 million h e a d ) a n d  O c e a n i a  ( 40 

m i l l i on  h e a d ). Data from the United States Department of Agriculture (USDA) shows that, 

in 2016, from a total of 60,486 and 9,439 (1,000 Metric tons) carcass weight equivalent 

worldwide produced and exported, respectively, 17,489 and 5,340 (~29% and ~57%) were 
produced and exported by Brazil (9,284 and 1,850), India (4,250 and 1,850), Australia (2,075 

and 1,385), and Mexico (1,880 and 255). 

The tropics are characterized by warm temperatures throughout the year, usually above 

18
o

C and seasons are commonly divided in wet and dry. As the beef cattle production in 

these areas is based on grass-fed, it is common to observe animals gaining body weight 

during the rainy season and losing or keeping it during the dry season, which usually leads 

to slaughter of old animals (Millen et al. 2011), affecting meat quality. In addition, the 

natural infestations of ecto and endo- parasites and the high temperature and humidity are 
challenges that the farmers in the tropics have to deal wi th  (Porto-Neto e t  a l . 2014). 

Beca u se  o f  this, adaptat ion  t o  tropical en vi r on m e n t a l  conditions is an essential trait 

to cattle reared in these areas. As a general rule, tropically adapted breeds (Zebu cattle) are 

more efficient than non-adapted (Taurine cattle) in such tropical environment conditions (Porto-

Neto et al. 2014), explaining the prevalence of Zebu breeds in the beef production systems 

in the tropics. In Brazil, for example, about 80% of the cattle have Zebu contribution, mainly 

of Nellore breed (Carvalheiro 2014). 



Plenary III 

256 

GENOMIC STUDIES IN THE TROPICS 

Genomic selection presents an opportunity for commercial breeders to increase the rates of 

genetic progress in beef, primarily, through increased accuracy of estimated breeding values 

on young animals (Johnston et al. 2012). In g en er a l , r e s u l t s  f r o m  s e v e r a l  s t u d i e s  

s u p p o r t  t h e  feasibility of applying genomic selection in tropical regions (Table 1). One of 
the main advantage of genomic selection is the possibility to accurately select animals early in 

life, being especially useful for the selection of traits that are difficult or expensive to measure 

like fertility, disease resistance, methane emissions, feed conversion, and carcass and meat 

quality (Hayes et al. 2013; Carvalheiro 2014). Traditionally, evaluation  of these traits in 

sires requires progeny tests since selection candidates cannot be directly assessed, increasing 

both costs and generation intervals. 

 

Table 1. Genomic prediction accuracies in tropical beef production 

 

 
Traits 

Prediction accuracy Reference 

Brazilian beef cattle   

Sum of SFA 0.12 to 0.24  

Sum of MUFA 0.07 to 0.13 Chiaia et al. (2017) 

Sum of PUFA 0.45 to 0.56  

Carcass traits 0.21 to 0.47 Fernandes Júnior et al. (2016a) 
Feed efficiency 0.06 to 0.58 Silva et al. (2016) 

Growth, reproductive and visual 
score 

0.17 to 0.74 Neves et al. (2014) 

Brazilian beef cattle   

Feed efficiency, growth, carcass 
and meat quality traits 

0.13 to 0.48 Bolormaa et al. (2013) 

Growth, reproductive carcass 
traits 

0.20 to 0.45 Johnston et al. (2012) 

SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated 

fatty acids 

 

Genetic markers have also been used in genome-wide association studies (GWAS) 

in order to identify genomic regions with major effects. Promising quantitative trait loci 

have already been identified. The QTL that harbors the PLAG1 gene, for example, 

has been associated with growth and carcass and meat quality traits in both Australian 

beef cattle and Brazilian Nellore cattle (Fortes et al. 2013; Utsunomiya et al. 2013; 

Porto-Neto et al. 2014; Fernandes Júnior et al. 2016b; Magalhães et al. 2016). 

Genomic studies in the tropics have also been focused on the identification of 
chromosome regions associated with traits related to sexual precocity. Together, Costa 

et al. (2015) and Regatieri et al. (2017), for example, reported 43 candidate genes for age 

at first calving, early pregnancy and heifer rebreeding. 

Adaptation- and temperament-related QTLs have also been identified. Using GWAS 

in a crossbred (taurine x indicine) cattle population, Porto-Neto et al. (2014) identified 

an extended genetic region centered around the MSRB3 gene on BTA5 affecting several 

traits related to climatic adaptation of tropical cattle including parasite resistance, 

yearling weight, body condition score, coat color and penile sheath score. In a 

Nellore population, Valente et al. (2016) reported the existence of nine candidate 

regions (BTA1 at 73 Mb, BTA2 at 65 Mb, BTA5 at 22 Mb and 119 Mb, BTA9 at 98 
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Mb, BTA11 at 67 Mb, BTA15 at 16 Mb, BTA17 at 63 Kb, and BTA26 at 47 Mb) 

affecting animal temperament. According to the last authors, these genomic regions 

harbor genes such as PARK2, GUCY1A2, CPE and DOCK1 that are, respectively, 

related to dopaminergic system, memory formation, biosynthesis of peptide hormone 

and neurotransmitter and brain development. The understanding of genetic control of 
traits related to adaptation and cattle temperament should contribute to improve the 

productivity and animal welfare in the tropics. 

 

APPLICATIONS OF GENOMIC SELECTION IN THE TROPICS: NELLORE 

BREED AS A CASE STUDY 

There are different important breeding programs and research groups working on 

genomic selection applied to beef cattle in the tropics. We will focus on applications 

of genomic selection for the Nellore breed as a case study because of our research 

background and due to the importance of this breed for the global beef market 

(Carvalheiro 2014, USDA 2016). Nellore breeding programs also represent a successful 

case of partnership between academy and industry. The history behind the 

establishment and evolvement of the different commercial Nellore breeding programs 
running independently in Brazil was described by Ferraz and Fries (2004) and 

Carvalheiro (2014). Currently, these breeding programs jointly control over half a 

million Nellore cows per year. We will list some genomic selection applications from 

part of these Nellore breeding programs that are working closely to our research 

group, so we are more aware of what they are doing. They are CIA de Melhoramento 

(www.ciademelhoramento.com.br), DeltaGen (www.deltagen.com.br), Nelore Qualitas 

(www.nelorequalitas.com.br) and PAINT (www.crvlagoa.com.br). We would like to 

emphasize that there are other important research groups and breeding programs in 

Brazil also working with genomic selection applied to Nellore and other breeds. 

 

Selection of progeny test candidates 
The selection of young sires to be progeny tested in Nellore breeding programs is 

performed based on selection indexes presenting low to moderate accuracy (~0.5), 

when genomic information is not used. Under the current breeding scheme, young 

sires have their semen distributed when they are ~2 years old and have their final 

proof (based on progeny performance) with ~5 years old. For not presenting highly 

accurate proofs, these young sires are usually not used intensively until their final 

proof attests their genetic superiority. As a consequence, the generation interval is 

increased, constraining the genetic gain. 

Genomic selection has increased the accuracy of selection of young sires. For 

instance, in some breeding programs genotyped young sires have been selected with 

an average accuracy of 0.75, i.e. 50% higher than the average accuracy of regular 

proofs. Investments and collaborations among the breeding programs are being done 
aiming to increase their reference populations and the accuracy of genomic predictions. 

The target is evaluating young sires with accuracies comparable (>0.85) to proven 

bulls. 

Due to genotyping costs, some breeders perform a first screening based on 

regular proofs to select the animals to be genotyped, than choose the young sires to be 

progeny tested based on their genomic enhanced proof. Typically, ten times more 

candidates are genotyped than the animals to be tested. For example, if a breeding 

program intents to progeny test 50 young sires in a specific breeding season, the top 

500 based on regular proofs are genotyped an their genomic enhanced proofs finally 
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determine those to be selected. Some breeders have already decided to genotype all 

yearling animals, without pre-screening on regular proofs. 

Although this application of genomic selection presents some advantage, increasing 

the accuracy of selection of young sires would have a limited impact on the genetic 

gain if they are not used more intensively when they are still young. Fortunately, the 
increased accuracy of genomic predictions is motivating some breeders to use young 

sires more intensively. 

 

Intensifying the use of young sires 

Historically, Nellore breeders have been using, on average, no more than 30% of 

young sires to mate their cows (Figure 1a). With few exceptions, generation interval 

of sires is generally around (or even greater than) seven years. In general, breeders are 

more comfortable in using proven bulls. Moreover, the trade-off between accuracy and 

generation interval makes it difficult to technically convince farmers to use young sires 

more intensively, e.g. the ratio between accuracy and generation interval for young 

sires (0.5/4.0=0.125) is similar to that for proven bulls (0.9/7.0=0.128). Genomic 

selection is changing this pattern. As genotyped young sires are presenting higher 
accurate proofs (compared to young sires without genomic information), some breeders 

are intensifying their use and, as a consequence, obtaining higher response to 

selection (Figure 1b). 

 

 
Figure 1. (a: left) Frequency (%) of progeny by age class of sires and year of birth, 

for Aliança Nelore dataset (~100,000 calves/year); and (b: right) Genetic trend and 

average age of sires at Jacarezinho farm (~10,000 calves/year). 

 

As the reference population gets better (larger and more representative of the 

population) and allows obtaining more accurate proofs, genomic selection cancels the 

trade-off between accuracy and generation interval. It has been predicted that in the 

near future the seedstock Nellore cows will be mated only with young sires, which is a 

dramatic ‘change of paradigm’ on breeder’s behavior. Assuming an average accuracy 

of 0.8 for the genomic enhanced proofs of young sires, this strategy would result in a 

ratio between accuracy and generation interval equal to 0.2 (0.8/4), a substantial 
increase compared to the ratio from the scheme without genomics. Indeed, dairy 

cattle breeders, especially Holstein breeders, had already witnessed this change in their 

breeding scheme after the advent of genomic selection (Van Eenennaam et al. 2014). 
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Selection of donors 

According to the Brazilian Society of Embryo Technology, Brazil has been 

producing, through in vitro fertilization (IVF), more than half a million embryos per 

year, being, approximately, half of that from beef cattle breeds. In the past, embryo 
technology was mainly used in Brazil by “elite” herds focused on producing “show 

type” animals. Lots of embryos used to be produced from cows without any genetic 

proof and raised in artificial environments. Fortunately, this pattern has changed 

partially because of the drastic development of IVF, which is becoming more reliable 

and feasible, but also due to the position conquered by the breeding programs that 

nowadays lead the genetic market as seedstock providers, position which used to be 

occupied by “show type” animals. 

Previously to genomics, a typical technical recommendation for breeders was to 

select, as donors, the top cows with reasonably accurate proofs, what generally resulted 

in selecting old cows. Genomic selection has allowed intensifying the use of young 

cows or heifers as donors, for increasing the accuracy of their genetic proofs. This 

strategy, of producing more progeny from genetically superior young animals through 
the synergistic adoption of genomic selection and reproduction technologies, is 

predicted to promote substantial increase in genetic gain compared to more 

conventional breeding schemes (Carvalheiro 2014). Caution should be made to certify 

that the heifers and young cows have superior and reasonably accurate genomic 

proofs for maternal and reproduction traits to be selected as donors, in order to produce 

replacement heifers. 

 

Genotyping of embryos 

As previously mentioned, IVF and embryo production have been used in large 

scale by some farms in Brazil (>1,000 embryos implanted/farm/year, with pregnancy 

rates around 40%). This reproduction technology provides an outstanding opportunity 
for increasing the genetic progress if sires and donors are properly chosen and if a 

reasonably good pregnancy rate of implanted embryos is attained. The genetic progress 

could be even higher if the genetic merit of embryos were predicted more accurately 

(using genomic information for example) before they were implanted. Genomic 

predictions of biopsied and genotyped embryos are already being obtained for dairy 

cattle (Saadi et al. 2014). 

A recent study showed the feasibility of genotyping Nellore biopsied embryos and 

obtaining their proofs more accurately (Carvalheiro et al. 2017). Farmers can use this 

information, for example, to decide which embryos to implant, as their genomic 

proofs may substantially deviate from what is expected based on parents average. 

Another application would be to implant the embryos using a customized approach, 

matching the genomic profile of the embryo with the customers’ needs. For example, 
farmers more focused on producing high quality beef, could decide to implant just 

embryos presenting good genomic predictions for marbling and tenderness. 

 

Screening young sires in commercial herds 

It is estimated that Brazilian commercial herds have roughly 35 million Nellore 

cows to be mated under natural mating (NM). If we assume one bull per 25 cows under 

NM and an annual replacement rate of bulls of 20%, the commercial herds need 

around 280,000 young replacement bulls per year. Nellore breeding programs 

running in Brazil jointly control about 500,000 cows, and produce around 40,000 
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young top bulls per year. So, breeding programs produce less than 15% of the young 

bulls demanded by the commercial herds, i.e. most of the commercial Nellore cows 

under NM are being mated with non-proven bulls. 

In theory, genomic selection has the potential to change this scenario, as the 

commercial herds have now a tool to predict the genetic merit of bulls without a 
traditional proof. This application of genomic selection is technically questionable since 

there is evidence of the presence of substructures (based on genomic kinship) among 

Nellore subpopulations (Utsunomiya et al. 2013). In this case, the prediction equation 

developed using data from one subpopulation (e.g. breeding program) will not 

necessarily work properly in another subpopulation (e.g. commercial herd), particularly 

if these subpopulations are unrelated and if the developed prediction equation is more 

influenced by relatedness and co-segregation than by linkage disequilibrium between 

markers and QTL (Sun et al. 2016). This technical issue is even more relevant if we 

consider that Nellore presents lower level of linkage disequilibrium between markers at 

short distances compared to taurine breeds (Pérez O’Brien et al. 2014). 

However, there are some commercial farms that already started using genomic 

predictions for screening young sires from their own herds. A typical use is being 
performed by large operation commercial farms (>10,000 cows) that, due to logistical 

and labor constrain, do not control their herd in a breeding program but have some 

genetic links with seedstock herds for using their genetic material (bull, semen, etc.). It 

is believed that these commercial farms could replace part of the bulls used under NM 

with their own produced young sires. An example is illustrated in Figure 2 where a 

large commercial farm pre-screened over 2,000 yearling contemporary males based on 

phenotypic appraisal, chose 272 to be genotyped and selected 69 to be used as 

replacement, based on their genomic proof (Index>5). A principal component analysis 

of the genomic relationship matrix revealed that the 272 genotyped animals were within 

the same cluster of the reference population used to calculate their genomic proofs, 

suggesting that the accuracy of their genomic predictions (0.38-0.58) were not 
overestimated.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a: left) Index and accuracy of genomic proofs of young sires from a 

commercial herd; and (b: right) Principal component analysis plot (x-axis: PC1; y-axis: 

PC2) based on genomic relationship matrix (blue=reference population, red=selection 

candidates). 

 

Increasing selection intensity for reproduction traits 
The Nellore breeding programs in Brazil use different strategies to select for 

reproduction traits. The most common are independent phenotypic culling, discarding 
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heifers and cows that are not pregnant at the end of the breeding season, and accounting 

for reproduction traits in the selection index. In general, the selection indexes adopted 

give more emphasis to growth and carcass traits than to reproduction traits. This fact is 

often explained by the low heritability and low accuracy of genetic proofs for 

reproduction traits. 
Motivated by the increase in accuracy obtained with genomic predictions, some 

breeders are given more weight to reproduction traits on their selection indexes. There 

are also some programs that are replacing, in their selection indexes, EPDs of indirect 

traits (e.g. scrotal circumference) by EPDs of traits directly associated with 

reproduction (e.g. age at first calving or heifer pregnancy). This strategy is expected to 

promote a substantial increase in genetic gain compared to the conventional strategies 

(without genomics), given a good prediction equation for reproduction traits. 

 

Selection for expensive and difficult to measure traits 

The opportunity to better select for expensive and difficult to measure traits 

figures amongst the most important applications of genomic selection. A 

representative example in beef cattle is the selection for meat quality traits. Without 
genomics, selection for this type of traits is constrained by its cost-effectiveness as it 

requires huge investments on phenotyping and on progeny testing, resulting in limited 

genetic gain due to either low accuracy of genetic proofs or long generation 

intervals. 

Despite presenting good adaptation to tropical conditions and an extraordinary 

capacity to convert (low quality) pasture on meat production, Nellore cattle tends to 

present lower quality beef (in terms of tenderness, for example) compared to some 

Taurine breeds. This helps to explain the huge investments and efforts that Brazilian 

research groups and breeding programs are doing to establish reference populations and 

develop prediction equations for meat quality traits. Important studies are revealing the 

existence of genetic variation and the feasibility of applying genomic selection for 
these traits (Aboujaoude et al. 2016; Feitosa et al. 2016; Fernandes Júnior et al. 

2016a; Gordo et al. 2016; Chiaia et al. 2017), attaining prediction accuracies of 

about 0.4 for some relevant traits (e.g. tenderness) that previously to genomics were 

not evaluated. Motivated by the results of these studies some breeders are establishing a 

consortium to develop strategies that would warranty the improvement and maintenance 

of the prediction equations for carcass and meat quality traits. Efforts and investments 

are also been made to develop prediction equations for traits related to feed efficiency 

(Silva et al. 2016) and, more recently, methane emission. 

 

Genomic predictions accounting for GxE 

Genotypic information has allowed not only obtaining more accurate genetic proofs in 

different environments but also identifying young animals with less sensitivity to 
environmental variation (not published). This will help breeders to better explore 

genotype by environment interaction, which is commonly an important source of 

phenotypic variation in tropical environments (Cardoso and Tempelman 2012; Chiaia et 

al. 2015; Santana et al. 2015). Breeders are now able to select young sires to 

produce under specific conditions without the necessity to progeny test them in 

different environments. 

 

Other applications 

Many other uses of genotypic information in Nellore breeding programs are 



Plenary III 

262 

emerging. For instance, GWAS are being performed on morphologic and functional 

traits such as testicular hypoplasia and skin depigmentation, and important candidate 

major genes are being identified for these traits (H.H.R. Neves, personal 

communication). If their effects are confirmed, this information could be used on mating 

plans or on developing genetic tests, aiming to reduce the economic losses caused by 
the incidence of these problems. Another example of application is the use of 

genotypic information to perform genomic control of inbreeding (Sonesson et al. 

2012). As multiple-sire mating is a regular practice in some farms, due to the large 

number of cows under natural mating, estimates of inbreeding based on genotypic 

information are expected to be more reliable than those based on incomplete or 

erroneous pedigree, allowing controlling inbreeding more effectively. 

 

CONCLUDING REMARKS 

Genetic improvement has an important role in increasing efficiency and 

competitiveness of beef cattle production in the tropics. There are several challenges 

and opportunities to genetically improve more effectively beef cattle herds in the 

tropics and genomic selection has shown to be a key tool to increase genetic progress 
of economically relevant traits. Some applications of genomic selection in Nellore 

cattle from Brazil were listed but more will certainly come or are already been applied 

by other breeding programs, breeds and countries. Individually, genomic selection 

applications may have a moderate impact on the breeding programs but considered 

together they are expected to significantly improve the genetic progress, profitability 

and sustainability of beef production in the tropics. 
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SUMMARY 

We investigated improvements in reliability of genomic estimated breeding values (GEBV) for 

key dairy traits as a result of including a large number of genotypes of dairy bulls, with North 
American daughter performance, in the Australian genomic reference set.   Two strategies for 

incorporating the North American information into Australian genomic evaluations were compared, 

a single trait approach, where the phenotypes used were de-regressed Interbull proofs (DRP), and a 

multi-trait approach, where North American performance and Australian performance (DYD of 

bulls based on Australian daughters) were treated as two, potentially correlated, traits.  The two 

strategies were compared by assessing the correlation of GEBV and DYD from Australian daughters 

in a set of validation bulls, for milk, fat and protein, somatic cell count, survival, daughter fertility, 

stature and overall type.  Including genotypes of bulls with North American daughter performance 

in Australian genomic evaluations improved the correlation of GEBV and DYD in the validation 

bulls for all traits, by between 3% and 7% for production, and up to 15% for fertility and survival.  

The single trait approach resulted in bias (GEBV over predicting DYD) for some traits including 

survival, somatic cell count and overall type, while the multi-trait approach gave unbiased GEBV 
for these traits.   

 

INTRODUCTION 

Reliability of genomic estimated breeding values (GEBV) for animals without a phenotype of 

their own or for daughters (eg young unproven bulls) is a function of the heritability of the trait, the 

proportion of genetic variance explained by the markers, the genetic diversity of the population, and 

the number of animals in the reference population where SNP effects are estimated (Daetwyler et 

al., 2008; Goddard, 2009).  The reliability of GEBV is also a function of how closely related young 

genomic bulls are to the reference population.  One way of improving reliabilities of GEBV would 

be to expand the reference set to include bulls with only overseas daughter information, including 

those that are sires or grandsires of young genomic bulls used in Australia.  This requires a method 
that appropriately accounts for genotype by environment interaction between Australia and the other 

countries.   

Here we investigate improvements in reliability of Australian genomic breeding values (ABVg) 

for key dairy traits that can be achieved for young, unproven bulls as a result of including a large 

number of genotypes of bulls with North American daughter performance into the Australian 

genomic reference set.  Two strategies for incorporating the North American information into 

Australian genomic evaluations were compared,   

1) a single trait approach, where the phenotypes used were de-regressed Interbull multiple 

across country evaluation (MACE) proofs, and  

2) a multi-trait approach, where North American performance (daughter yield deviation, 

DYD, of bulls based on North American daughters) and Australian performance (DYD of bulls 
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based on Australian daughters) were treated as two, potentially correlated, traits.   

The two strategies were compared by assessing the correlation of genomic estimated breeding 

values (GEBV) and DYD from Australian daughters) in a set of validation bulls (born in or after 

2008).  The increase in this correlation relative to a single trait approach with only the current 

Australian reference set was evaluated.  The regression of DYD on GEBV was also evaluated, to 
determine if there was any bias (i.e. if the GEBV systematically over estimated or underestimated 

the proofs of top ranking bulls when the bulls had daughters).  Traits investigated were production 

(milk, fat and protein kg), somatic cell count, survival, daughter fertility, stature and overall type 

(standardised traits with a mean of 100 and standard deviation of 5). 

                      

MATERIALS AND METHODS 

Genotypes for 18,377 North American registered bulls with daughter records were extracted 

from the Northern American Cooperative Dairy DNA Repository (CDDR) database, and 13,072 

bulls and cows from the ADHIS (Australian dairy herd improvement scheme) database.   A set of 

36,655 SNP common to the Australian evaluation and present in the North American genotypes was 

identified.  Any missing genotypes were imputed using Beagle 3.2 (Browning and Browning 2009).   

The traits investigated were milk yield, fat yield, protein yield, somatic cell count (SCC), survival 
(longevity), stature, overall type (overall conformation score was the corresponding Interbull trait) 

and fertility (daughter pregnancy rate).   

North American phenotypes were daughter yield deviations from the US, for milk yield, fat yield, 

protein yield, somatic cell count (SCC) and survival.  For fertility, the North American PTA was de-

regressed as suggested by Van Raden (pers comm).  For type traits, de-regressed breeding values 

were used (de-regression removed the pedigree contribution of the EBV), where bulls had at least 

50 daughters scored for the trait, using the procedure of Liu (2009).  Australian phenotypes were 

daughter trait deviations (DTDs) for all traits. 

The data were split based on year of birth into reference and validation sets.  Bulls (either North 

American or Australian) born before 2008 were included in the reference set, used to calculate SNP 

effects, and bulls born in or after 2008 were used in the validation set.  There were 275 bulls in the 
validation set, and only Australian daughter information was used in the validation   

Three models were fitted to the data 1) Single trait model, Australian information only (de-

regressed MACE proofs as phenotypes), 2) Single trait model, Australian and North American 

information (de-regressed MACE proofs as phenotypes) 3), Multi-trait model, using daughter trait 

deviations for bulls with daughters in Australia, and DYD for bulls with North American daughters 

(as described above).  Where DYD were not available, de-regressed proofs were used.   

The multi-trait model was  ⌈
𝒚𝟏

𝒚𝟐
⌉=   [

𝑰𝟏 𝟎
𝟎 𝑰𝟐

] [
𝝁𝟏

𝝁𝟐
] + [

𝒁𝟏 𝟎
𝟎 𝒁𝟐

] ⌈
𝒈𝟏

𝒈𝟐
⌉ + ⌈

𝒆𝟏

𝒆𝟐
⌉        where y1 and y2 

are the vector of response variables (i.e. trait 1 is the DTD of Australian bulls and trait 2 are the 
DYD of bulls with North American daughters), I1 and I2 are identity matrices, µ1 and µ2 is the vector 

of intercepts of DTD and DYD, Z1 and Z2 are the design matrices that relate genomic breeding 

values with the individuals, g1 and g2 is the vector of genomic breeding values for DTD and DYD, 

and e1 and e2 are vectors of random residuals for DTD and DYD. It was assumed that ⌈
𝒈𝟏

𝒈𝟐
⌉ 

~ 𝑁(0, 𝑮 𝑻) , where T = [
𝝈𝒈𝟏

𝟐 𝝈𝒈𝟏𝟐

𝝈𝒈𝟏𝟐 𝝈𝒈𝟐
𝟐

] , the variance-covariance matrix of DTD and DYD, and 

⌈
𝒆𝟏

𝒆𝟐
⌉ ~ 𝑁(𝟎, 𝑰𝑹), 𝑤ℎ𝑒𝑟𝑒 𝑹 =  [

𝑹𝟏𝟏 𝟎
𝟎 𝑹𝟐𝟐

], the residual variance-covariance matrix of DTD and 

DYD, with weights on phenotypes for bulls and cows according to Garrick et al. (2009), and G is 

the genomic relationship matrix. ASReml (Gilmour et al., 2009) was used to estimate variance 
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components, including genetic correlations between performance in North American and Australia.   

The three different models were used to predict GEBV for the validation bulls, born 2008 and 

later. The following statistics were assessed:  correlation between DTD and GEBV for bulls in the 

validation set, and the slope of the regression (b) of DTD on GEBV for validation bulls.   

Note that to (considerably) simplify implementation in routine evaluations, if a bull has 
Australian daughters, only his Australian information is used.  Bulls are included for the second 

country trait (eg North America) only if they have daughters in that second country and not in 

Australia.  This means it is not necessary to consider residual correlations among the countries.   A 

second step to simplify implementation was to pre-correct records in each country for the mean and 

sex effect.  Then the solutions to the multiple trait model are (Ignoring fixed effects, and with t the 

elements of the inverted T matrix, eg t11 is the element in the first row and column of T-1): 

⌈
𝒈𝟏̂

𝒈𝟐̂
⌉=   [

𝒁𝟏
′ 𝑹𝟏𝟏𝒁𝟏 + 𝑮−𝟏𝑡𝟏𝟏 𝑮−𝟏𝑡12

𝑮−𝟏𝑡12 𝒁𝟐
′ 𝑹𝟐𝟐𝒁𝟐 + 𝑮−𝟏𝑡22

] [
𝒁𝟏

′ 𝑹𝟏𝟏𝒚𝟏

𝒁𝟐
′ 𝑹𝟐𝟐𝒚𝟐

]    

 

RESULTS AND DISCUSSION 

When de-regressed MACE proofs were used as the phenotype in a single trait analysis, the 

correlations r(GEBV,DTD) for production were relatively high, and improved by up to 7% (fat) with 

the addition of the North American data (Figure 1A).   

 

A 

 
B 

 
Figure 1.  A. Correlation of genomic estimated breeding values (GEBV) for eight dairy traits, 

using three genomic prediction models.  B.  Regression of daughter yield deviation on GEBV 

for eight dairy traits using three genomic prediction models.   

The multi-trait approach did result in regression coefficients (slopes) of DTD on GEBV in 
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validation bulls closer to one for some traits (Figure 1B).  Particularly survival, somatic cell count 

and overall type were closer to one with the multi-trait approach. 

As a result of running the multi-trait model, genetic correlations between North America and 

Australia were estimated for all traits considered.  These were slightly higher than, but close to the 

Interbull reported correlations, Table 1.  This is interesting, as the multi-trait model uses genomic 
information only, while the Interbull correlations are based on pedigree.   

 

Table 1.  Genetic correlations between Australia and the US, estimated either from the 

multi-trait genomic model, or from pedigree (Interbull reported correlations). 

 

Trait Multi-trait genomic estimate Interbull*  

Milk 0.81 0.77 

Fat 0.81 0.76 

Prot 0.75 0.75 

SCC 0.73 0.77 

Survival 0.75 0.69 

Stature 0.95 0.89 

Overall type 0.72 0.64 

*http://www.interbull.org/index 

 
Using either a multi-trait approach or a single trait approach (using de-regressed MACE proofs) 

to add North American daughter performance information to the reference population for calculating 

GEBV resulted in an increase in r(DTD,GEBV) for a set of validation bulls.  The multi-trait 

approach resulted in slightly less bias (slope of DTD on GEBV for validation bulls) for some traits, 

and is therefore the preferred approach for these traits.  Estimates of genetic correlations between 

North America and Australia derived from the genomic information were similar to, but slightly 

higher than, the published Interbull correlations.    
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SUMMARY 

Single-step genomic evaluations combine pedigree and phenotypic information on genotyped 

and non-genotyped individuals. Such an evaluation can be undertaken using a so-called breeding 

value model that fits the breeding values of the genotyped and non-genotyped animals (e.g. single-

step GBLUP) or using an equivalent so-called marker effects model that directly fits the marker 

effects. The single-step marker-effects models allow alternatives such as BayesA and mixture 

models such as BayesB, BayesC or BayesR to be fitted in the context of the single-step analysis. 

This paper reviews alternative formulations of these equivalent models.  The marker-effects 

formulations of the models are practical options for national genomic evaluations.  The most 

efficient algorithm among those available depends upon the number of marker loci and the 

numbers of genotyped and non-genotyped animals.  

 

INTRODUCTION 

The classical model equation for genetic evaluation using best linear unbiased prediction 

(BLUP) describes the phenotypes for one or more traits in terms of fixed effects, random additive 

breeding values, and residual effects that capture that part of the phenotype that cannot be 

explained by the fixed effects or breeding values (Henderson, 1973).  Estimation of breeding 
values by fitting the mixed linear model typically assumes the pedigree-based additive relationship 

matrix describes the variance-covariance among breeding values (Henderson, 1973).  Henderson 

(1974) suggested the model equation might be rearranged for computational advantage as 

explicitly demonstrated in Henderson (1985).  That concept was exploited by Quaas and Pollak 

(1980) in their derivation of the multiple-trait reduced animal model which allowed an animal 

model to be fitted with little more effort than that for fitting the sire-maternal grandsire models that 

were commonly used at that time.  Nejati-Javeremi et al. (1997) showed how to compute a 

genomic relationship matrix and suggested that be used in place of the additive relationship 

matrix, a model now known as GBLUP.  Meuwissen et al. (2001) proposed several models that 

explicitly fitted haplotype effects rather than breeding values.  Those methods varied according to 

whether the variance ratio for haplotype effects was a known constant (BLUP), an unknown 

haplotype specific variable (BayesA, BayesB), and whether or not some haplotypes were assumed 
to have zero effect (BayesB). The breeding value model and BLUP marker effects models were 

shown to be equivalent (e.g. Stranden and Garrick, 1997).  Expanding GBLUP to a more general 

setting with a model that appropriately accounts for a pedigree including genotyped and non-

genotyped animals in a single step was introduced by Legarra et al. (2009).  That single-step 

GBLUP (ss-GBLUP) model represented a major advance, and is computationally attractive when 

there are many more markers than genotyped animals, and all markers are weighted equally to 

form the genomic relationship matrix. Two marker-effects models are reviewed here which are 

equivalent to ss-GBLUP and practical for national evaluation. Both allow the model for marker 

effects to be extended when variance ratios are marker specific and unknown (like BayesA), or 

follow more general mixture models (BayesB, or BayesR of Erbe et al. 2012). 
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EQUIVALENT MODELS FOR JOINT USE OF GENOTYPED AND NON-GENOTYPED 

ANIMALS 

Single-step GBLUP.  Defining a vector of phenotypic records as yi, incidence matrices of 

fixed effects and breeding values as Xi and Zi, vectors of unknown fixed effects (b), random effects 

(ui) and residuals ei, with the subscript i denoting g=genotyped or n=non-genotyped animals, the 
model equation can be written as 

 [
𝒚𝒏

𝒚𝒈
] = [

𝑿𝒏

𝑿𝒈
] 𝒃 + [

𝒁𝒏 𝟎
𝟎 𝒁𝒈

] [
𝒖𝒏

𝒖𝒈
] + [

𝒆𝒏

𝒆𝒈
], with 𝑣𝑎𝑟 [

𝒆𝒏

𝒆𝒈
] = [

𝑹𝒏 𝟎
𝟎 𝑹𝒈

],  

and following Legarra et al. (2009) with the genetic variance being 𝜎𝑢
2, 

 𝑯 =
1

𝜎𝑢
2 𝑣𝑎𝑟 [

𝒖𝒏

𝒖𝒈
] = [

𝑨𝒏𝒏 + 𝑨𝒏𝒈𝑨𝒈𝒈
−𝟏(𝑮 − 𝑨𝒈𝒈)𝑨𝒈𝒈

−𝟏𝑨𝒈𝒏 𝑨𝒏𝒈𝑨𝒈𝒈
−𝟏𝑮

𝑮𝑨𝒈𝒈
−𝟏𝑨𝒈𝒏 𝑮

], 

which is somewhat formidable.  However, Aguilar et al. (2010) showed that, for full-rank G, 

𝑯−𝟏 = [
𝑨𝒏𝒏 𝑨𝒈𝒏

𝑨𝒏𝒈  𝑨𝒈𝒈 + (𝑮−𝟏 − 𝑨𝒈𝒈
−𝟏)],  

which allows existing software used to obtain breeding values in national evaluations using PCG 

iteration (e.g. Tsuruta et al. 2001) to be relatively trivially modified by including an extra step to 

compute matrix-vector products for the difference matrix (𝑮−𝟏 − 𝑨𝒈𝒈
−𝟏).  This ss-GBLUP approach 

was computationally appealing in the early days of genomic prediction, when there were fewer 

than 40,000 animals genotyped.  As the number of genotyped animals increased, the effort to form 

the dense difference matrix and compute its matrix-vector products increase rapidly.  Various 

strategies to avoid that effort have been devised and implemented, including computing matrix-

vector products in parts as (𝑮−𝟏 − 𝑨𝒈𝒈
−𝟏)𝒙 = 𝑮−𝟏𝒙 − 𝑨𝒈𝒈

−𝟏𝒙. Using properties of partitioned matrix 

inverses allows efficient computation of the product  𝑨𝒈𝒈
−𝟏𝒙 without ever forming 𝑨𝒈𝒈

−𝟏 (Masuda et 

al. 2017). An approximation known as APY (Misztal et al. 2014) has been used to compute the 

matrix product 𝑮−𝟏𝒙.  That approximation can in some cases give identical values as for  𝑮−𝟏𝒙 
computed directly, but the lower bounds for APY in general circumstances have not been 

established.   

Single-step GBLUP with marker effects.  There are several practical alternatives for fitting 

the single-step model that do not require 𝑮−𝟏, nor even require 𝑮 to be full rank, and these 
equivalent models have the additional advantage that they can accommodate various priors for 

marker effects, allowing single-step models for marker effects akin to BayesA, BayesB and 

BayesR that cannot be fitted using ss-GBLUP.  

Liu et al. (2014) rearranged the model to include equations for the marker effects, 𝜶, in 

addition to the breeding values of genotyped and non-genotyped individuals. An advantage of that 

representation is that it does not require the matrix 𝑮, nor its inverse.  However, it involves the 

inverse of the matrix 𝑨𝒈𝒈, which is dense.  A computational strategy was proposed to avoid 

computing the inverse, but it requires solving a dense system of equations of order equal to the 

number of non-genotyped animals, and such solution is required every round of PCG or for every 

Gibbs sample if a model with Bayesian priors for marker effects is to be fitted.  We will not 

consider that representation further. 

Hybrid model.  Fernando et al. (2014) wrote 𝒖𝒈 = 𝑴𝒈𝜶 as in Meuwissen et al. (2001) where 

𝑴𝒈 are marker covariates observed on genotyped animals, and partitioned 𝒖𝒏 into two 

components, that part of the breeding values of non-genotyped animals that can be explained by 

the breeding values of genotyped relatives, and an independent part (imputation error, 𝝐) not 

explained by those relatives.  That is, 𝒖𝒏 = 𝑴𝒏𝜶 + 𝝐, where non-genotyped marker covariates are 

“imputed” using best linear prediction as 𝑴𝒏 = 𝑨𝒏𝒈𝑨𝒈𝒈
−𝟏 which can be obtained efficiently by 

directly solving the sparse set of equations 𝑨𝒏𝒏𝑴𝒏 = −𝑨𝒏𝒈𝑴𝒈 and is easily done in parallel. The 
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resulting “hybrid” model equation is therefore written as  

 [
𝒚𝒏

𝒚𝒈
] = [

𝑿𝒏

𝑿𝒈
] 𝒃 + [

𝒁𝒏𝑴𝒏 𝟎
𝟎 𝒁𝒈𝑴𝒈

] 𝜶 + [
𝒁𝒏

𝟎
] 𝝐 + [

𝒆𝒏

𝒆𝒈
],  

which is solved by fitting mixed model equations that explicitly include effects for 𝜶 and 𝝐. 

Defining the variance of the vector of marker effects as 𝑰𝜎𝛼
2, the inverse variance-covariance 

matrix for these effects required to form the mixed model equations are  

 𝑣𝑎𝑟−1 [
 𝜶
𝝐

] = [
𝑰 1

𝜎𝛼
2 𝟎

𝟎 𝑨𝒏𝒏 1

𝜎𝑢
2

].  

The calculations involving 𝑀𝑛 which appears in the off-diagonal of the mixed model equations 

become formidable when that dense matrix is large, as is the case when there are millions of non-

genotyped animals and a large number of markers, but that effort can be reduced when the number 

of genotyped animals is much less than the number of non-genotyped animals by exploiting the 

identity 𝑨𝒏𝒏𝑴𝒏 = −𝑨𝒏𝒈𝑴𝒈 and storing only 𝑴𝒈 as detailed in Fernando et al. (2016a).  

Implementing that approach requires repeated solving of sparse equations of the form 𝑨𝒏𝒏𝒙 = 𝒒 

within each PCG iteration.  This effort is akin to that required to implement the approach of 

Masuda et al. (2017) in ss-GBLUP.  If the variance components 𝜎𝛼
2 or 𝜎𝑢

2 are assumed not to be 
known, and/or if mixture priors are to be used for marker effects, this hybrid model can be readily 

fitted using single-site Gibbs sampling, a model that does not have an equivalent ss-GBLUP form. 

 Super hybrid model.  A further equivalent model involving marker effects can be derived as 

in Fernando et al. (2016b). In circumstances where the number of genotyped animals may be 

large, perhaps millions, it can be efficiently implemented for national evaluation, especially if 

there are more genotyped than non-genotyped animals.  The model equation is written as 

 [
𝒚𝒏

𝒚𝒈
] = [

𝑿𝒏

𝑿𝒈
] 𝒃 + [

𝟎
𝒁𝒈𝑴𝒈

] 𝜶 + [
𝒁𝒏

𝟎
] 𝒖𝒏 + [

𝒆𝒏

𝒆𝒈
],  

which is solved by fitting a mixed model involving 𝜶, as in the hybrid model, along with 𝒖𝒏 as in 

ss-GBLUP.  We refer to this model here as the super-hybrid model.  The inverse variance-

covariance matrix for the fitted effects is given by 

 𝑣𝑎𝑟−1 [
 𝜶
𝒖𝒏

] = [
𝑰 1

𝜎𝛼
2 + 𝑴𝒏′𝑨𝒏𝒏𝑴𝒏

1

𝜎𝑢
2 𝑴𝒈′𝑨𝒈𝒏 1

𝜎𝑢
2

𝑨𝒏𝒈𝑴𝒈
1

𝜎𝑢
2 𝑨𝒏𝒏 1

𝜎𝑢
2

], 

which only involves the matrix of imputed marker genotypes 𝑴𝒏 in a quadratic form on the 

diagonal, and that symmetric matrix has order equal to the number of markers which in national 

evaluations can nowadays be an order of magnitude less than the number of genotyped 

individuals.  Comparison of the computing effort in this super-hybrid model relative to the hybrid 

model for a national cattle evaluation dataset is in Fernando et al. (2016b). 

All of these equivalent models, namely ss-GBLUP which fits breeding values for non-
genotyped and genotyped animals, the ss-GBLUP model with breeding values and marker effects, 

the hybrid model which fits marker effects and imputation residuals for non-genotyped animals, 

and the super-hybrid model which fits marker effects and breeding values for non-genotyped 

animals, can be extended to more complex forms of models.  These include those that fit 

additional polygenic effects not captured by markers, those that fit maternal genetic and maternal 

permanent environmental effects, and those accommodating multiple traits, those with repeated 

measures, those including random regression polynomials, those with heterogeneous variances, in 

addition to breed, heterosis and group effects as required in multi-breed analyses.  

 

DISCUSSION 

The two marker effects models reviewed here are equivalent to ss-GBLUP when the genomic 

relationship matrix is full rank and the variance parameters are known.  These marker-effects 
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models may require greater computational effort than ss-GBLUP when the number of genotyped 

animals is small.  The relative effort for the hybrid model that fits marker effects and imputation 

residuals for non-genotyped animals, compared to the super-hybrid model that fits marker effects 

and breeding values for non-genotyped animals, varies according to the number of markers and 

numbers of genotyped and non-genotyped animals.  For analyses involving millions of genotyped 
animals, one or other or both of the marker effects models will be more efficient than ss-GBLUP.  

Implemented in a Gibbs sampler, these models can readily accommodate alternative priors 

including those representing mixture distributions, which in some situations leads to higher 

accuracy of prediction than ss-GBLUP (Lee et al. 2017). Furthermore, using Gibbs sampling will 

provide samples from the relevant posterior distributions which can be used to provide estimates 

of the prediction error variances and prediction error covariances, as well as the posterior means 

that represent the estimates of the breeding values.  Both of these marker effects models have been 

prototyped in multi-breed multiple-trait national evaluations including maternal effects.  The 

super-hybrid model is currently being implemented in the Pan-American Cattle Evaluation 

(PACE) run by ABRI for Hereford cattle, and in the North American multi-breed analysis run by 

International Genetic Solutions (IGS) which is the largest North American evaluation in terms of 

pedigree size.  The super-hybrid model is also being used by global companies for pig, chicken 
and dairy cattle evaluation.  
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SUMMARY 

Principal component analysis (PCA) using genome-wide single nucleotide polymorphism 

(SNP) genotype data is traditionally used to determine distinct groups in a population. We present 

a novel numerical approach to quantify the importance of each gene to the emerging clusters as 
informed by PCA. Our method is based on modelling the coefficients (SNP weights) of the first 

principal component using mixtures of Normal distributions. We applied our approach to three 

distinct datasets of cattle, chicken, and sheep. We were able to identify subsets of genes in the 

cattle and chicken genomes that are likely to be important determinants for understanding the 

phenotypic differences among various disparate livestock populations. 

 

INTRODUCTION 

The utility of PCA in discriminating individuals according to breed differences has been well 

documented in the literature. The Bovine HapMap Consortium used PCA as a central method in 

the elucidation of genetic structure across biologically diverse breeds (Gibbs et al. 2009). Other 

studies relied on PCA to measure the genetic divergence between indicine and taurine cattle 
(Bertolini et al. 2015). PCA also informs machine learning based classification methods to predict 

the individual ancestry of cattle (Bertolini et al. 2015). 

 In our study, we used PCA as a starting point to identify a set of genes that have the 

discriminatory power to identify the lineage of a particular population. We build a model based on 

the contributions of the SNP to the first principal component (PC1). These are the coefficients of 

the PC1 which are produced as part of the PCA. The empirical distribution of the SNP reveals 

distinct modes. We used the output from PCA as a first step to project the data on to the maximum 

variable direction and used statistical machine learning based mixture modelling to quantify the 

contribution of genes to the respective lineages.  

 

MATERIALS AND METHODS 

Animals and genotypes. We tested our method on three datasets - cattle, chicken, and sheep.  
Cattle: We used data from 18,363 animals and 19 breeds belonging to the Beef CRC 

(http://www.beefcrc.com) and Nelore data from Mudadu et al. 2016. The cattle belong to a 

spectrum of lineages ranging from pure Bos indicus (BI; N=5,536 cattle) to pure Bos taurus (BT; 

N=7,589). Additionally, we have 5,238 cattle that are crossbred or tropically adapted composites 

which are classified as Bos taurus – Bos indicus (BTI) breeds. The original data had genotypes for 

729,068 SNP. We considered SNP located in autosomal chromosomes and mapped within 1Kb of 

a known gene to capture SNP associated with protein-coding regions. We further pre-processed 

the data so that we retained those genes that have at least the median number of 6 SNP to ensure 

that the genes are minimally represented. The final dataset contained 246,864 SNP in 8,631 genes. 

http://www.beefcrc.com/
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Chicken: The data were from 988 chickens from 4 commercial lines of broilers (Hudson et al. 

2015), denoted as Lines A (N = 204), B (N = 244), C (N = 254), and D (N = 286). Lines A and B 

have been generated to select females, whereas lines C and D are to select males. The data had 

genotypes for 51,713 SNP. After removing monomorphic SNP and retaining those within 20 Kb of 

a gene (Reyer et al. 2015), we considered 36,395 SNP located in 12,642 genes. 
Sheep: We used data from the Sheep Hapmap project (http://www.sheephapmap.org/) 

including 1,222 animals distributed across 9 regions and genotypes for 49,034 SNP. We 

considered SNP that were not monomorphic and those within 30 Kb of a known protein coding 

gene (Miller et al. 2011), which resulted in 26,077 SNP spanning 12,737 genes. 

 

Principal Component Analysis and Gene contribution to lineage. We used PLINK (Chang 

et al. 2015) to perform the principal component analysis (PCA) and considered only the PC1 as it 

explains the maximum variability in the data and extracted the weights of each SNP to that 

component. We used mixture modelling to quantify the contribution of the genes to the lineages. 

Mixture modelling is a statistical method to construct a probability distribution by combining 

the effects due to several component probability distributions. We considered the Normal 

component distributions to model the probability of the SNP weights in PC1, which were best 
modelled using two component distributions. Formally, a two-component mixture is defined as  

Pr(𝑥) = 𝑤 𝒩(𝑥; 𝜇1, 𝜎1) ⏟          
𝑝1

+ (1 − 𝑤) 𝒩(𝑥; 𝜇2, 𝜎2) ⏟              
𝑝2

 

where 𝑥 corresponds to the data (SNP weights in PC1), Pr(𝑥) is the probability distribution of 

the mixture, 𝑤 is the weight of the first component in the mixture, 𝜇1, 𝜇2 and 𝜎1, 𝜎2 denote the 

means and the standard deviations of the two Normal (𝒩) components, respectively. As part of 

statistical inference, the mixture parameters, that is, 𝑤, 𝜇1, 𝜇2, 𝜎1, 𝜎2 were estimated using the 

EMMIX software (McLachlan et al. 1999). After estimating the mixture parameters, the 

contribution of each SNP to each components is given by its posterior probability, that is,  

𝑚1 =
𝑝1

𝑝1 + 𝑝2
  and  𝑚2 =

𝑝2
𝑝1 + 𝑝2

 

where m1 and m2 are the posterior probabilities of the given SNP to belong to the first and 

second component, respectively. The values p1 and p2 constitute the two parts of Pr(x). Note that 

𝑚1 + 𝑚2 = 1 which implies that for a given gene, m1 and m2 correspond to the contributions 

(memberships) of that gene to the two components of the mixture. As an example, to estimate a 

gene’s contribution to the indicine content in bovine genome, we average the posterior 

probabilities (m1 values) of the corresponding SNP in its coding region. A gene contributes to both 

the indicine and taurine components of the bovine genome. The value m1 denotes the amount of 

contribution (as a percentage) to the indicine lineage. We infer that the left mode corresponds to 

Bos indicus because the animals with negative SNP weights are Nelore/Brahman cattle. 

 

RESULTS AND DISCUSSION 
The PCA of the cattle and chicken datasets reveals distinct clusters based on their respective 

lineages; the Bos indicus, Bos taurus and Bos taurus – Bos indicus breeds are separately clustered 

(Figure 1a). The PC1 and PC2 explain 21.8% and 2.3% variation in the data respectively. 

Similarly, for the chicken dataset, we observe Lines A and B distinctly clustered whereas Lines C 

and D are overlapping (Figure 1b). Mixture modelling of the SNP weights along PC1, (Figure 

1c,d) resulted in distinct modes corresponding to the indicine and taurine components of the 

bovine genome. The estimate of the mixing proportion is 𝑤 = 0.31 establishing an effective 

membership of 31% Bos indicus and 69% Bos taurus genes for this particular population. For the 

chicken data, PC1 and PC2 explain 22% and 3.6% variation in the data, respectively. The value 

𝑤 = 0.49 implies an almost equal number of genes contributing to male and female lines. 

http://www.sheephapmap.org/
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 Further, 64 and 718 genes have a contribution of at least 95% to the indicine and taurine 

components, respectively. In the chicken genome, there are 1,072 and 1,386 genes with least 95% 

contribution. The study of these candidate genes can aid our understanding of ancestry-related 

differences in gene expression and susceptibility of a given lineage to exhibit a certain phenotype. 

 

 
The PCA of the sheep data revealed a cluster with sheep (Outgroup, Wildsheep) widely scattered 

and having negative PC1 values (Figure 2a). On removing these outliers, we note a star-shaped 

cluster (Figure 2b) with PC1 and PC2 accounting for 4.5% and 2.2% variation, respectively. 
Mixture modelling shows three distinct modes for the full data (Figure 4c), whereas there is a clear 

unimodal distribution for the filtered data (Figure 4d). This finding highlights the importance of 

pre-processing the data prior to our analysis. Kijas et al. (2012) suggests the absence of distinct 

lineages and strong historic mixing, in agreement with our observation of a unimodal distribution.  

 

CONCLUSIONS 
Our method based on the mixture modelling of SNP weights captures the genes responsible for 

the underlying population structure and potentially serves to establish a relationship between the 

evolutionary structure and phenotypic variation in livestock populations. 

 
                               (a) Cattle                                                  (b) Chicken 

 
                              (c) Cattle                                                  (d) Chicken 

Figure 1. (a)-(b) PCA of SNP genotypes resulting in distinct clusters of animals based 

on their lineages. (c)-(d) Mixture modelling of SNP weights along PC1. Red indicates 

the actual distribution of SNP weights, grey curves are the individual Normal 

distributions, and black curve is the mixture model obtained by combining the two 

Normal distributions based on the mixing proportions. 
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                         (a) Full dataset                                           (b) Filtered dataset 

     
                          (c) Full dataset                                         (d) Filtered dataset 

Figure 3. PCA and mixture modelling of SNP weights for the Sheep Hapmap data. 

The full and filtered datasets consist of 1,222 and 1,105 animals respectively. 
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SUMMARY 

As part of implementing a breeding program we aim to manage the numbers of parents 

selected, and the relationships between them, in order to manage genetic diversity.  However, this 

ignores the fact that some breeding candidates may recently have been widely used, leaving 

embryos and juveniles in the system that are not yet in the list of candidates, but which are likely 

to make future breeding contributions. Use of such candidates should be inhibited somewhat to 

avoid their over-representation in the program as a whole, leading to increased loss of diversity.  

A method to account for these prior contributions when implementing the breeding program is 

introduced, and indeed this makes notable impact to reduce loss of genetic diversity.  This is a 

more correct way to implement the breeding program, however the alternative of using parameters 

that drive the program in a more conservative (high diversity) direction had similar impact both on 
the rate of increase in inbreeding coefficient and on genetic response. 

Whatever method is used, it is advisable to test policy and parameters using simulation, to 

more confidently target an appropriate rate of increase in coancestry and inbreeding, in 

competition with genetic gains and other issues. 

 

INTRODUCTION 

Truncation selection on estimated breeding value is predicted to maximise genetic merit in the 

offspring generation.  However, this is generally not the best strategy for maximising genetic gain 

in the longer term, as lack of attention to genetic diversity will generally lead to reduced 

opportunity for genetic gains in later generations. 

Optimal Contributions Selection (OCS) provides a solution to this (eg. Meuwissen, 1997).  We 
aim to optimise the contribution of each individual to the breeding population, giving rewards not 

only for high genetic merit, but also for low relationship to the rest of the individuals selected. 

For this, we need to consider the relationship between each selection candidate and all other 

selection candidates of both sexes, in a numerator relationship matrix among candidates (A) or a 

genomic equivalent, or a hybrid of these.  From the selection decisions made we can calculate x, 

the vector of relative genetic contributions from each candidate, summing to ½ for each sex. The 

mean parental coancestry is x’Ax/2, and this is the measure of the mean relationship that we aim to 

keep low in order to keep genetic diversity high.  For this we want many small contributions in x.  

However, for high genetic gain (x’G, where G is the vector of EBVs or index values) we want to 

focus genetic contributions on the most meritorious animals, giving relatively few large 

contributions in x.  Overall, we aim to find the vector x that maximises x’G + λ.x’Ax/2, where λ is 

a negative weighting that determines the relative emphasis on genetic diversity.  Here we focus on 
mean parental coancestry, x’Ax/2. 

In scenarios where individuals can only be used as a parent at one mating round, we do not 

need to consider relationship with ancestors in the pedigree, because the prior contributions of 

these ancestors are accounted for in the pedigree of the current candidates.  In all other scenarios, 

any prior contributions in previous matings are accommodated if the progeny resulting from these 

matings are either permanently culled or included in x and A as current candidates.  However, if 

these progeny are not culled and are too young to be candidates – they are juveniles, or even 

embryos – then their potential future contributions need to be accommodated in some way. 

For example, if a bull that is a current candidate has recently been widely used, and has a large 
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number of juvenile and/or embryo progeny in the population, then there should be some inhibition 

on his further widespread use, and yet these progeny have no impact in x’Ax/2 as they are not 

represented in either x or A.  The same argument can be made eg. for a first-use bull whose brother 

or other relative has juveniles or embryos in the herd. 

This issue has been handled in the past by adding these juveniles and embryos in the list of 
candidates, but restricting their matings to other juveniles and embryos in “virtual matings” that 

are not of course invoked (Kinghorn et al, 2008).  This means that these animals and their 

relationships with real candidates are accommodated in calculation of parental coancestry.  

However, somewhat arbitrary decisions have to be made about factors such as the maximum 

numbers of matings to be allocated to them, and even how many embryos to generate for each 

pregnant female.   

An exception here may be when genomic and/or other information on juveniles is available, 

whereby these can be included as candidates in the main data file, with juvenile male x juvenile 

female Grouping set up such that juvenile mating results can be used for selection purposes, but 

without actual mating, as they are not sexually mature.  In this case, Committed Matings for adult 

selection candidates need only cover matings that have not yet resulted in birth of progeny entered 

in the main data file as juvenile candidates. 
 

MATERIALS AND METHODS 

This paper presents a more appropriate method of handling this issue of contributions from 

juveniles and embryos that are not represented in the current candidates.  Rather than add these 

animals to the list of candidates, the matings that gave rise to them are added to the list of matings 

to be made.  This means that their parents are allocated the status of candidates in the datafile, 

whether or not they are candidates for the current mating round, and the matings that gave rise to 

them are made a fixed part of the solution as “Committed Matings”. 

This has been implemented in the program Matesel, with detailed instructions at 

http://matesel.une.edu.au.   In addition to the main data file, the user supplies a list of “Committed 

Matings” that must be included in the solution.  The user can choose to include these previous 
matings in the declared constraints on usage of candidates at the current mating round – otherwise 

the program makes appropriate adjustments so that only current constraints need to be declared. 

To test this method, Matesel was used to make all selection decisions in a 20-year breeding 

program simulated using the program PopSim, developed from the version available within Genup 

(http://bkinghor.une.edu.au/genup.htm).  PopSim has recently been used in a similar manner by 

Cowling et al (2016), who give some detailed description. 

A breeding population typical of Bos Indicus cattle was simulated, the key features being 100 

females mated each year, bulls and cows first mated to drop progeny at 3 years of age, culling for 

age at 6 and 10 years for bulls and cows, mating group sizes constrained between 20 and 40 

females, random mate allocation, and BLUP EBVs leading to a multi-trait index.  Bulls and cows 

can be culled by Matesel at intermediate ages for reasons related to genetic merit and impact on 

diversity. 
In the Control treatments, no account was taken of the matings made by candidates in previous 

years, whereas in the CM (Committed Matings) treatments, previous matings that had not yet 

resulted in progeny of breeding age were accommodated as described above. 

The Target Degree mode of balancing genetic gain and genetic diversity was used in Matesel, 

with 0 degrees relating to full emphasis on genetic gain and 90 degrees relating to full emphasis on 

genetic diversity.  Treatment Control25 used 25 target degrees for a moderate outcome, and 

Control32.5 used 32.5 degrees for a more conservative outcome (more diversity at the cost of 

lower short-term genetic gain).  Treatments CM25 and CM17.5 used the Committed Matings 

approach with lower target degrees, for reasons that become apparent. 
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Figure 1. Mean parental coancestry by year over the four treatments 

 

 
Figure 2. Progeny mean true breeding value for the objective in dollars by year for the 

four treatments. 
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RESULTS AND DISCUSSION 

Figure 1 shows mean parental coancestry and figure 2 shows true breeding value in progeny 

for the breeding objective, over the 20 years of breeding.  All results are averages over 50 

replicates.   

Notice that the Control programs immediately show a higher level of coancestry at the start of 
the programs.  This is to be expected, as these treatments involve fewer candidates and hence a 

lower apparent effective population size.  The CM results are more correct, as they include 

essentially a full generation of individuals, from embryo to older parents, whereas the Control 

treatments exclude consideration of embryos and juveniles. 

However, what is more important, both here and in real breeding programs, is the rate of 

change in coancestry.  In particular, CM25 increases nearly 30% more slowly than Control25, 

showing the impact of accommodating the prior contributions involved. 

Figure 1 shows that this slower rate of increase in coancestry in CM25 is approximately 

matched by a more conservation control policy of 32.5 Target Degrees.  Moreover, the faster rate 

of increase in coancestry for Control25 is approximately matched by a more aggressive CM policy 

of 17.5 Target Degrees. 

Figure 2 shows that the genetic responses are higher and approximately equal for the 
treatments with higher rates of increase in coancestry (Control25 and CM17.5), and likewise, 

responses are lower and approximately equal for the treatments with lower rates of increase in 

coancestry (Control32.5 and CM25).  In the longer term we can expect genetic progress in the 

more conservative programs to benefit from increased conservation of genetic diversity. 

A simple conclusion is that, despite the use of the Committed Matings method being the 

correct thing to do, it is possible to not do this, but to compensate by adopting an appropriately 

more conservative policy, with a higher value for Target Degrees (or constraint to a lower mean 

parental coancestry if using that approach to manage coancestry).  This is perhaps understandable, 

as a more conservative policy operates not only on current matings, but also on all previous 

matings, and it seems that the impact on overall optimal contributions is appropriately balanced. 

What is “an appropriately more conservative policy”?   The actual level of coancestry is 
probably not so important – this depends critically on the amount and quality of pedigree and/or 

genomic information available, as well as on prior breeding policies.  We should predict the rate of 

change in coancestry over time, and yet this is very difficult to do for a real (multi-faceted) 

breeding program.  However, we can discover the rate of change in coancestry using simulation, as 

in this paper.   

The recommendation here is to discover what the rate of change in coancestry is as a function 

of parameters/policy chosen, and to choose parameters accordingly.  Under random mating, the 

rate of change in inbreeding coefficient is expected to be equal to the rate of change in coancestry, 

so choose a rate of change that fits your attitude to ΔF, in competition with genetic gain and other 

issues. 
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SUMMARY 

Machine learning methods have gained popularity dealing with high dimensionality, highly 

correlated structure, or “large P, small N” genomic data problems. The methods have been shown 

to be efficient in GWAS and candidate gene identification. However, the utility of methods in 

identifying a subset of single nucleotide polymorphism (SNP) for genomic prediction of breeding 

values has not been explored before. In this study, using 40,184 SNP genotypes and the live weight 

phenotypes from 1,097 Brahman cattle, we examined the power of two machine learning methods, 
Random Forests and Gradient Boosting Machine, in the identification of top 1,000 or 3,000 SNP 

and using them for building a genomic relationship matrix (GRM) for genomic prediction of 

breeding values. Our results clearly show that using the subsets of SNP identified by the two 

methods resulted in the improvement both in the heritability estimate and the genomic prediction 

accuracy.   

 

INTRODUCTION 

Machine learning methods have gained popularity dealing with high dimensionality, highly 

correlated structure, or “large P, small N” problems arising from large genomic data analyses. Two 

of these methods, Random Forests (RF; Breiman, 2001) and Gradient Boosting Machine (GBM; 

Friedman, 2001), have been shown to outperform the conventional GWAS methods in association 
mapping and genomic-wide prediction of estimated breeding values (GEBV) (Chen and Ishwaran 

2012; Lukbe et al. 2013; González-Recio et al. 2014; Waldmann 2016). However, the utility of these 

methods in identifying a subset of SNP to estimate GEBV has not been evaluated before. In this 

study, we examined the efficiency of RF and GBM for the identification of a subset of markers and 

tested these small panels using a GEBV approach. 

 

MATERIAL AND METHODS 

Data. We used a SNP dataset consisting of 40,184 SNP genotypes from 1,097 Brahman cattle 

from the Legacy Database of the CRC for Beef Genetic Technologies (www.beefcrc.com). The 

animals varying from 373 to 509 days old came from 57 contemporary groups and were measured 

for live weight (the average being 308.64 kg (± 38.85) with the range from 180 to 430 kg). A quality 

check of the marker data resulted in the removal of 2,102 SNP having MAF <0.01 or with missing 
genotypes due to full genotype requirement by the machine learning methods. A total of 38,082 SNP 

were used for the final analysis. Since machine learning methods are non-parametric approaches, 

they cannot directly fit fixed effects in the model to account for environmental effects. Therefore 

prior to any analysis, the phenotypic values were adjusted for the fixed effects of the contemporary 

group and age. The residuals from the linear model of analysis of variance were used as phenotype 

for the evaluation of the machine learning methods. 

 

Machine leaning methods – RF and GBM. Details of the RF method can be found in Breiman 

(2001). In brief, RF uses a bootstrapping method to randomly select a subset of animals as the 

http://www.beefcrc.com/
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training dataset (default being two third of the total number of animals), and a subset of SNP (default 

being a squared root of total number of SNP) to form a decision tree that splits the sampled 

individuals into two subsamples with different weight range values. The remaining individuals (one 

third) are then used as the validation dataset to determine the prediction error of the SNP tree on the 

phenotypes. The process repeats until a large number of decision trees are forming a forest (the 
parameter Ntree determines the size of a forest). Each individual decision tree building excise is 

independent to each other (with replacement). An individual SNP variable importance value (VIM) 

is determined by averaging the prediction error values of the SNP across all forest trees. GBM also 

generates multiple random samples to form trees, but subsequent samples always rely on the 

outcomes from the previous samples. It builds the trees iteratively by adding all “weak learners” – 

small trees with only a few SNP splits that predict the phenotypes with high bias but low variance 

(Lubke et al. 2013). Therefore, GBM reduces the prediction error by reducing bias through adding 

all the outcomes from a large number of models. Each method has its own parameter for measuring 

a SNP variable importance value (VIM). In RF, it is the %IncMSE (% increasing in mean squared 

error), while in GBM it is the Relative Influence - maximal cumulated estimated improvement in 

MSE. In both methods, the higher the VIM value, the more important the SNP is. The R libraries 

randomForest and gbm (https://www.rstudio.com/) were used for the analysis. The parameter Ntree 
was set as 2,000, the default values were used for RF and the learning rate of 0.1 for GBM.  

  

Identification of top SNP and Gene Ontology (GO) Enrichment Analysis. Based on the 

ranked SNP VIM values from RF and GBM, the top 1,000 and 3,000 SNP were selected. The sets 

of genes near the top SNP or all the SNP with positive VIM values were examined for biological 

processes using the Bos taurus Reference from the PANTHER program 

(http://www.pantherdb.org/). 

 

Construction of additive genomic relationship matrices using top SNPs for estimating genetic 

variances and genomic prediction of phenotypes. The additive genomic relationship matrix 

(GRM) was constructed using either 1,000 or 3,000 top SNPs from all animals, following the same 
method as in our chicken study (Li et al. 2016). An additive genomic model, fitting the GRM as 

random effect and the contemporary group and age as fixed effects, was then applied to estimate the 

genetic variance explained by each subset of top SNP (1,000 or 3,000). A random five-fold cross-

validation scheme was used, i.e. randomly splitting 1097 animals into 5 equal-size groups and each 

group (20% of the population) was in turn assigned with missing phenotypic values and used as the 

validation set. The prediction accuracy was calculated as the correlation between the GEBVs of the 

animals with no phenotypic values and the true phenotypes of the animals adjusted for fixed effects. 

The program Qxpak v5.02 (Perez-Enciso and Misztal 2011) was used for the analyses. 

 

RESULTS AND DISCUSSION  
Profiles of SNP VIM values from RF and GBM.  Figure 1 shows the distribution of the ranked 

SNP VIM values in RF and GBM. It can be seen that the majority of the SNP had very small or zero 
VIM values in RF and GBM. Of 38,082 SNP, 18,453 (48.5%) and 16,600 (43.6%) SNP were 

identified with the positive VIM values in RF and GBM, respectively. Between the two methods, 

there were 8,797 SNP in common. In RF, we also found a total of 6,660 SNP (17.5%) with negative 

VIM values, corresponding to the lower end of the distribution (Figure 1, RF graph). These negative 

values indicate that these SNP were problematic and should not be included in a prediction model. 

The reason was that the new prediction models using randomly permuted SNP positions on the 

decision trees had a much smaller mean squared error value (MSE) than the initial prediction model, 

hence a negative %InMSE value.  

 

https://www.rstudio.com/
http://www.pantherdb.org/
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Figure 1. The distribution of ranked SNP variable importance values from RF (%IncMSE) 

and GBM (Relative Influence). 

 

Gene enrichment analysis for SNP with positive VIM values from RF or GBM. When the 

sets of genes that were closest to the top 3,000 SNP or all the SNP with the positive VIM values 

were examined, we found that the top 3,000 SNP were primarily involved in the development, 

system development, visual perception, nervous system development and cellular activity (p < 

0.0001). The evidence was much stronger for the genes near all the SNP with positive VIM, 

involving the growth pathways of development process (RF, P=1.54E-07; GBM: P= 2.09E-08) and 

system development (RF: P = 5.38E-07; GBM: P = 2.05E-07).  

Both RF and GBM identified the same SNP with highest VIM value. It was ARS-BFGL-NGS-
1712 mapped to gene BMPER (BMP binding Endothelial Regulator) on BTA4.  A literature search 

found that BMPER played vital roles in adipocyte differentiation, fat development and energy 

balance in human and mouse (Zhao et al. 2015). The SNP was a very good candidate for selecting 

for increased body weight and rump length in cattle breeding (Zhao et al. 2015).  

 

Table 1. Estimates of genetic variance and heritability (h2) for live weight using different 

subsets of top ranking SNP identified by RF and GBM with additive genomic model 

 

Method No of Markers Genetic Variance Residual Variance h2 

RF 1,000 332.60 256.78 0.565 

 3,000 373.64 233.56 0.616 

GBM 1,000 402.99 204.22 0.664 

 3,000 417.05 184.08 0.694 

All SNP 38,082 391.29 313.25 0.555 

 

Estimates of genetic variance and heritability (h2). Table 1 shows the REML estimates of 
genetic variance and h2 for a subset of 1,000 or 3,000 top SNP identified by RF or GBM. Equivalent 

analysis using all 38,082 SNP are also listed in Table 1. It can be seen that there was a significant 

improvement in the h2 estimate when the top 3,000 SNP from either RF or GBM were used in an 

additive genomic model. GBM performed particularly well in both 1,000 or 3,000 SNP cases, where 

the genetic variance estimates were higher than using all 38,082 SNP. Both RF and GBM captured 

complex SNP-SNP interactions, hence, resulted in an increased genetic variance. 
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Table 2. Prediction accuracy of GEBV for live weight using the top 1,000 or 3,000 SNP 

identified by RF and GBM methods  

 

Methods R1* R2 R3 R4 R5 Average  

RF1000 0.362 0.449 0.422 0.528 0.477 0.448  

RF3000 0.321 0.408 0.421 0.443 0.440 0.407  

Average 0.353 0.441 0.404 0.482 0.461 0.428  

GBM1000 0.429 0.474 0.546 0.518 0.551 0.504  

GBM3000 0.433 0.460 0.469 0.548 0.541 0.490  

Average 0.418 0.463 0.476 0.501 0.510 0.474  

All SNP 0.134 0.200 0.209 0.275 0.228 0.209  

* Randomly selected 20% animals without phenotypic values 

  

Accuracy of GEBV. Table 2 shows the accuracy of GEBV with a subset of SNP markers using 

an additive genomic model and a random split five-fold cross-validation scheme. In comparison to 

the additive model with all available SNP, surprisingly, the average prediction accuracy from either 

top 1,000 or 3,000 SNP outperformed the whole SNP panel, regardless the sources of the SNP 

chosen from RF or GBM. The prediction accuracy values from RF and GBM were double the 

amount of those of all SNP, ranged from 0.41–0.45 in RF and 0.43–0.50 in GBM.   

Applications of large-scale SNP panels for genomic selection programs have a mixed success 
in livestock species (Waldmann 2016). While in the dairy cattle industry the genomic prediction of 

phenotypic values for production traits has achieved high success, the accuracy of GEBVs in beef 

cattle has been low (Waldmann 2016). We know from large number of GWAS and genomic 

prediction studies that the majority of SNP had little or no effects on phenotypes at all. This raises 

the question whether there is a benefit to use only small panel of SNP for genomic prediction? Our 

results here indicate that the machine learning methods, especially GBM, are efficient methods in 

identifying a subset of SNP with direct link to the candidate genes affecting the growth trait. It is 

possible to build a low density SNP panel for a genomic selection program.  

In this study, we only examined a phenotype of moderate heritability in beef cattle. Further 

studies, using systematic approaches, are needed to validate the efficiency of machine learning 

methods in building low density SNP panels for different species or populations, optimal subset of 

SNPs and a range of phenotypes with different heritability values.   
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SUMMARY 

Sequence data may potentially increase prediction accuracy compared to medium or high 

density (HD) SNP markers, by containing causative mutations directly rather than relying on 

linkage disequilibrium between markers and causative mutations. Besides causative mutations, 

sequence data contains a much larger number of variants that have no effect on the analysed trait. 

A Bayesian variable selection model could be used to assign large effects only to the causative 

mutations. In practice, however, analysing millions of sequence variants is computationally 
challenging. Therefore, we tested an approach to split up the analysis per chromosome, correcting 

for all other chromosomes using HD estimates, in a simulation study, using a faster, hybrid version 

of the Bayes R variable selection model. While directly computing breeding values based on 

effects estimated per chromosome resulted in a reduced accuracy, reanalysing all variants that 

were selected per chromosome resulted in a similar accuracy to analysing all variants 

simultaneously, especially when HD variants were included. 

 

INTRODUCTION 

Sequence data can potentially increase prediction accuracy compared to medium or high 

density SNP markers, by containing causative mutations directly rather than relying on linkage 

disequilibrium (LD) between markers and causative mutations. However, the majority of sequence 
variants have no effect and can introduce noise into the prediction. In theory, Bayesian variable 

selection models could assign larger effects to the causative mutations, and zero effects to the rest. 

In practice, correctly estimating the effects of millions of variants in high LD with each other is 

computationally challenging, and the results of genomic prediction using sequence data so far have 

been variable. Using a Bayesian variable selection model to analyse all variants simultaneously, 

van Binsbergen et al. (2015) reported a slightly lower accuracy with full sequence data than with 

high density (HD) genotypes. Other approaches, using various methods to preselect variants, show 

sometimes an increase in accuracy (Brøndum et al. 2015; Macleod et al. 2016; van den Berg et al. 

2016), while others found no increase in accuracy but increased bias (Calus et al., 2016; Veerkamp 

et al., 2016).  

Our objective was to find an approach to approximate genomic prediction of whole genome 

sequence data with a Bayesian variable selection model. To parallelise the analysis, we tested 
analysing chromosomes separately after correcting the phenotypes for all other chromosomes 

using HD estimates. Results obtained per chromosome were either directly used to compute 

breeding values, or used to preselect variants for subsequent analysis with all chromosomes 

together. The analysis with all selected variants was performed either with or without the HD 

variants. A dataset with a limited number of realised imputed sequence variants and simulated 

phenotypes was used, to enable comparison with prediction using all sequence variants at once.  

 

MATERIALS AND METHODS 

The dataset used was the AUS-Sim simulated dataset described in more detail by Macleod et 
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al. (2016). The dataset contained realised genotypes for 3,047 Holstein bulls, 4,942 Holstein cows, 

770 Jersey bulls, 1,553 Jersey cows, 869 Red Holstein bulls, 741 Australian Red cows and 114 

Australian Red bulls. The data was split up in a reference population containing all Holstein and 

Jersey individuals, and a validation population containing all Australian Red and Red Holstein 

individuals. Pedigree information for all individuals was obtained from the Australian Dairy Herd 
Improvement Scheme (ADHIS) and Interbull.  

Two sets of genotypes were used, the HD set containing genotypes for 600,641 SNP on the 

Illumina BovineHD beadChip, and the SEQ set, containing 994,019 imputed sequence variants 

selected based on their function annotations. The HD genotypes were either obtained by direct 

genotyping, or imputation from the Illumina BovineSNP50 chip. The SEQ set contained 45,026 

non-synonymous coding variants, 578,734 variants within 5 Kb upstream and downstream of 

genes, or in three/five prime untranslated genic regions, and 370,259 variants on the HD chip.   

Quantitative trait loci (QTL) were simulated by randomly sampling 4,000 variants from all 

SEQ variants. QTL effects were sampled from three normal distributions with a mean of zero and 

variances of 0.0001 2
g , 0.001 2

g   and 0.01 2
g  for 3,485 small, 500 medium and 15 large QTL, 

respectively, where 2
g  is the additive genetic variance. Subsequently, the true breeding value 

(TBV) of individual j was computed as 



4000

1i

iijj axTBV , where ijx is the standardised genotype 

of individual j for QTL i, and ia  the additive effect of QTL i. An environmental effect was 

sampled from a normal distribution and added to the TBV to obtain a phenotype with a heritability 

of 0.6. A Holstein breed effect was sampled from N(10,1) and added to the TBV for all Holstein 

individuals.  

Genomic prediction was done using the hybrid version of the Bayes R mixture model 

described by Wang et al. (2016). This assumes that variant effects were drawn from four 

distributions with )0,0( 2
gN  , )0001.0,0( 2

gN  , )001.0,0( 2
gN   and )01.0,0( 2

gN  . The hybrid 

model first uses an Expectation-Maximization (EM) model to estimate variant effects, the 

proportion of variants assigned to each of the four distributions, fixed effects (breed and sex), 

polygenic effects and residual variance. Subsequently, the converged estimates from the EM 

module were used as starting values for a Monte Carlo Markov Chain (MCMC) module that was 

run for 10,000 iterations. The analysis either included all variants for the full MCMC chain, or 

dropped a proportion of variants directly after the EM part, after 200 MCMC iterations, or after 

10,000 MCMC iterations based on their probability to be included in any of the non-zero 

distributions. After some variants were dropped from the model another 10,000 iterations of the 

MCMC chain were performed. The mixing proportions at the moment of dropping were added to 
the prior of the mixing proportions for the remaining analysis. The analysis was done with either 

all variants together (FULL), split up per chromosome (CHR), with variants selected per 

chromosome but rerun with all chromosomes together (KEPT), and KEPT but including the HD 

variants (KEPT+HD). For FULL and CHR, the prior for the mixing proportions was [1,1,1,1], 

while for the KEPT and KEPT+HD, the posterior estimate of the mixing proportions obtained by 

FULL was used. Accuracies were calculated as the correlation between TBVs and GEBVs, and 

bias was calculated as the regression of TBVs on GEBVs. 

 

RESULTS AND DISCUSSION 

The accuracy of all scenarios using sequence data was higher than that using the HD 

genotypes, as shown in Table 1. For all scenarios, the accuracy for Red Holstein was larger than 
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that for Australian Red. This was expected, as Red Holstein individuals are closer related to the 

Holstein population in the reference population than the Australian Red individuals. The accuracy 

obtained with the hybrid, analysing all sequence variants simultaneously, corresponded with the 

accuracy Macleod et al. (2016) obtained with the same dataset, using Bayes R. This confirms that, 

in agreement with Wang et al. (2016), the hybrid is a good, faster alternative for Bayes R. Table 1 
shows the results of dropping some of the variants after 10,000 MCMC iterations and then running 

10,000 additional iterations. When all variants were analysed together, dropping up to 90% of the 

variants had minimal effect on the accuracy. However, as shown in Figure 1, when variants were 

dropped immediately after the EM or after only 200 MCMC iterations the reduction in accuracy 

increased when more variants were dropped, especially for Australian Red. Dropping variants after 

10,000 MCMC iterations does, however, increase the computing time because 10,000 additional 

iterations were run after dropping some variants. Therefore, these results show that while this 

strategy can be used to select variants associated with a trait, it does not help to reduce the 

computing time. 

 

Table 1. Accuracy and bias of genomic prediction.  

 

   Accuracy Bias 

Data Analysis DropProp AusRed RedHol AusRed RedHol 

HD FULL 0.0 0.45 0.64 0.83 0.99 
SEQ FULL 0.0 0.60 0.66 1.07 0.97 
  0.7 0.59 0.66 1.03 0.96 
  0.9 0.59 0.66 1.01 0.96 
SEQ CHR 0.0 0.56 0.65 0.97 0.93 
  0.7 0.56 0.65 0.97 0.93 

  0.9 0.56 0.65 0.96 0.93 
SEQ KEPT 0.7 0.59 0.65 1.03 0.94 
  0.9 0.59 0.65 1.01 0.93 
SEQ+HD KEPT+HD 0.7 0.60 0.66 1.04 0.94 
  0.9 0.60 0.67 1.02 0.95 

HD = high density genotypes, SEQ = sequence variants, FULL =  all chromosomes in a single analysis, CHR 
= separate analysis for each chromosome, KEPT = variants selected by CHR reanalysed together, KEPT + 

HD = same as KEPT but including HD genotypes; dropProp = proportion of variants that are dropped after 
10,000 MCMC iterations, ausRed = Australian Red, redHol = red Holstein 
 

  
Figure 1. Reduction in prediction accuracy a function of the proportion of dropped variants. 

Circles = variants dropped after EM, X = variants dropped after 200 MCMC iterations, triangle = 

variants dropped after 10,000 MCMC iterations, black = Red Holstein, red = Australian Red.  
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Splitting up the analysis per chromosome resulted in a large reduction in elapsed time required to 

complete the analysis (between 1.9 and 4.5 hours per chromosome, instead of 55 hours when all 

chromosomes were analysed together), but also reduced the accuracy. Using the HD variants to 

correct for the rest of the genome assumes independence between effects on chromosomes, while 

in reality, there could be LD across chromosomes, and the sum of small effects on different 
chromosomes can contribute to a polygenic effect.  

Selecting variants one chromosome at a time and then analysing them all together resulted in 

an accuracy almost equal to analysing all sequence variants simultaneously (the KEPT row in 

Table 1). There was, however, still a slight reduction in accuracy compared to the analysis where 

no variants were dropped. The vast majority of variants that were dropped would have ended up in 

the distributions with zero or very small effects. Therefore, they may contribute to a polygenic 

effect rather than be linked to specific QTL. In the analysis including both the variants selected per 

chromosome, as well as HD variants, the accuracy increased slightly and was equal to that 

obtained using all sequence variants.  

Even though the results in this simulation are rather positive, in reality, the advantage of 

sequence data is likely to be smaller. For example, in the simulation, it was assumed that all QTL 

are segregating across breeds and have the same effects across breeds. In reality, only a proportion 
of variants segregates across breeds (Raven et al. 2014), and it is likely that their effects are not 

exactly the same, for example due to differences in minor allele frequencies (MAF). Another 

factor that could reduce the advantage of sequence data over high or medium density is imputation 

accuracy. Most sequences are obtained by imputation rather than direct sequencing, and this 

introduces errors in the genotypes. Furthermore, sequences used in this simulation were 

preselected based on functional annotations, strongly reducing the number of variants. Reducing 

the number of variants made it possible to compare analysing all variants simultaneously with 

strategies to split up the analyses. When these strategies are applied to datasets containing millions 

of variants, the large number of variants may induce problems to accurately estimate effects 

simultaneously, especially for variants that are in high LD with each other.  

Our analyses show that preselecting sequence variants with a Bayesian variable selection 
model per chromosome and subsequently using those variants for genomic prediction, preferably 

combined with genome wide makers, could be an alternative to analysing full sequence data 

directly.  
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SUMMARY 

We describe an analytical pipeline to exploit the results from RNA sequencing (RNA-Seq) 

experiments combining a series of processes from data normalization to network inference. The 

pipeline makes use of numerical approaches aimed at identifying key regulators via the regulatory 

impact factor (Reverter et al. 2010) metrics. It also employs the partial correlation and an 

information theory (Reverter and Chan 2008) for the identification of significant edges in the 

construction of gene co-expression networks. Key nodes in the network include differentially 

expressed genes, transcription factors, tissue specific genes as well as genes harboring SNPs found 

to be associated with the phenotype(s) of interest. The pipeline has already been successfully 
employed in two beef cattle studies, dealing with the onset of puberty and feed efficiency. In the 

present paper, we describe a pipeline to analyze RNA-Seq data, focus on relevant genes, generate 

gene co-expression networks and identify emerging clusters within the network to provide new 

insight about the subject matter under scrutiny.  

 

INTRODUCTION 

Gene expression is the process which transferring the information of the gene into the 

production of a functional product. Genes may be expressed at specific tissue or only at certain 

physiological state in the animal life cycle. By measuring the abundance of gene products (RNA 

transcripts) in a tissue at a specific physiological state, the gene expression rate can be evaluated. 

Using gene expression analysis to identify candidate genes and biomarkers could ultimately 
enhance the accuracies of genomic prediction for key traits.  

RNA sequencing (RNA-Seq) is a next-generation sequencing technique developed in 2008 for 

the analysis of gene expression across the entire transcriptome (Mortazavi et al. 2008; Wang et al. 

2009). RNA-Seq was first applied in model organisms including Arabidopsis (Lister et al. 2008), 

yeast (Nagalakshmi et al. 2008) and mouse (Mortazavi et al. 2008), but has rapidly increased its 

popularity to a number of other organisms including human (Sultan et al. 2008) and bovine 

(Huang and Khatib 2010). RNA-seq is high-throughput and the analysis of large-scale datasets has 

a wide range of applications, however, every RNA-seq experimental scenario may have different 

optimal methods for analyses. New approaches are currently being developed (Han et al. 2015). 

Here we provide a step-by-step recipe on how to use the pipeline to analyze RNA-Seq data, focus 

on relevant genes, generate gene co-expression networks and identify emerging clusters within the 

network to provide insight about the subject matter under scrutiny. Without entering in detailed 
numerical intricacies (published elsewhere and cited herein), we discuss the essential principles of 

the analytical methods of each step in the process. 

 

METHODS 

In what follows, we provide a step-by-step recipe on how to exploit RNA-Seq data in order to 

identify differential expressed genes, key regulatory genes and generate gene co-expression 

network, in combination with algorithms such as RIF (Reverter et al. 2010) and PCIT (Reverter 

and Chan 2008). Figure 1 provides a schematic of the flow chart for this analytical pipeline. 
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Generally, the pipeline used for the analysis of multi-omics data requires a series of four steps as 

follows: 

Step 1 – RNA-Seq Experimental Resource. In order to infer differentially expressed genes and 

gene co-expression networks in our multi-omics pipeline, the following resources are required: 1) 

the RNA-Seq data comprising at least two experimental conditions; 2) the experiment data 
conducting at least in two tissues. In the puberty example, the two experimental conditions would 

be the pre- or post-puberty stages; while the reproductive tissues of interest could include 

hypothalamus, pituitary, ovaries and uterus, as well as tissues related to the onset of puberty such 

as liver, fat and muscle. Other experimental setting could include healthy versus disease states, 

various breeds and/or various time points as conditions.  

Step 2 – Normalization via Mixed-Model Equations. The ability of mixed-models in terms of 

their power to accommodate covariance structures in various forms is well documented in the 

animal breeding and genetics literature. Similarly, mixed-models are the ideal tool for the 

normalization of gene expression data (Reverter et al. 2005). Aiming for parsimony the simplest 

model will contain the library as the only fixed effect, and the interaction effect of gene by animal 

by condition by tissue and the residual as the only random effects: 

 
  Y = Library + Gene + Gene*Animal*Condition*Tissue + Error 

 

The solution of the Gene*Animal*Condition*Tissue (GACT) interaction are used as the 

normalized mean expression (NME) of each gene in each animal and tissue. However, 

combinations of lower order gene interactions, such as Gene*Animal, Gene*Condition and 

Gene*Tissue are also possible. Additionally, the GACT solutions for all the animals from the same 

condition could be averaged to obtain the NME of each gene in each condition and tissue. The 

NME values will provide the basis for the computation of differential expression and tissue-

specificity.  

Step 3 – Selection of ‘Relevant’ Genes. To facilitate the task of generating and analysing the 

resulting network, only a subset of genes will be used according to the following four categories: 
differentially expressed (DE) genes, tissue-specific (TS) genes, genes harbouring SNP reported to 

be associated with a phenotype or phenotypes of relevance, and significant regulators such as 

transcription factors (TF). Next, we briefly describe the way in which each category is identified. 

Differentially expressed (DE) genes. Typically, the contrast of interest will be comprised of the 

(possibly differential) expression of a given gene in a given tissue across the two (or more) 

conditions under study. These can be obtained directly from the NME and the statistical inference 

on the contrast performed based on a number of approaches of which a simple t-test is quite 

possibly optimal, preferably after correction for multiple testing using either Bonferroni or 

(preferably) Benjamini and Hochberg methods (both described in (Benjamini and Hochberg 

1995)). 

Tissue specificity. Similarly, the NME can be used to reveal the expression of each gene in each 

tissue and then compute the proportion of a gene’s total expression in each of the tissues (ie. based 
on the NME of a gene in a tissue divided by the sum of the NME of the same gene summed across 

all tissues). This could be done either within or across the two (or more) conditions under study. In 

doing so, tissue-specific (TS) genes will be identified from those genes whose expression in a 

given gene is higher than in any other tissue by a particular amount such as fold-based bearing in 

mind that a gene can be TS for one tissue only. Additionally, using comparative genomics from 

human studies, we can source the identity of TS genes from the Tissue-specific Gene Expression 

and Regulation database (TIGER: http://bioinfo.wilmer.jhu.edu/tiger/). 

Genes harbouring associated SNP. Today there is a plethora of GWAS in the literature quite 

possibly studying a condition similar (even identical) to the one in our current study. The results 

http://bioinfo.wilmer.jhu.edu/tiger/
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from these studies can be mined to retrieve the genes surveyed in our RNA-Seq study that are 

reported to harbour SNP associated with a phenotype or condition similar or preferably identical to 

the one in our current study. 

 

 

 

 

 

 

Figure 1. Flow chart of the pipeline for the RNA sequencing analysis (left) and illustrations 

adapted from Canovas et al. (2014) in the context of the onset of puberty in Brangus heifers 

 

Key regulators. In order to identify the regulators (not necessarily TF) present among the genes 

surveyed in our RNA-Seq study, we mine to the Animal Transcription Factor Database 

(http://www.bioguo.org/AnimalTFDB/). Among these, we define as significant or “key” regulators 

those with statistically significant RIF metrics (using DE, TS and SNP harbouring genes as 

targets) and/or those with binding motif in the promoter region of DE, TS and/or SNP harbouring 

genes. In more detail, RIF comprises a set of two metrics designing to evaluate the regulatory 

power of molecules by exploring their differential connectivity to other influential genes (eg. those 

differentially expressed) in two contrasting conditions of interest (eg. pre- and post-puberty). 
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Step 4 – Network Inference and Visualisation Analysis. 

For the network inference, we use the DE, TS, key TF and SNP harbouring genes as nodes and 

significant connections are identified using the partial correlation and information theory (PCIT) 

algorithm either through the original FORTRAN90 source code (Reverter and Chan 2008) or 

through an R package (Watson-Haigh et al. 2010). The PCIT exploits the twin concepts of partial 
correlation and mutual information. In brief, PCIT ascertain the significance of a given correlation 

between 2 entities (e.g., genes or network nodes) after accounting for all other genes in the dataset.  

Importantly, the output from PCIT can be viewed with Cytoscape (Shannon et al. 2003), a 

software program for analysing and visualizing gene co-expression network. In order to 

characterize network features, many Cytoscape plug-ins are available. Of these plug-ins, we 

recommend MCODE (Bader and Hogue 2003) to identify highly interconnected gene clusters, and 

BINGO (Maere et al. 2005) to determine which Gene Ontology terms are significantly 

overrepresented in a set of clustered genes. Hopefully, these clusters may have biological 

significance within the context of the phenotype under study. 

One final process in the analysis of the resulting network is to identify the best trio of TF among 

those spanning the majority of the network topology. To this end, we search for TF with lots of 

connections in the network but few in common as these indicate redundancy. 
 

CONCLUSIONS 

The biological complexity and the rapid accumulation of publicly data arise the need to 

develop efficient tools for large-scale multi-dimensional data analysis. We conclude that the 

proposed analytical pipeline is a useful procedure providing an opportunity screen and identify key 

regulatory genes as well as generate regulatory networks with predictive power for the phenotype 

under investigation. Therefore, it may also be a significant tool for integrating different RNA-seq 

dataset and different levels omics data in order to investigate the complexity of biological subjects. 
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SUMMARY 

Brisket disease, also termed high altitude disease (HAD), has been observed for a century in 

beef production systems at altitudes > 1,600 m. This disease is often diagnosed as cattle that died 

of right heart failure; however, there is limited data collection for this trait. Pulmonary arterial 

pressure (PAP) is an indicator trait that can be used to assess pulmonary hypertension. Cattle with 
PAP values ≤ 41 mmHg are considered as low risk of developing HAD, whereas cattle with values 

ranging from 42 to 49 mmHg are considered moderate and those with values ≥ 50 mmHg are 

considered high risk. This trait has moderate heritability and the phenotype and EPD are used in 

yearling bull and heifer selection programs. Multi-omics approaches involving SNP-chip 

genotypes and RNA-sequence gene expression levels indicate that yearling PAP is very polygenic 

and influenced by gene-pathways of inflammation, tissue remodeling, and metabolism; therefore, 

these results suggest that this trait could be improved with genomic selection. Recently, late 

feedlot death in fattening cattle at altitudes < 1,600 m has been observed with etiology of right and 

left heart failure. This finding adds complexity to understanding brisket disease and challenges the 

designing of breeding programs for healthy cattle. 

 

INTRODUCTION 

High altitude disease (HAD) has been a problem in beef cattle production systems within the 

Rocky Mountain region of the United States for approximately a century (Glover and Newsom 

1917). This disease is commonly known as “Brisket Disease” due to the swelling of this 

anatomical region. The swelling is a result of the thoracic cavity and pericardium filling with fluid 

when an animal experiences the hypoxia-induced physiological cascade that leads to right heart 

failure. Economic losses associated with morbidity and mortality of cattle in response to this 

disease have been documented in several reports, despite the incidence being relatively low (< 5%) 

in native cattle. However, the incidence of this disease can expand to levels of approximately 40% 

in cattle not adapted to altitudes > 1,600 m (Will and Alexander 1970; Salman et al. 1991; Holt 

and Callan, 2007). High altitude disease is caused by hypoxia-induced pulmonary hypertension; 

however, collection of the true phenotype is often impossible in extensive pastures of mountain 
beef production systems; consequently, cattle are screened for disease susceptibility (i.e., risk) 

using an indicator trait, mean pulmonary arterial pressure (mPAP). This hemodynamic metric 

reflects the steady-state resistance to blood flow experienced by the right ventricle and a greater 

pressure, measured in mmHg, indicates greater pulmonary arterial resistance to flow (Holt and 

Callan 2007).  

Mean PAP is a moderately heritable trait in growing Angus cattle (h2 of 0.26 to 0.46; Crawford 

et al. 2016). Most cattle that are measured for this phenotype are yearlings (i.e., ~365 days of age) 

and British and Continental Bos taurus breeds although it should be noted that the neonatal calf is 

also very sensitive to hypoxia (for review: Stenmark et al. 2013). Since yearling mPAP is the most 
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common phenotype used to determine if cattle are tolerant of hypoxia, seedstock producers in high 

altitude production systems use this information in sire selection and heifer replacement programs. 

Expected progeny difference (EPD) for mPAP has been estimated for several breeding programs 

in the Western United States; however; breed association sponsored EPD for this trait are currently 

limited due to need for development of standardized data collection programs for this specific trait 
and due to the requirement that cattle be tested while physically residing at these elevations. 

Genomic selection provides opportunity to improve accuracy of EPD and provide breeding 

values for traits that are difficult to measure, if ample data can be collected for training processes 

(Garrick and Fernando 2014). Therefore, it is very logical to suggest that genomic selection is a 

viable approach to ameliorate HAD. This review will describe the efforts of the research team at 

the Colorado State University Beef Improvement Center to combat HAD.  

A more recent occurrence challenging our understanding of brisket disease in mountain 

production systems is the observation of the pulmonary hypertension and heart failure in fattening 

feedlot cattle (Neary et al. 2015ab). This is a growing concern to the feedlot segment of the beef 

industry that exist on what is known as the “Great-Plains” of North America, which are altitudes < 

1,600 m (i.e., not so high altitude). This review will also describe what is becoming known as “late 

feedlot death” as to provide perspective as to the physiological and production challenges that 
hypoxia is causing beef production systems in the United States. 

 

HIGH ALTITUDE DISEASE AND PULMONARY ARTERIAL PRESSURE 

High altitude disease is recognized by the swelling of the brisket in live cattle; however, if the 

animal perishes, then postmortem evaluation of the organs in the thoracic cavity reveals 

malformation (i.e., enlargement) of the right ventricle of the heart and several anomalies of the 

pulmonary artery and lungs. As a consequence of restrictive-remodeling of the pulmonary artery, 

the liver will develop a unique nutmeg color. The World Health Organization classifies this form 

of pulmonary artery hypertension in people as Group 3. The phenotype of HAD in cattle can be 

confused with consequences of bronchiopneumonia or other respiratory infections that may have 

caused or exacerbated an animal’s hypoxic state (Neary et al. 2013). There is no data collection 
process for the trait of HAD. This is primarily due to limited access to cattle in extensive and 

rugged pastures in mountainous beef production systems. Data collection from cattle in pastures 

with this topography has also led us to also study genetics of grazing distribution (Bailey et al. 

2015).   

Because of the challenges associated with collecting the phenotype of HAD, mPAP is used as 

an indicator trait to determine if cattle are tolerant of the hypoxic conditions related to increasing 

altitude. Mean PAP is estimated from the collection of systolic and diastolic PAP measured within 

the pulmonary artery. These measures are performed on cattle in a squeeze-chute (crush) by a 

licensed veterinarian that developed these specific skills. To effectively measure this phenotype, it 

is recommended that the cattle reside at an elevation greater than 1,500 m for at least 3 weeks. It 

should be noted that this phenotype is also influenced by sources of variation such as breed, 

gender, pregnancy, age, elevation, concurrent and (or) previous illness, environmental conditions, 
etc. (Holt and Callan 2007).  

In the Rocky Mountain region of the United States, mPAP is annually measured on > 10,000 

replacement bulls and heifers. Many beef producers use the raw phenotype and the following 

categories to cull high risk cattle. Specifically, cattle with PAP values ≤ 41 mmHg are considered 

low risk of developing HAD, whereas cattle with values ranging from 42 to 49 mmHg are 

considered moderate and those with values ≥ 50 mmHg are considered high risk (Holt and Callan, 

2007). Colorado State University Department of Animal Sciences manages a research facility to 

study performance and adaptability of Angus cattle in a high elevation beef production system. 

This research facility is known as the Colorado State University Beef Improvement Center (i.e., 
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Rouse Angus Ranch near Riverside Wyoming) This facility a seedstock and cow/calf operation 

that raises its own replacement females, has grazing lands that range from 2200 to 2800 m in 

elevation, and supports 430 mother cows and associated animals (e.g., bulls, replacement heifers, 

steers, etc.). This breeding program uses estrous synchronization and artificial insemination (AI) 

technologies to coordinate a progeny testing program involving the companies of Genex, 
American Breeder Services, and Select Sires. Each of these companies contributes bulls that they 

want to evaluate for tolerance to high altitude. In the past 15 years, > 300 Angus AI sires have 

been mated in this program. There are several groups of Angus cattle from the Rouse Angus 

breeding program described in Table 1. The distribution of the mPAP data from this herd appears 

to have an out of proportion and non-Gaussian distribution of elevated pressures (Figure 1). 

Therefore, approximately 50.8% of the cattle would be categorized as low risk, 38.1% as moderate 

risk, and 11.1% as high risk for developing HAD.  

 

 
 

In addition to the mPAP data from Rouse Angus cattle, Table 1 also presents results from 

additional groups of cattle and species. Note that grazing crossbred cows sampled at sea-level have 

PAP values approximately 9 mmHg higher than healthy humans and other large ruminants thought 

to be adapted to high altitude (i.e., American Bison and Yak)Also, the two groups of yearling bulls 

and fattening steers, which would typically be gaining 1.5 kg/day of body weight, have 

substantially higher PAP values than other types of animals. These data provide evidence to 

suggest that cattle have higher PAP than most animals and these values increase when the animals 
are fed high-gain diets. It should also be noted that the fattening Angus steers in the first row have 

PAP values within the range as people suffering from hypertension described in the last row of the 

data; therefore, providing validation evidence that mPAP is effective indicator trait for HADThe 

health consequences of mPAP in these fattening steers will be described further in the section 

titled “Late Feedlot Death”.  

 

HERITABILITY AND EXPECTED PROGENY DIFFERENCE 

Mean PAP was reported to be a trait of moderate (h2 = 0.34) to high (h2 = 0.46) heritability 

using data from a registered Angus herd in Carbondale Colorado (elevation 1,981 m; Enns et al. 

1992; Shirley et al. 2008). Using data from the Rouse Angus herd, which are purebred cattle, but 

not registered, a moderate (h2 = 0.26) heritability was estimated using records from 1993 to 2014 
(n = 5,776; bulls and heifers; Crawford et al. 2016). Zeng (2016) reported similar results using 

bull, heifer, and steer data, which also included the 2015 calf crop from this breeding program. A 

genetic correlation of 0.67 was observed between yearling (365 days of age) and weaning (205 

days of age) in mPAP in the Dissertation of Zeng (2016). Slight to moderate, and positive genetic 

correlations (≤ 0.22) were observed between growth traits and yearling mPAP in these two studies; 

however, stronger relationships (≤ 0.50) were reported by Shirley et al. (2008), but the PAP values 

in that study were collected at weaning. Nonetheless, the positive relationships between growth 

traits and PAP values could be unfavorable for overall animal health with aggressive selection for 

growth.  

Histogram of mPAP (mmHg, x-axis) in 

yearling Angus bulls, heifers, and steers 

(n = 5,659) studied at the Colorado Beef 

Improvement Center (i.e., Rouse Angus 

Ranch; elevation 2,200 m; Zeng, 2016). 

The y-axis is the percentage (density) of 

the number of animals at each level of 

the mPAP phenotype.  
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Colorado State University’s Center for Genetic Evaluation of Livestock has calculated EPD for 

PAP for several cattle breeding programs located in the western mountainous states of the United 

States. For the two Angus breeding programs described in the previous paragraph, genetic trend 

was slight. This is most likely a result of the unique distribution of the numeric trait of PAP 

(Figure 1), the continuous introduction of new sires through the progeny test program, and (or) a 
selection program that typically only culls medium and high risk animals. In general, 90% of the 

animals will have an EPD ranging -4 to +4, with the remaining 10% increasing up to +19 mmHg. 

The underlying physiology of this trait and its interaction with altitude suggest that there is likely a 

limit in genetic reduction of PAP; therefore, Zeng (2016) conducted research evaluating genetic 

correlations among PAP and growth traits, heritability, and EPD using the categorical veterinary 

risk descriptions of PAP (i.e., low, moderate, and high)These genetic correlations and heritability 

estimates were calculated using a threshold model that assumed a continuous underlying normal 

distribution of liabilities. The overall results of this effort were very similar to those obtained using 

the raw phenotypes. The EPD from the threshold models were converted to a probability scale. 

These types of EPD are often difficult for the beef producers to interpret; therefore, the decision 

was made to continue to calculate the EPD using the raw data as the breeders and bull buyers in 

this region of the world are very familiar with the phenotype of PAP, which is expressed in the 
units of mmHg.  

 

MULTIOMICS STUDY OF PULMONARY ARTERIAL PRESSURE 

Pulmonary arterial pressure data is currently being used for EPD calculations of traits 

indicative of tolerance to high altitude in cattle. There are no data collection systems for incidence 

of high altitude disease as collection of “death” data is difficult in these extensive environments 

where predators and topography may mean mortalities are never observed. To date, 3,000 cattle 

from the Rouse Angus herd have been high density genotyped. Sixty-six Angus animals have been 

genotyped with the BovineSNPHD (~777,000 SNP) and the rest with BovineSNP50 (54,0001 

SNP). Genome-wide association studies (GWAS) have been performed to identify quantitative 

trait loci (QTL). Figure 2 presents results from Angus weanling steers (i.e., 6 months of age) 
described in the studies of Neary et al. (2014). Figure 3 presents the results from yearling Angus 

cattle described in the studies of Zeng (2016). Cumulatively, these results indicate that PAP is a 

very polygenic trait. These findings parallel the results from various gene expression studies that 

extracted RNA from heart, lung, and blood peripheral blood mononuclear cells in cattle exposed to 

hypoxic conditions and compared to samples from calves in normoxic conditions. Fibroblasts 

harvested from the pulmonary artery were an important cell type in these studies as their unique-

phenotype is indicative of hypoxia-indued arterial remodeling. In these results, multi-gene 

pathways of inflammation, tissue remodeling, and metabolism were prominent. The latter is a very 

intriguing result and suggests that hypoxic cells have altered-glycolytic metabolism (i.e., Warburg 

effect; Stenmark et al. 2013; Newman et al. 2015; Li et al. 2016). 

Since PAP EPD uses data collected from yearling cattle, an RNA-Seq study was conducted to 

obtain gene expression data from steers being grown as contemporaries to the bulls at the Rouse 
Angus ranch. This study involved identifying High- and Low-PAP individuals as to obtain RNA 

from muscle (i.e., right and left heart ventricle and longissimus dorsi) and the pulmonary system 

tissues (pulmonary artery, aorta, and lung). This approach allowed study of transcriptome-gene 

expression and also provided sequence for SNP. The initial results of this effort suggested that 

more than 1,000 genes were differentially expressed between high and low PAP groups in the right 

ventricle (Canovas et al. 2016). Splice variant analyses revealed several hundred differentially 

expressed genes in RNA from the right ventricle, aorta and pulmonary artery. Pathway and 

transcription factor (i.e., gene regulatory analyses) also revealed numerous genes involved in 

inflammation and several other indicators of heart failure. Examples of such gene-pathways were 
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IL-8/IL-10 signaling, leukocyte extravasation and factors promoting cardiogenesis, coagulation, 

thrombin and cardiac hypertrophy signaling. There were some responses among the high and low 

groups in hypoxia inducible factors (HIF); however, this is a very large and complex gene family 

requiring additional study.  

 

 
Figure 2. Manhattan plot of mean pulmonary arterial pressure (mPAP; y-axis) in weanling 

Angus calves (n = 66) at 2200 m. Genotypes were from BovineSNPHD (770,000 SNP) and 

were used in a single SNP analysis (Neary, 2014).   

 
Figure 3. Manhattan plot of the proportion of genetic variance explained by 1 Mb SNP 

windows for deregressed estimated breeding value of mean pulmonary arterial pressure 

(mPAP; y-axis) in yearling Angus cattle (n = 2,582) at 2,200 m. Genotypes were from 

BovineSNP50 (54,001 SNP) and marker effects and associated variances were generated with 

Bayes B (Zeng, 2016).  

 

LATE FEEDLOT DEATH 
Between the years of 2000 and 2012, the incidence of death due to right heart failure doubled 

in an epidemiologic study of North American feedlot cattle (Neary et al. 2015a). This study 

involved 1.56 million cattle at 15 feedlots at elevations < 1,300 m. The death rate from congestive 

heart failure in this study was ~10 steers per 10,000 steers on feed. This is an interesting 

observation, as also during these span of years, carcasses of finished steers reached their highest 

weight since the United States Department of Agriculture started reporting these data in 1944. This 

organization reported average live and carcass weights of steers on January 17, 2017 as 661 and 

425 kg, respectively.   

Pulmonary artery remodeling and subsequent right heart failure has been thought to be a 

disease related to hypoxia at altitudes > 1,500 m, so most of the animals affected by this condition 

were calves within cow/calf operations in mountainous beef production systems; however, 
veterinary diagnostic laboratory reporting programs have observed an increase in feedlot cattle 

post-mortem submissions. Many of these cattle came from feedlots of < 1,500 m. The first row of 

Table 1 presents PAP data collected from fattening feedlot steers. The PAP values are extremely 
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high relative to several other animal groups and somewhat analogous to values in people that are 

suffering from various cardiopulmonary conditions involving pulmonary hypertension (Moraes et 

al. 2000; Bossone et al., 2013). Krafsur et al. (2017) are studying feedlot steers that perished from 

heart failure in the late feeding period. Remodeling of the pulmonary artery and the right heart 

ventricle was observed in these cattle as would be expected. However, an interesting observation 
in these tissues was that these steers also contain evidence of left ventricle heart malformations as 

exhibited in Figure 4. The World Health Organization would categorize this type of pulmonary 

hypertension as Group 2, which is often associated with obesity. Feedlot steers with United States 

quality grades of choice and prime are approximately 30% body fat, which is comparable to obese 

people with body mass indexes ≥ 30 kg/m2. Late feedlot death is a growing concern and data 

collection systems are needed to understand if these traits are related to the measures commonly 

collected on yearling cattle for risk of HAD.  

 

 
 

CONCLUSIONS 

High altitude disease is a problem in mountainous beef production systems; however, there are 

no data collections systems for this phenotype, so an indicator trait, mPAP, is used in selection. 

This indicator trait from measures of yearling Angus cattle has unique a non-Gaussian distribution, 

but appears suitable for EPD calculation. Mean PAP is very polygenic and results of multi-omics 

studies suggest genomic selection approaches could provide opportunity to improve breeding 

value estimations. Evidences suggest that all age classes of cattle (i.e., neonate, weanling, yearling, 
and finishing steers) are responsive to hypoxia and additional research is needed to help 

understand genetic relationships among these age groups and the influences of their growth rates 

on HAD.  
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Table 1. Review of mean pulmonary arterial pressure (mPAP) values in cattle and closely 

related ruminant species and humans. 

 

Research in this report supported with funds from NIH-5-PO1 HL014985-40A1 (Stenmark) and 

the John E. Rouse Endowments of Colorado State University (Thomas and Enns). 

 

 
Animals 

 

Altitude 
(m) 

 

mPAP 
(mmHg) 

mPAP 

Range 
(mmHg) 

 

 
References 

Angus fattening steers; n = 30 2,200/1,400 54.1 ± 2.7 42-143 Krafsur et al. 2017 
Neary et al. 2015 

Yearling Angus bulls (gain-
test); n = 1,397 

2,200 45.8 ± 0.3 29-139 Zeng 2016 

Yearling bulls of several Bos 
taurus breeds (gain test);          
n = 2,426 

2,200 45.1 ± 0.8 29-145 Crawford et al. 2017 

Mature Angus cows; n = 44 2,200-
2,800 

42.8 ± 0.8 31-55 Bailey et al. 2016 

Yearling Angus heifers 
(grazing); n = 3,489 

2,200 41.4 ± 0.2 22-135 Zeng 2016 

Yearling Angus steers as 
grazing stockers; n = 773 

2,200 41.1 ± 0.2 27-138 Zeng 2016 

Angus-crossed cows (Bos 
taurus and Bos indicus), n = 49 

0 34 ± 0.5 28-41 Holt, personal 
communication 

Mature American Bison; n = 6 2,200 29.8 ± 0.8 28-34 Holt, personal 
communication 

Mature Himalayan Yak; n = 6 3,700 20.2 ± 1.4 18-21 Anand et al. 1986 

Healthy Human (meta-analysis) ≤ 400 25 15-35 Bossone et al. 2013 

Human hypertension (meta-
analysis) 

≤ 150 >35 15-70 Moraes et al. 2000 
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SUMMARY 

Angus heifers (n=497) that had been divergently selected for methane yield (MY) were used to 

examine the impact of selection for MY on reproductive performance. Joining records for first-

parity heifers over 3 different birth years were used to assess pregnancy rate, days to calving, 

calving rate, weaning rate, weight of the subsequent calf at birth and weaning, and weight of the 

female at calf weaning. Selection for MY did not have any impact on pregnancy rate, or weight of 

the subsequent calf at birth or weaning. However, Low MY heifers calved later in the season and 

were lighter in weight at calf weaning than High MY heifers. Evidence from this study, along with 
other studies, indicates that selection for Low MY is associated with calving later in the calving 

season due to a delay in the onset of puberty in Low MY heifers. Further investigations are needed 

to confirm any association between calving and weaning rates and genetic variation in MY and to 

gain better understanding of impact of selection for methane yield on lifetime reproductive 

performance.  

  

INTRODUCTION 

The contribution of livestock to worldwide greenhouse gas emissions is significant (14.5%) 

and primarily from ruminants (Gerber et al. 2013). Methane emission traits have been reported as 

moderately heritable in sheep (Pinares-Patino et al. 2011) and beef cattle (Donoghue et al. 2016a). 

While selection for low methane genotypes is now possible, the impact of this selection on female 
fertility traits is unknown. The objective of this study was to investigate whether differences exist 

between heifers from divergent methane yield selection lines for reproductive performance traits 

recorded during their first parity. These traits include pregnancy, calving and weaning rates, days 

to calving, weight of calf at birth and weaning, and weight of heifer at weaning of first calf.  

 

MATERIALS AND METHODS 

The females used in this project were heifers from the methane yield selection lines within two 

research herds of Angus cattle at the Agricultural Research Centre, Trangie, NSW, Australia. 

Methane yield (MY) is the amount of methane emitted per day divided by the weight of feed eaten 

on a dry-matter basis (g CH4/kg DMI). Details on the creation of the selection lines and 

measurement of methane emissions can be obtained from Donoghue et al. (2016a). Females were 

born in 2009 (n=197); 2011 (n=177) and 2012 (n=123). All females available each year were 
joined at an average age of 500 days, except for heifers born in 2009, who were joined at 

approximately 780 days of age. Heifers were exposed to bulls for 9 weeks, in single sire mating 

groups at a ratio of 30 females per bull. The females were pregnancy tested by trans-rectal 

ultrasonography approximately 10 weeks after the end of joining. Only data from the females’ first 

joining season was considered in this study. 

Reproductive performance of the heifers was assessed by pregnancy rate (PREG), calving rate 

(CALV) and weaning rate (WEAN), defined as the percentage of heifers that were pregnant, 

percentage of heifers that calved, and percentage of heifers that weaned a calf, respectively, out of 
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the total number exposed to a bull. These rates were coded as binomial traits (e.g. 0, non-pregnant; 

1, pregnant). Age and weight of the females at joining were also recorded. 

Days to calving (DTC) was also studied as one of the reproductive performance traits, and was 

calculated as the number of days between the start of the joining season and the date of birth of the 

subsequent calf. Females that failed to calve were assigned a penalty value which was 21 days 
greater than the last female to calve in their contemporary group. Weight of the calf at birth and 

weaning, and weight of the female at the weaning of her calf were also recorded. 

Data for weight traits were collected throughout the life of the females, including birth (BWT), 

weaning (WWT), yearling (YWT) and final (FWT) weight, which were measured at birth and at 

mean (±SD) age of 231 (±25), 422 (±23), and 603 (±79) d, respectively. In addition body 

composition traits were measured at mean (±SD) age of 585 (±97) d, and comprised ultrasound P8 

fat depth (P8), eye muscle area (EMA) and intramuscular fat % (IMF). Within herd MY Estimated 

Breeding Values (MY EBV) were obtained for all heifers.  

Model of analysis. All the traits, except the binomial traits (PREG, CALV and WEAN) were 

analysed using the Mixed Model procedure (PROC MIXED) of SAS (SAS Institute, Cary, NC). 

The model used for the analysis of weight (BWT, WWT, YWT and FWT), body composition (P8, 

EMA and IMF) traits, joining age (JOINAGE), joining weight (JOINWT) and weight of female at 
weaning of calf (MCWT) included the fixed effects of selection line (Low or High line), herd 

(Trangie1 or Trangie2) and birth year (2009, 2011 or 2012), the random effect of sire of heifer and 

the random residual error. Age of the heifer was included as a covariate in the model for all traits 

except BWT and JOINAGE, while age of dam was included in the model for BWT and WWT. 

Interactions between fixed effects were included when significant (P < 0.05).  

For DTC, the model included the fixed effects of selection line and contemporary group, the 

random effect of sire of heifer and random residual error. Contemporary group for DTC included 

all females joined to the same sire in the same year. For calf birth (CALFBWT) and weaning 

(CALFWWT) weight, the model included the fixed effects of selection line and birth year, sex of 

the calf, the random effects of sire of the calf, sire of the heifer and the random residual error. Age 

of the heifer was included in the model for both traits, while age of the calf was included in the 
model for CALFWWT. Interactions between fixed effects were included when significant (P < 

0.05).  

The binomial traits (PREG, CALV and WEAN) were analysed using the Generalised Linear 

Model (PROC GENMOD) procedure of SAS with a logit link function. The model fitted included 

the fixed effects of selection line and contemporary group, sire of heifer and the random residual 

error. Contemporary group was as defined for DTC. Age at calving was also included in the model 

for CALV. Correlations between reproductive performance traits and weight, body composition 

and methane traits were examined using the CORR procedure in SAS. 

 

RESULTS AND DISCUSSION 

Least-squares means for weight, body composition traits and MY EBVs are presented in Table 

1. There was a significant divergence between selection lines in MY EBV, being 0.20g CH4/kg 
DMI (P < 0.0001; Table 1). There were no significant differences between MY selection line 

heifers for weight traits or EMA (all P > 0.05; Table 1). Bird-Gardiner et al. (2016) analysed a 

larger data set from the same project that included both males and females, and also reported no 

significant differences between MY selection lines for weight traits. Heifers from the Low MY 

selection line were significantly fatter at the P8 site (P < 0.05) and had significantly higher IMF% 

(P < 0.05) than heifers from the High MY selection line, which was unexpected given that the 

genetic corrections with MY reported by Donoghue et al. (2016a) were not statistically significant.  

 

 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:301-304 

303 

Table 1 Least-squares means (±SE) of weight and body composition traits and methane yield 

EBVs of heifers from divergent selection lines for methane yield 

 
Trait Selection Line Significancea 

 Low Methane Yield High Methane Yield  

Number of heifers 227 270 - 
Birth Weight (kg) 33.0 (0.3) 32.9 (0.2) ns 
Weaning Weight (kg) 229.8 (5.3) 232.8 (5.2) ns 

Yearling Weight (kg) 343.3 (2.0) 344.9 (1.8) ns 
Final Weight (kg) 419.3 (2.2) 421.8 (2.1) ns 
P8 fat (mm) 9.9 (0.6) 9.0 (0.6) * 
EMA (cm2) 59.8 (0.5) 59.5 (0.5) ns 
IMF (%) 5.3 (0.09) 5.1 (0.09) * 
MY EBVb (gCH4/kg DMI) -0.12 (0.02) 0.08 (0.02) ** 
a ** Significance at P ≤ 0.0001; * Significance at P ≤ 0.05; ns Non-significance at P > 0.05 
b Methane Yield Estimated Breeding Value 

 
Least-squares means for reproductive performance traits are presented in Table 2. There were 

no significant selection line differences in any of the reproductive performance traits of the heifers 

(P > 0.05; Table 2), except for DTC and MCWT where heifers from the Low MY selection line 

calved significantly later and were significantly lighter in weight at weaning of their first calf than 

heifers from the High MY selection line (P < 0.05; Table 2). 

  

Table 2 Least-squares means (±SE) for transformed (T) and untransformed (UT) values of 

reproductive performance traits of heifers from divergent selection lines for methane yield 

 
Trait Data type Selection Line Significancea 

  Low MY High MY  

Number of heifers joined - 227 270 - 
Age at joining (days) - 604.5 (1.3) 601.4 (1.2) ns 
Weight at joining (kg) - 419.2 (2.6) 420.8 (2.6) ns 

Pregnancy Rate (%) T 1.95±0.28 2.41±0.31 ns 
 UT 86.6 91.1 - 

Calving Rate (%) T 1.80±0.43 2.21±0.45 ns 
 UT 80.6 85.6 - 

Days to Calving (days) - 301.4 (1.2) 298.3 (1.1) * 
Calf Birth Weight (kg) - 31.8 (0.3) 31.5 (0.3) ns 
Weaning Rate (%) T 1.16±0.21 1.30±0.21 ns 

 UT 75.8 78.2 - 

Calf Weaning Weight (kg) - 226.0 (9.5) 229.7 (9.6) ns 
Cow Weight at Weaning (kg) - 499.3 (5.6) 510.6 (5.3) * 
a ** Significance at P ≤ 0.0001; * Significance at P ≤ 0.05; ns Non-significance at P > 0.05 
 

Phenotypic correlations between selected weight, body composition, methane and reproductive 

performance traits are reported in Table 3. MY was not significantly correlated with PREG or 

DTC (Table 3), but was significantly phenotypically correlated with CALV, WEAN, P8 and 

MCWT. The significant correlation between MY and P8 and MCWT provides further evidence, 

along with the observed divergence between the selection lines for these traits (Table 2), of a 

significant association between MY and these two traits. The significant correlations of MY with 

CALV and WEAN is at odds with the lack of divergence between the selection lines for these 
traits (Table 2), and thus any conclusion about the strength of these associations must await further 
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analysis of a larger dataset. DTC was significantly (P < 0.0001) correlated with P8 and MCWT 

(Table 3), with calving later in the season associated with greater P8 fat depth and heavier weight 

at calf weaning.  

 

Table 3 Phenotypic correlationsa between selected growth, body composition, methane and 

reproductive performance traits in heifers from divergent selection lines for methane yield 

 
Trait Pregnancy 

Rate 

Calving 

Rate 

Days to 

Calving 

Weaning 

Rate 

P8 fat Cow WT at 

weaning 

Methane Yield 0.006 0.12* -0.09 0.13* -0.46** 0.24** 
P8 fat -0.01 -0.07 0.13** -0.04 - -0.18** 
Cow WT at weaning -0.47** -0.47** 0.23** -0.54** -0.18** - 
Joining Age -0.01 -0.09* 0.003 -0.07 0.29** -0.14** 
Joining WT -0.01 -0.06 0.006 -0.05 0.22** 0.16** 
a Significantly different from 0 at ** P ≤ 0.0001, and * P ≤ 0.05 

 

Selection for MY did not have any impact on pregnancy rate, or weight of the subsequent calf 

at birth or weaning. However, Low MY females calved later in the calving season and were lighter 
in weight at calf weaning than High MY females. Calving later in the season could be the result of 

Low MY females reaching puberty at a later age than High MY females. Donoghue et al. (2016b) 

using a subset of the data in this study reported the regression of MY EBV on age at puberty, with 

a decrease in MY EBV significantly associated with later age at puberty. A delayed onset of 

puberty would be expected to be associated with calving later in the season, as observed in Low 

MY heifers in this study, and a shorter interval between calving and second parity joining, which 

may explain why Low MY females were lighter in weight at weaning of the first calf. 

 

CONCLUSIONS 

It is concluded from this study that selection for Low MY is associated with calving later in the 

calving season in first-parity heifers. Evidence from a study on a subset of this data would indicate 

that these results are due to a delay in the onset of puberty in Low MY females. Further 
investigations are needed to confirm any association between calving and weaning rates and 

genetic variation in MY, and to determine if any difference in reproductive performance persists 

through subsequent parities to gain better understanding of impact of selection for methane yield 

on lifetime reproductive performance. 
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REPRODUCTIVE PERFORMANCE IN BRAHMAN AND SANTA GERTRUDIS 

CATTLE.  

 

M.G. Jeyaruban and D.J. Johnston 
 

Animal Genetics and Breeding Unit1, University of New England, Armidale, NSW 2351 

 

SUMMARY 

This study investigated the potential value of traits measured in young bulls as genetic 

indicators for female reproductive performance in two tropical beef cattle breeds. Genetic 

parameters for the male traits percentage of normal sperm (PNS) and scrotal circumference (SC), 

and their genetic relationships with first (DTC1) second (DTC2) and all days to calving measures 

(maximum of six) (DTCall) were estimated in Brahman (BRAH) and Santa Gertrudis (SANTA) 

cattle from records submitted for BREEDPLAN evaluation. Estimated heritabilities for PNS and 

SC were 0.20±0.06 and 0.45±0.02 for BRAH and 0.17±0.05 and 0.43±0.02 for SANTA, 

respectively. Genetic correlations between PNS and DTC1, DTC2 and DTCall were -0.67±0.28, -
0.79±0.25 and -0.47±0.22 in BRAH and -0.18±0.21, -0.28±0.27 and -0.20±0.20 in SANTA, 

respectively. Genetic correlations of SC with DTC1, DTC2 and DTCall were -0.26±0.12, -

0.25±0.13 and -0.19±0.08 in BRAH and -0.02±0.09, -0.19±0.13 and 0.00±0.09 in SANTA. These 

results showed that PNS and SC measured at 18 to 24 months of age in young BRAH and SANTA 

bulls were moderately heritable and their genetic correlations with DTC were in the same direction 

in both breeds. PNS and SC had higher genetic correlations with early DTC measures compared to 

DTC measured in older cows, indicating that they may be more related to early reproduction than 

lifetime reproduction. In addition, PNS was more strongly related with all DTC measures than SC 

in both breeds, which suggests that PNS may be a better indicator trait than SC for improving 

female reproduction in tropical breeds in Northern Australia.     

 

INTRODUCTION 

Cow and bull reproductive efficiency are important for the productivity and profitability of 

beef cattle producers in northern Australia. Various measures of female fertility were investigated 

to improve female reproductive efficiency. Days to calving (DTC) is one such measure and is 

implemented in the BREEDPLAN genetic evaluation as the key measure of genetic merit for 

female reproduction. However, low heritability, low intensity of selection and observations 

relatively late in life, limit the capacity to improve female fertility using DTC measures only. 

Therefore, identification of male traits, which have high genetic associations with female fertility, 

could greatly assist the improvement of reproductive performance of beef cattle in Northern 

Australia. From a previous study (Meyer et al. 1991), scrotal circumference (SC) in males is used 

as an indicator trait for female fertility in BREEDPLAN evaluation. However, Johnston et al. 

(2014) identified percentage of normal sperm (PNS) as being strongly genetically correlated with 
female reproductive traits in tropical breeds, in a research data set. These findings need to be 

validated using industry data before PNS could be included in routine BREEDPLAN genetic 

evaluation. Therefore, the aim of this study was to compare the genetic correlations of PNS and 

SC with early and lifetime female reproduction traits in Brahman (BRAH) and Santa Gertrudis 

(SANTA) cattle, to discover whether there are additional or better genetic indicators to improve 

reproduction efficiency of beef cattle in Northern Australia.  

 

                                                
1 AGBU is a joint venture of the NSW Department of Primary Industries and University of New England 
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MATERIALS AND METHODS 

Data for PNS, collected as part of the bull breeding soundness evaluation for young BRAH and 

SANTA bulls (of Beef CRC and industry), along with the pedigree data and performance data for 

other traits were obtained from respective breed society databases. The PNS data were measured 

between 540 to 800 days of age and for bulls with multiple PNS records, only the first record was 
used. Data for all DTC (DTCall) and SC were submitted by members of BRAH and SANTA 

societies for their respective BREEDPLAN evaluations. Scrotal circumference (SC) was measured 

between 300 to 700 days of age. DTC for natural mating was defined as the number of days from 

the “bull in date” (first day of introducing bulls) until the subsequent calving of the cow (Johnston 

and Bunter, 1996). DTCall were split into DTC from the first mating (DTC1) and DTC from the 

second mating (DTC2), to describe early reproductive measures. For BRAH, DTC1 was measured 

between 650 to 925 days of age and DTC2, the second measurement for cows with a DTC1. For 

SANTA, the DTC1 was measured between 270 to 640 days of age. All non-calver cows were 

included by assigning a penalty DTC record as described by Johnston and Bunter (1996).   

The number of records and descriptive statistics for all traits are given in Table 1. For BRAH, 

there were 215, 1884, 1199 and 1199 sires with progeny recorded for PNS, SC, DTC1 and DTCall, 

respectively. There were 128 and 816 common sires with progeny recorded for PNS and DTC1, 
and SC and DTC1, respectively. For SANTA, there were 221, 2385, 619 and 619 sires with 

progeny recorded for PNS, SC, DTC1 and DTCall, respectively. There were 119 and 560 common 

sires with progeny recorded for PNS and DTC1, and SC and DTC1, respectively.  

Genetic variances and variance ratios were estimated by restricted maximum likelihood 

(REML) using a univariate animal model, and genetic correlations were estimated using a series of 

bivariate animal model analyses, with three generations of pedigree in WOMBAT (Meyer 2007). 

Models included contemporary group as a fixed effect, age of measurement as a covariate and the 

random additive genetic effect of animal for all traits. An additional random common 

environmental effect of animal was fitted for DTCall to account for repeated records. 

Contemporary group definitions for DTC and SC were as defined in BREEDPLAN (Graser et al. 

2005) and for PNS were formed by accounting for herd of origin, year of birth, birth type, previous 
weight management groups and date of measurement.  

  

RESULTS AND DISCUSSION 

Raw means by breed are presented in Table 1. For BRAH, the means for PNS, SC and DTCall  

were 68.2, 26.2 and 358 and for SANTA, were 73.1, 32.3 and 358, respectively Estimated 

heritabilities were moderate for PNS and SC in both breeds (Table 1) ( 0.20 and 0.17 for PNS and 

0.45 and 0.43 for SC in BRAH and SANTA, respectively). Estimated heritability for PNS in 

BRAH was of similar magnitude to the 0.25 reported by Corbet et al. (2013) for the Beef CRC 

study. Estimated heritabilities for SC in BRAH and SANTA were in agreement with the range of 

estimates reported by Cammack et al. (2009). The moderate heritability estimates for PNS and SC 

suggest that both traits could be improved by selection in BRAH and SANTA. Heritability 

estimates for all DTC measures in both breeds were low. Estimated heritabilities for DTC2 were 
higher than the estimates for DTC1 in both breeds. Estimated heritabilities for DTC1 and DTC2 

were lower than the values of 0.22 and 0.20 reported for DTC1 and DTC2 of BRAH, respectively, 

by Johnston et al. (2014a) using research data.  

Estimated genetic correlations between bull traits and DTC measures are presented in Table 2. 

Genetic correlations between PNS and DTC were in the same direction for BRAH and SANTA 

(Table 2). Moderate to strong negative genetic correlations were estimated between PNS and DTC 

measures and were of larger magnitude for BRAH than SANTA. The difference in the magnitude 

of the genetic relationship between PNS and all three DTC measures in the two breeds may be 

attributed to differences in their age at first mating. BRAH heifers were one year older than the 
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SANTA heifers at first mating, and it is likely that a higher proportion of BRAH than SANTA 

heifers would be cycling at the time of first mating. Estimated genetic correlations between PNS 

and DTC2 were of higher magnitude than the correlations of PNS with DTC1 and DTCall in both 

breeds. For BRAH, the genetic correlations between PNS and all three DTC measures were 

significantly different from zero. Estimated genetic correlations between PNS and DTC1 and DTC2 
in BRAH were stronger than the values reported by Johnston et al. (2014b), which ranged from -

0.69 to -0.04. 

 

Table 1. Number of records, descriptive statistics, additive genetic variance (σa
2) and 

heritability (h2) with se in parenthesis for percentage normal sperm (PNS), scrotal size (SC) 

and first (DTC1), second (DTC2) and all days to calving (DTCall) for Brahman and Santa 

Gertrudis. 

  

Trait (units) No. of records Mean SD Min Max σa
2 h2 

Brahman 
PNS (%) 2330 68.2 26.0 1.0 99.0 119.7 0.20 (0.06) 

SC (cm) 23247 26.2 4.9 13.4 41.5 2.6 0.45 (0.02) 

DTC1 (days) 11800 363.9 58.2 270.0 491.0 145.9 0.07 (0.02) 

DTC2 (days) 3349 370.6 46.6 271.0 490.0 202.4 0.13 (0.04) 

DTCall (days) 29552 358.6 51.8 270.0 491.0 111.3 0.06 (0.01) 

        
Santa Gertrudis 

PNS (%) 2078 73.1 20.2 2.0 99.0 65.7 0.17 (0.05) 

SC (cm) 35663 32.3 4.1 20.0 44.0 2.9 0.43 (0.02) 

DTC1 (days) 5794 377.3 60.9 273.0 491.0 311.8 0.13 (0.03) 

DTC2 (days) 2042 360.4 47.7 273.0 491.0 228.4 0.14 (0.05) 

DTCall (days) 15104 358.6 53.2 270.0 491.0 156.9 0.08 (0.01) 

 

Genetic correlations between SC and DTC measures for BRAH and SANTA were in the same 

direction as between PNS and the three DTC traits, except for DTCall in SANTA. However, for 

both breeds, the magnitude of the genetic correlations with SC was lower than those estimated 

between PNS and DTC. Genetic correlations of SC with DTC1 and DTC2 were within the range of 

-0.35 to -0.21 reported between SC and both DTC1 and DTC2 for BRAH by Johnston et al. 

(2014b).  

 

Table 2. Genetic correlations between PNS and SC with first (DTC1), second (DTC2) and all 

days to calving (DTCall) of Brahman and Santa Gertrudis cattle.  

 
Trait (units) Genetic correlation 
 DTC1   (days) DTC2 (days) DTCall   (days) 

Brahman 
PNS (%) -0.67 (0.28) -0.79 (0.25) -0.47 (0.22) 
SC (cm) -0.26 (0.10) -0.25 (0.13) -0.19 (0.08) 

 
Santa Gertrudis 

PNS (%) -0.18 (0.21) -0.28 (0.27) -0.20 (0.20) 
SC (cm) -0.02 (0.09) -0.19 (0.13)  0.00 (0.09) 

 

This study showed that PNS had stronger genetic correlations than SC with all DTC measures 
in BRAH and SANTA. This suggests that PNS is a better indicator trait than SC to improve female 
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reproduction in these breeds, under Australian conditions. Inclusion of PNS, along with SC, in the 

genetic evaluation for BRAH and SANTA will improve the accuracy of prediction for DTC. 

Consistently higher genetic correlations were observed between PNS and DTC2 than between PNS 

and DTC1, which implied that PNS had a higher genetic correlation with lactation anoestrus 

interval than heifer puberty in DTC1, in both breeds. These results are consistent with those 
reported by Johnston et al. (2014b). Although a similar pattern was observed for the genetic 

correlations between PNS and DTC measures in both breeds, the differences in the magnitude of 

the correlations for BRAH and SANTA were attributed to the physiological stage they were in at 

the time of recording the DTC measures. For BRAH, the first DTC record was from females 

mated as 2 year olds, which could have a higher proportion of heifers cycling than SANTA (which 

could submit results from yearling matings) at the time of measuring DTC1.  

 

CONCLUSIONS 

PNS and SC measured in young BRAH and SANTA bulls were moderately heritable. 

Selecting bulls for higher PNS and SC at 2 years of age is expected to lead to a correlated response 

of reduced days to calving in cows in both breeds, with the effect stronger in early matings. 

Stronger genetic relationships between PNS and all DTC measures in both breeds suggest that 
PNS is a better indicator trait than SC, in terms of estimating genetic merit, and hence providing 

potential for improving female reproduction in tropical breeds in Northern Australia. PNS could be 

included in BREEDPLAN genetic evaluation as indirect selection criteria for improving female 

reproduction in tropical breeds. Furthermore, difference in the magnitude of the genetic 

correlations of PNS with DTC1 and DTC2 and low to moderate correlation (less than 0.6) between 

DTC1 and DTC2, suggest that DTC records in BREEDPLAN evaluation could be split into DTC1 

and DTC2 to better describe early female reproduction. 
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ABSTRACT 
Single-step genomic evaluation utilises all phenotypes, pedigree and genotypes and could 

significantly enhance beef cattle genetic evaluation. An appropriate weighting factor for genomic 

and pedigree information is required to predict single-step estimated breeding values (EBVs). This 

study assessed the optimal weighing factor lambda (λ, ranging between 0 and 1 for none to 100% 

weighing on genomic information) for a series of beef traits using an empirical approach. The 

optimal value of λ was identified from the maximum accuracies of genomic predictions by internal 

cross-validation. The estimated genomic accuracies for Brahman cattle ranged from 0.23 to 0.70 

for traits with adequate numbers of genotypes and phenotypes. The accuracy of genomic 

predictions generally increased as the λ weighting factor increased for a range of traits and 

typically approached an asymptote towards the optimal λ. For traits with adequate numbers of 

records, the optimal λ values ranged from 0.4 to 0.8.  

 

INTRODUCTION 

Application of genomic selection in livestock enables more accurate selection of animals at 

younger ages, and for hard to measure and sex-limited traits. Ultimately, the use of genomic 

selection can increase genetic gain. Best Linear Unbiased Prediction (BLUP) is a traditional and 

reliable tool to estimate breeding values and it has served animal breeders well. Genomic BLUP 

(GBLUP) works in the similar way to BLUP, but substitutes the pedigree based relationship 

matrix A with the genomic relationship matrix G. The recently developed single step genomic 

BLUP (ssGBLUP) by Legarra et al. (2009) and Christensen and Lund (2010) makes use of 

genotypes, all phenotypes and pedigree information, aiming to streamline the application and 

enhance the accuracies of EBV. The variance matrix of EBVs for ssGBLUP combines A and G, 

and the inverse matrix (H-1) required to solve the ssGBLUP equations has a simple form as shown 

by Aguilar et al. (2010): 𝐻−1 = 𝐴−1 + [
0 0
0 𝐺−1 − 𝐴22

−1]. An appropriate weighting of pedigree 

and genomic information when constructing G is required because SNP marker panels do not 

explain all of the additive genetic variation (e.g. Goddard et al. 2011). A modified genomic 

relationship matrix is typically used, as 𝐺 = 𝜆𝐺𝑚 + (1 − 𝜆)𝐴22 , where 𝜆 is the fraction of the 

additive genetic variance explained by markers, ranging between 0 and 1. This study assessed the 

optimal weighing factor λ using an empirical approach.  

 

MATERIALS AND METHOD 
Data. Phenotypes, pedigree and genotypes for this study were from the BREEDPLAN database 

for Brahman cattle. Traits in this analysis included growth (5 traits), ultrasonic scanning body 

composition (6 traits), carcase characteristics (6 traits), flight time, scrotal circumference and days 

to calving (DTC). Table 1 summarises the pedigree, records, number of genotypes available for 

each trait. DTC was measured repeatedly. On average, every animal had 2.5 DTC records and 4.6 

for genotyped animals. In total there were 7166 animals genotyped and included in the 𝐻−1 matrix. 

                                                             
*AGBU is a joint venture of The NSW Department of Primary Industries and UNE. 
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Statistical models. Single step GBLUP (ssGBLUP) analyses were performed in Wombat 

(Meyer 2007), using all available records for each of these traits. The data were obtained from the 

BREEDPLAN database, with phenotypes pre-adjusted for all fixed effects but contemporary group. 

The model fitted contemporary group as the sole fixed effect, and the additive genetic breeding 

value as a random effect. In addition, for birth weight, weaning weight and yearling weight 
maternal genetic effects were also fitted, and DTC was analysed using a repeatability model. 

Analyses were performed with the 𝐻−1 matrix calculated for a range of λ values between 0 and 1 

with an increment of 0.1. The optimal value of λ was identified by the highest accuracies of 

ssGBLUP EBV via five-fold cross-validation. Animals with both genotypes and phenotypes were 

split into five groups, based on half-sib family structure, with no progeny within half-sib families 

allocated to more than one group. In each of the five analyses, four groups were used as the 

genomic reference to predict EBVs of the fifth (test) group. Phenotypes for animals in the test 

group were omitted from the training data, but their pedigree and genotype data were included in 

the 𝐻−1 matrix in order to obtain their EBVs. This cross-validation was performed for the range of 

λ values from 0 to 1.0.  

 

Table 1. Summary of data for each trait, numbers of animals (N) and number of sires (Sires) 

for phenotypes and genotypes, and average size of test set in 5-fold cross-validation (ncv) 

 
Trait Phenotypes  Genotypes 

 N Sire  N Sire ncv 

Birth weight (BWD) 19567 1145  2072 219 357 

Weaning weight: 200 day (WWD) 198250 5249  5677 653 796 

Yearling weight: 400 day (YWD) 101415 4382  4607 510 701 

Final weight: 600 day (FWD) 102490 4370  4295 506 647 

Mature cow weight (MCW) 8433 930  1241 155 203 

Heifer scan eye muscle area (HEA) 10562 714  1814 84 341 

Bull scan eye muscle area (BEA) 10852 1013  1459 140 260 

Bull scan rib fat (BRF) 9921 963  839 121 141 

Bull scan p8 fat depth (BP8) 10128 971  854 127 141 

Carcase weight (CWT) 2982 178  933 89 171 

Carcase P8 depth (CP8) 2675 146  911 89 167 

Carcase rib fat (CRF) 2569 146  859 88 156 

Carcase intramuscular fat (CIM) 2703 154  926 89 170 

Shear Force (SHF) 2584 146  898 89 163 

Flight Time (FLT) 7756 280  1195 81 227 

Scrotal size (SS) 27709 2049  1686 261 263 

Days to calving (DTC) 18178 1349  1130 139 178 

Pfizer MBV Tenderness (MPT) 6909 1158  1920 173 342 

 

The accuracies of genomic predictions were calculated as the correlation between EBVs and 

adjusted phenotypes, scaled by the square root of the heritability of the trait, which was estimated 

using all records and pedigree. The means of the five scaled correlation coefficients are presented 

as the accuracy. For repeated records (DTC), adjusted phenotypes were calculated as the average 

residual from a repeatability model fitting contemporary group, then weighted according to 

Garrick et al. (2009). The heritability used to calculate the accuracy for DTC was also adjusted 
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according to ℎ𝑎𝑑𝑗
2 = ℎ2/(𝑡 +

1−𝑡

𝑛
), where t is the repeatability and n is the average records per 

animal within each test set. EBVs for three λ values (0, 0.5 and 1.00) were compared in five 

classes where animals were phenotyped or genotyped or both.  

 

RESULTS AND DISCUSSION 

Results are summarised in Table 2. There was a wide variation in the value of λ at the highest 

accuracies from 0.1 to 1.0. The highest accuracies of EBV ranged from 0.15 for CIM to 0.70 for 
SS. For traits with reasonable number of records (BWD, WWD, YWD, FWD, MCW, HEA, BEA, 

SS, FLT), the λ values ranged from 0.4 to 0.8, and the corresponding accuracies of EBV ranged 

from 0.23 to 0.70. The λ value at the highest accuracy for CRF (0.1) differed markedly from most 

traits, possible due to the quality of phenotypes for this trait (carcase might be trimmed prior to 

measurement). As the maximum was approached, accuracy was relatively insensitive over a large 

range in λ values. This was observed in most traits as the response surface generally approached an 

asymptote. 

 

Table 2. Results of Brahman cross-validation tests for a range values of λ, with estimated 

heritability (h2), maximum accuracy (r_max), λ_max (λ at r_max), and range in λ where 

accuracy varied by -0.01 around r_max (λ_low to λ_high) 

 

Trait h2 λ_max r_max λ_low λ_high 

BWD 0.45 0.60 0.53 0.30 1.00 

WWD 0.32 0.40 0.45 0.20 0.70 

YWD 0.38 0.60 0.33 0.30 0.90 

FWD 0.43 0.70 0.53 0.30 1.00 

MCW 0.60 0.80 0.40 0.50 1.00 

HEA 0.30 0.90 0.23 0.50 1.00 

BEA 0.29 0.50 0.37 0.30 0.70 

BRF 0.28 0.90 0.26 0.60 1.00 

BP8 0.42 0.70 0.28 0.40 1.00 

CWT 0.51 0.30 0.47 0.20 0.60 

CP8 0.30 1.00 0.27 0.50 1.00 

CRF 0.26 0.10 0.24 0.00 0.30 

CIM 0.25 0.40 0.15 0.10 0.80 

SHF 0.27 0.80 0.41 0.40 1.00 

FLT 0.28 0.50 0.51 0.20 0.80 

SS 0.43 0.70 0.70 0.40 1.00 

DTC 0.05 0.80 0.34 0.60 1.00 

MPT 0.72 1.00 0.50 0.70 1.00 

 

Table 3 shows impacts of three values of λ on EBVs for CP8, DTC, MCW and WWD. The 

variation in EBVs increased from λ=0 to 0.5 for phenotyped or phenotyped but not genotyped 

classes of animals, but less in moving from λ=0.5 to 1.0. In contrast, the variation in EBVs 

increased with from λ=0 to 1.0 for genotyped and genotyped but not phenotyped classes of 

animals, and so for most traits in both genotyped and phenotyped class. Correlations of EBVs 

across three values of λ were consistently high for P and P-G classes. Understandably, this was 

due to the impact of direct phenotypic information. For G or G-P animals, EBVs were predicted 
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through a combination of pedigree and genomic relationships, and correlations between λ=0.5 and 

λ=1.0 were always very high (0.93 to 0.97); lower correlations were observed for EBVs between 

λ=0 and λ=0.5 (0.88 to 0.95). The correlation the λ=0 and λ=1.0 further decreased (0.70 to 0.85). 

 

Table 3. Comparison of EBV for animals in phenotyped (P), phenotyped but not genotyped 

(P-G), genotyped (G), genotyped but not phenotyped (G-P), and both phenotyped and 

genotyped (P+G) classes over three values of λ (0, 0.5 and 1.0). EBV standard deviations for 

three values of λ (0 = sd0, 0.5 = sd50, 1.0 = sd100), and correlations between EBVs (e.g. 

r50_100 for correlation of EBV between λ values 0.5 and 1.0) 

 
Trait Group N sd0 sd50 sd100 r0_50 r0_100 r50_100 

CP8 P 2675 1.30 1.41 1.36 0.99 0.97 0.99 

CP8 P-G 1764 1.30 1.40 1.33 1.00 0.99 1.00 

CP8 P+G 911 1.30 1.44 1.42 0.98 0.94 0.99 

CP8 G 7166 0.74 0.87 0.98 0.91 0.77 0.96 

CP8 G-P 6255 0.61 0.75 0.89 0.87 0.70 0.96 

DTC P 18178 4.52 4.77 4.82 0.99 0.97 0.99 

DTC P-G 17048 4.50 4.73 4.76 0.99 0.97 0.99 

DTC P+G 1130 4.86 5.38 5.72 0.97 0.90 0.98 

DTC G 7166 3.31 3.92 4.51 0.91 0.79 0.97 

DTC G-P 6036 2.93 3.58 4.24 0.89 0.75 0.97 

MCW P 8433 26.96 27.46 26.71 1.00 0.99 1.00 

MCW P-G 7192 26.88 27.24 26.45 1.00 1.00 1.00 

MCW P+G 1241 27.41 28.66 28.08 0.99 0.96 0.99 

MCW G 7166 17.07 19.28 21.15 0.92 0.81 0.97 

MCW G-P 5925 13.96 16.61 19.32 0.88 0.73 0.96 

WWD P 198250 8.81 8.92 8.80 1.00 0.99 1.00 

WWD P-G 192573 8.85 8.95 8.81 1.00 1.00 1.00 

WWD P+G 5677 7.51 8.09 8.56 0.95 0.84 0.96 

WWD G 7166 7.40 8.01 8.49 0.94 0.83 0.96 

WWD G-P 1489 6.69 7.33 7.91 0.92 0.79 0.95 

 

In view of these results, a value of λ=0.5 has been adopted in preliminary ssGBLUP analyses 

for BREEDPLAN, but this may change as more experience is gained with the method. In future, a 

high weighting factor, for example, λ=0.7, could be considered, as shown in Table 2, a high λ will 

be beneficial to most traits, but adversely affect WWD, CWT and CIM. The current data structure 
for the Brahman Breedplan analysis may have impacts on findings. Further study using data from 

other breeds, e.g. Angus, is required to validate these results.  
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GENETIC AND PHENOTYPIC CHARACTERIZATION OF MSA INDEX AND ITS 

ASSOCIATION WITH CARCASE AND MEAT QUALITY TRAITS IN ANGUS AND 

BRAHMAN CATTLE.  

 

M.G. Jeyaruban, D.J. Johnston and B.J. Walmsley  
 

Animal Genetics and Breeding Unit1, University of New England, Armidale, NSW 2351 

 

SUMMARY 

MSA Index (MSA_I) predicts overall eating quality of a carcase from predictions of 

tenderness, juiciness, flavour and overall liking based on extensive consumer taste panel studies. 

Prices paid by processors for MSA graded meat are consistently higher than non-MSA graded 

cattle. There is significant industry pressure to determine the level of genetic control for MSA_I. 

This study used data from Angus (ANGS) and Brahman (BRAH) BIN cattle to estimate genetic 

parameters for MSA_I and their genetic and phenotypic relationships with key carcase and meat 

quality traits. Heritabilities for MSA_I were 0.50±0.09 and 0.49±0.16 in ANGS and BRAH cattle, 

respectively. In ANGS, genetic correlations between MSA_I and carcase weight (CWT), carcase 
rump fat (CP8), ossification score (OSS), MSA marble score (MSA_M), shear force (SF) and meat 

colour L (Col_L) were 0.41±0.12, 0.02±0.15, -0.22±0.18, 0.96±0.02, -0.33±0.19 and 0.40±0.16, 

respectively and in BRAH, were 0.12±0.21, 0.19±0.24, -0.51±0.20, 0.94±0.05, -0.18±0.25 and 

0.46±0.21. Similar trends were observed in the correlations between MSA_I and carcase and meat 

quality traits in both breeds. This study showed that MSA_I has a very high genetic association 

with MSA_M and, to a lesser extent, OSS in both breeds. Selecting for higher MSA_M and lower 

OSS will genetically improve MSA_I of carcases of ANGS and BRAH cattle, and the addition of 

MSA_I as an additional trait in the evaluation would contribute almost no additional information 

about meat quality or value.  

 

INTRODUCTION 
Eating quality is important if the beef industry in Australia is to remain competitive in the 

world and domestic markets. Eating quality refers to the compositional quality and the palatability 

of meat, and in the 1990s, consistency of beef eating quality was identified as a key issue for 

marketing Australian beef (Bindon 2001). Beef consumers were unsure of how to identify beef of 

acceptable quality and this led to a decline in domestic beef consumption (Polkinghorne et al. 

2008). Furthermore, concerns with the fat content of beef, and associated health implications, and 

a decline in understanding of beef cuts, cooking methods and an inability to predict quality from 

product appearance also impacted on demand for beef products on the domestic market. Meat and 

Livestock Australia (MLA) developed the Meat Standards Australia (MSA) grading system to 

provide consumers with assurance of eating quality (Watson et al. 2008). MSA eating quality 

scores are a combination of consumer assessed tenderness, juiciness, flavour and overall liking of 

meat products. Initially, the grading system assigned an eating quality score to specific muscle 
portions cooked by defined methods (Watson et al. 2008). Subsequently, a single number and 

standard national measure called the MSA Index (MSA_I) was developed to predict overall eating 

quality of a whole carcase (Thompson 2014).  

The MSA model predicts the eating quality of 39 cuts in a carcase using measurements 

collected by accredited MSA graders (MSA Index, Meat and Livestock Australia, 2014).  MSA_I 

is a weighted average of these scores for the 39 MSA cuts for the most common corresponding 

cooking method, ranging from 30 to 80 and expressed to 2 decimal places, to represent the 

                                                
1 AGBU is a joint venture of the NSW Department of Primary Industries and University of New England 
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predicted eating quality of a whole carcase. The MSA_I is independent of any processing inputs 

and is calculated using only attributes influenced by pre-slaughter factors. It is a benchmark which 

can be used across all processors, geographic regions and over time, and reflects the impact on 

eating quality of management, environmental and genetic differences between cattle at the point of 

slaughter (MSA Index, Meat and Livestock Australia, 2014). Currently, over 40 processors are 
grading MSA beef, with prices received for MSA graded g cattle being consistently higher than 

non-MSA cattle (Southern Beef Technology services, 2015). There has been a recent request from 

industry to examine genetic and non-genetic influences on MSA_I and genetic relationships 

between MSA_I and key carcase and meat quality traits. This study aimed to estimate these in 

temperate and tropical breeds.    

 

MATERIALS AND METHODS 

Carcase and meat quality data used for this study were recorded as part of the Angus (ANGS) 

Sire Benchmarking Program and Brahman (BRAH) beef information nucleus (BIN) project up to 

June 2016.  ANGS steers were grain fed with a ration containing an energy level of 12MJ/kg for 

300 days and Brahman steers were finished on pasture. ANGS and BRAH steers were killed at 

mean age of 794 and 963 days, respectively. Hot carcase weight and hot P8 fat depth were 
recorded before the carcase entered the chiller. Carcases were dressed according to AUSMEAT 

standard specifications (AUS-MEAT 2005) while limiting the subcutaneous trimming to not 

influence the fat depth measurement at the P8 or 12/13th rib measurements sites. Carcase weight 

(CWT), rump P8 fat (CP8), MSA marble scores (MSA_M), and ossification scores (OSS) were 

measured by MSA certified graders. Samples were collected from the Longissimus dorsi and 

transported to a laboratory where meat colour was recorded as Minolta l (COL_L) and shear force 

(SF) was measured as described by Perry et al. (2001). MSA_I was calculated as the weighted 

average of the predicted eating quality scores using the empirical modelling described by 

Thompson (2014). Inputs to this calculation included hormone growth promotant status, milk fed 

vealer status, sale yard status, sex, Bos indicus content, hump height, CWT, OSS, 12/13th rib fat 

and MSA_M. The number of records and descriptive statistics for all traits are given in Table 1. 
The number of sires with progeny recorded differed across the six traits, ranging from 83 to 123 

for ANGS and 72 to 80 for BRAH.  

For each trait, records that were more than three standard deviations from the mean were 

removed as outliers. A univariate linear animal model was used to estimate genetic parameters for 

carcase and meat quality traits in both breeds:  

Yik =   cgi     + 1 age/weight k + 2 (age/weight k)2 + ak   + eik 

Where Yik is the trait of interest of animal k in a fixed contemporary group i (cgi), age/weight is 

age or weight of animal k, 1, and 2 are regression coefficients for linear and quadratic effects of 

age or weight of animal (included in models based on significant level), ak is the random additive 

genetic effect of animal k and eijk is the random error associated with this prediction. 

Contemporary groups for all traits were defined based on protocols for carcase traits in the 
BREEDPLAN evaluation (Graser et al. 2005). Genetic variances, variance ratios and genetic 

correlations were estimated by restricted maximum likelihood (REML) using univariate and 

bivariate animal models, with three generations of pedigree, using WOMBAT (Meyer 2007).   

 

RESULTS AND DISCUSSION 

Raw means by trait and breed are presented in Table 1. Design of this study will not allow 

direct comparison of breeds. This is because BRAH and ANGS were subjected to different 

finishing regimes, slaughtered at different abattoirs, at different ages and graded by different 

graders at different quartering sites. 
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Table 1. Number of records and the descriptive statistics for carcase and meat quality data  

 

Trait Angus1  Brahman 

 No. Mean SD Min Max  No. Mean SD Min Max 

Carcase traits 
CWT (kg) 1394 460.1 37.1 334.0 568.0  898 314.4 24.1 227.0 382.0 
CP8 (mm) 1383   23.1   6.1 10.0 41.0  891 12.0 4.0 2.0 24.0 
OSS (score) 1383 154.8 110.0 110.0 200.0  894 138.6 13.7 110.0 190.0 

 

Meat quality traits 
MSA_I (score) 1349 65.1 1.7 60.0 69.9  629 53.7 1.7 49.5 58.5 
MSA_M (score) 1382 515.2 115.6 160.0 880.0  886 267.2 67.5 120.0 490.0 
SF (kg)   737 3.8 0.6 2.0 5.7  881 4.5 0.8 2.8 7.5 
Col_L (score) 1384 42.7 2.8 35.7 50.3  891 38.3 2.6 30.5 46.2 
1 Design of this study will not allow direct comparison of breeds. 

 

Estimated heritabilities for MSA_I and genetic and phenotypic correlations with carcase and 

meat quality traits are given in Table 2. Heritabilities were similar for MSA_I in both breeds (0.50 

in ANGS and 0.49 in BRAH). Heritabilities for carcase and meat quality traits were moderate to 

high for both breeds. For ANGS, estimated heritability for MSA_M agreed with the value of 0.48 

reported by Barwick et al. (2009) for ANGS crosses. However, estimates for CWT and CP8 in 

ANGS were higher than the values reported for temperate breeds by Reverter et al. (2003) and the 

estimates for meat quality traits were also higher than the values reported for temperate breeds by 

Johnston et al. (2003). Except for OSS, heritability estimates for carcase and meat quality traits in 

BRAH were higher than the estimates reported by Wolcott et al. (2009). Both ANGS and BRAH 

steers used in this study were killed at a higher age than those in the previous studies and this led 
to higher means and variations (SD) for carcase and meat quality traits in the two breeds.  

The genetic correlation between MSA_I and carcase and meat quality traits was variable in 

sign and magnitude, but was in the same direction for both breeds. For ANGS, MSA_I had a 

moderately positive genetic correlation with CWT (0.41), a low or no correlation with CP8 (0.02) 

and a moderately negative correlation with OSS (-0.22). For meat quality traits in ANGS, MSA_I 

had a highly positive genetic correlation with MSA_M (0.96), a moderately positive genetic 

correlation with Col_L (0.40) and a moderately negative correlation with SF (-0.33).  

 

Table 2. Heritabilities (h2) and genetic correlations (rg) between MSA Index and carcase and 

meat quality traits (standard error in parenthesis)  

 
Type    Traits    
 MSA_I CWT CP8 OSS MSA_M SF COL_L 

Angus 
h2 0.50 (0.09) 0.66 (0.10) 0.48 (0.19)  0.22 (0.07) 0.48 (0.09)  0.43 (0.14) 0.31 (0.08) 
rg   0.41 (0.12) 0.02 (0.15) -0.22 (0.18) 0.96 (0.02) -0.33 (0.19) 0.40 (0.16) 
         

Brahman 
h2 0.49 (0.16) 0.59 (0.14) 0.36 (0.11) 0.36 (0.11) 0.37 (0.11)   0.38 (0.12) 0.44 (0.12) 

rg   0.12 (0.21) 0.19 (0.24) -0.51 (0.20)  0.94 (0.05)   -0.18 (0.25) 0.46 (0.21) 

 

In BRAH, MSA_I had a low positive genetic correlation with CWT (0.12), a low positive 

correlation with CP8 (0.19) and a moderately negative correlation with OSS (-0.51). For meat 
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quality traits, MSA_I had a positive genetic correlation with MSA_M (0.94), a moderately positive 

genetic correlation with Col_L (0.46) and a moderately negative correlation with SF (-0.18).  

The high positive genetic correlations between MSA_I and MSA_M, along with moderately 

negative correlations with OSS in both breeds, suggests that selection primarily for higher 

marbling and lower OSS will improve the MSA_I of carcases in ANGS and BRAH cattle. 
Currently, marble scores are included in the BREEDPLAN evaluation of these two breeds and, 

therefore, the genetic evaluation of meat quality is being adequately addressed in the 

BREEDPLAN evaluation of these two breeds.   

 

CONCLUSIONS 

MSA-Index measured in Angus and Brahman steers were moderately heritable and had very 

similar genetic correlations with carcase and meat quality traits in both breeds. The very high 

genetic correlations with MSA_M and moderate to high negative genetic correlations with OSS 

indicate that improving those two traits will improve the MSA_I in both breeds. Marble Score 

included in BREEDPLAN evaluation is, therefore, expected to underpin the genetic of meat 

quality as assessed by MSA_I in Angus and Brahman cattle. Further evaluation of OSS, with more 

data, is required before being included in the BREEDPLAN evaluation.    
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DEVELOPMENT OF THE BEEF GENOMIC PIPELINE FOR BREEDPLAN SINGLE 

STEP EVALUATION 

N.K. Connors, J. Cook, C. Girard, B. Tier, K. Gore, D.J. Johnston, and M.H. Ferdosi 

Animal Genetics and Breeding Unit*, University of New England, New South Wales, Australia 

 

SUMMARY 

Single step genomic BLUP (SS-GBLUP) for BREEDPLAN beef cattle evaluations is currently 

being tested for implementation across a number of breeds.  A genomic data pipeline has been 

developed to enable efficient analysis of the industry-recorded SNP genotypes for incorporation in 

SS-GBLUP analyses. Complex data collection, along with format and/or naming convention 

inconsistencies challenges efficient data processing. This pipeline includes quality control of 

variable formatted data, and imputation of genotypes, for building the genomic relationship matrix 

required for implementation into single step evaluation. 

 

INTRODUCTION 

Genomic information from high density SNP panels has been incorporated into the Australian 
beef cattle genetic evaluation system, BREEDPLAN, since 2011, by “blending” EBVs from the 

standard analysis with direct genomic values (DGVs) from independent genomic prediction 

analyses using selection index theory. The ultimate goal has been to include all available 

information including pedigrees, phenotypes, and genotypes in a single analysis, known as single 

step genomic BLUP (Legarra et al. 2014).   

One of the major practical challenges for including genomic information in genetic evaluations 

has been the development of scalable data-management systems (Swan et al. 2012) which can 

handle the increasing number of genotypes with increasing density of SNPs (Johnston et al. 2012).  

Quality control of the data becomes increasingly important, as inclusion of genotypes raises 

questions with regards to existing pedigree and potential breed.  This paper describes the data 

pipeline developed for incorporating genomic information into SS-GBLUP analyses for 
BREEDPLAN, from on-farm DNA collection, through data quality control and building the 

genomic relationship matrix (GRM), to implementation within single step evaluation. 

 

INDUSTRY DATA STRUCTURE 

The genomic pipeline from sampling DNA on-farm to genomic evaluation is the most complex 

data recording process involved in genetic evaluation, and is regularly subject to errors. Samples 

are often handled by several people at different points in the pipeline, genotyping can be carried 

out by a number of different research and commercial entities using a variety of platforms, and 

ensuring data consistency has proved difficult.  

Currently, Australian beef cattle genetic evaluations are organised individually by breed 

societies using databases that are maintained by the Agricultural Business Research Institute 

(ABRI) in most cases and using BREEDPLAN evaluation software licenced to ABRI (Graser et 

al. 2005), apart from Angus Australia who maintain their own database.  At the time of writing, 

the role of the Animal Genetics and Breeding Unit (AGBU) within the single step genomic 

pipeline is to collate genotypes from various breed societies and construct a GRM which is used in 

                                                             
* AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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single step evaluations conducted routinely by ABRI. In future it is intended for the pipeline to be 

incorporated into the recording and processing at breed societies and ABRI for routine SS-GBLUP 

evaluation. 

 

GENOMIC DATA PROCESSING 

The genomic pipeline begins upon receiving raw genotypes from a genotyping lab (Figure 1). 

The DNA sample must be assigned to an animal ID, usually provided by the breed society, either 

by name, society ID, or BREEDPLAN database number. This process has significant issues with 

regards to mismatching of samples to animals, particularly with historic data. Often issues with 

animal identities (e.g. additions/changes to suffix/prefix, duplicate names, etc.) has meant DNA 

samples have been attributed to the wrong animal. Thus far this has been a major hurdle in the 

roll-out of SS-GBLUP, as animals with simple identity changes/errors, which in turn lead to 

pedigree errors, will be rejected from the GRM downstream. Ensuring consistent sample 

identification is critical but not always successful.   

 
Figure 1. Genomic pipeline flow chart. 

DATA QUALITY CONTROL 

For quality assurance purposes, raw genotypes should be provided with GenCall (GC) scores 

for each SNP and a SNP map file to ensure consistency across SNP panels. The SNP maps may be 

used for imputation and checking recombination events, and allow the genotypes to be readily 

converted to a consensus 150K wide format genotype. The 150K formats allow consistency across 

all genotypes regardless of panels/chips, and enable high-throughput data management and quality 

control. 

With a consistent format across all genotypes, the data undergoes a quality control (QC) 

analysis, with filters including average GC score, missing SNPs, SNPs with low GC scores, and 

allele frequencies. Animals are removed from the dataset used to construct the GRM based on the 

following criteria:  

- Less than 79% calls with a GC score > 0.6 

- More than 20% missing SNPs on the observed panel 

- Average GC score less than 0.6 

- Sire or dam younger than 550 days (based on recorded pedigree and date of birth) 

- More than 50% SNPs heterozygous  

- Minor and major allele frequencies are higher than 80% or lower than 20% 

- Inconsistency between assigned sex and genotype determined sex 



 

 

In each case, where a genotype fails due to poor data quality, the sample/animal is flagged with 

the breed society and/or lab for either re-genotyping the sample or re-sampling if possible. 

A 4K subset of SNPs consistent across all panels is used as a further check for the animal’s 

suitability for the GRM, checking for breed composition, parentage/pedigree, and duplicate 

genotypes (greater than 90% similarity). Currently the GRM is built for purebred animals only, 
and as such only animals with a minimum 80% of a single breed proportion (Boerner 2017) are 

included. At this point, any obvious pedigree errors will be identified and either corrected or the 

animals will be removed from the dataset. Animals failing to meet the required criteria of the data 

QC will be rejected from the GRM dataset, and provided a diagnostic code describing the cause of 

rejection. An example of the number of genotypes removed from a GRM dataset after quality 

control filters are applied is shown in Table 1.  

 

IMPUTATION 

In some instances, multiple genotypes of half-sib families with the same sire are available, 

enabling the sire’s genotype to be imputed. Previous studies have shown that the imputation 

accuracy depends on the SNP density and the number of half-sibs for that sire (Ferdosi et al. 

2014). Although un-genotyped sires with small half-sib families can be imputed, the imputed 

genotype will contain considerable amount of missing markers and the accuracy of imputation will 

be low. For inclusion in the GRM dataset, half-sib families larger than 11 individuals were 

considered for sire imputation, with imputation and haplotyping methods similar to those 

implemented in the “hsphase” algorithm (Ferdosi et al. 2014). The phased offspring are retained in 

a haplotype library for FImpute (Sargolzaei et al. 2014). SNP loci with more than 80% missing 

genotypes across animals are removed, and the missing SNPs are imputed using the haplotype 

library and the corrected pedigree. 

 

Table 1. Number of genotypes removed from a GRM dataset after quality control process 

 
Quality control filter Number of genotypes 

Total  12169 

Less than 79% SNPs with GC score above 0.6 167 

More than 20% SNPs missing 4 

Average GC score less than 0.6 8 

Extreme major/minor allele frequencies (>80% and <20%) 15 

Breed proportion less than 80% 489 

Duplicate genotype and sample id - multiple platforms 730 

Duplicate genotype - different sample id 21 

Duplicate sample id - different genotype 7 

Inconsistent sex (pedigree vs genotype) 82 

Incorrect sire or dam 282 

 

GENOMIC VS PEDIGREE RELATIONSHIP QUALITY CONTROL  

The GRM is built using VanRaden’s method 1 (VanRaden 2008). With the inclusion of 

genomic information, previously unidentified relationships are discovered. These relationships 

may simply be previously unknown or not recorded, or may be an artefact of inbreeding within the 

population. Regardless of the reason, the additional information provided by the GRM to identify 

relationships not seen in the NRM will increase the accuracy of EBVs.  

However, there will also be discrepancies between genomic and pedigree relationships, most 

likely due to incorrect recording; even well recorded herds have a fraction of their calves (3-5%) 

with incorrect pedigree (Johnston et al. 2012). It is possible that the recorded sire of an animal 
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appears ‘disproven’ using genomic information, in which case there are a number of possible 

scenarios. The recorded pedigree may be incorrect, or the genotype sample may be of the wrong 

animal (e.g. sampling mix up, sample identity error, etc.). The issue is knowing which scenario is 

correct. There are a number of actions possible with the information available:  

- Ignore the genotype and continue with the pedigree relationship (i.e. genotype wrong) 

- Use the genotype to fix the pedigree relationship (i.e. pedigree wrong) 

- Remove animal (i.e. uncertain whether pedigree or genotype is correct). 

If the genomic relationship is ignored, a new genotype and/or sample should be requested. If 

the pedigree is corrected based on the genotype, this correction must be performed at the breed 

society level. It is possible that additional genotyping may change the GRM over time, as more 

half-sib relationships become available and new pedigree discrepancies will appear, or animals 

may be re-genotyped. In some instances, duplicate genotypes will occur, whereby the sample ID 

are the same, and the genotypes different; or the genotypes are the same, but the sample IDs are 

different. In these instances, it is difficult to identify which is correct, and as such both genotypes 

are unrecoverable. Table 1 provides an example of the number of genotypes removed from a GRM 

dataset after identifying duplicate samples and pedigree errors.  

There are a number of assumptions in the building of the GRM with respect to using an 

unselected base population with little inbreeding, which can affect the genomic relationships 

(VanRaden 2008). Thus the issue of genomic and pedigree relationship discrepancies remains 

contentious, as the ‘correct’ action is not always obvious. 

 

CONCLUSIONS 

Increasing use of high density genomic information has the potential to improve the accuracy 

of genetic evaluations, and rates of genetic gain in the beef industry.  This must be supported with 

efficient data pipelines which automate the quality control and analysis of genotypic data for 

inclusion into routine genetic evaluations. The genomic pipeline described here aims to do this, 

though difficulties arise due to complex data recording processes, multiple sample/data handling 

points, multiple laboratories, commercial entities and breed societies. Carefully structured and 

consistent data handling among the various participants will enable a smooth transition to 

SS-GBLUP, providing a repeatable, traceable, and auditable process, which is documented to 

ensure the highest quality and to identify changes over time for the Australian beef industry.  
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EFFECTS OF IRISH BEEF INDEXES AND BREEDING PROGRAMS ON 

GREENHOUSE GAS EMISSIONS 
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1 AbacusBio Ltd., Dunedin, New Zealand 
2 Irish Cattle Breeding Federation, Ireland 

 

SUMMARY 

Effects of Irish beef Maternal Replacement Index and Beef Data and Genomics Program on 

system-wide greenhouse gas (GHG) emissions intensity were predicted. Expected index selection 

responses of increased offspring feed intake, decreased carcass weight and conformation, and 

increased carcass fat were predicted to increase system GHG intensity. These were offset by 

expected decreases in offspring mortality, cow and heifer live weights, calving interval, and age at 

first calving, and increased cow survival that were predicted to reduce system GHG intensity. 

Summed over responses in all traits, system GHG intensity was predicted to be reduced by 

0.0088603 kg CO2e/kg meat/breeding cow/year/€ index. Genomic selection and AI strategies were 
predicted to improve genetic progress and reduce total CO2e by 5-10% after 20 years. 

 

INTRODUCTION 

Beef cattle genetic improvement programs have a key role in reducing global greenhouse gas 

(GHG) emissions. Genetic gains in livestock productivity and efficiency can reduce GHG emissions 

when expressed on a per-animal or intensity basis (i.e. emissions per unit of product) (Wall et al. 

2010; Capper 2011; Hayes et al. 2013), and these changes from selection are permanent and 

cumulative over generations. Recognizing this, the Irish government has launched the Beef Data 

and Genomics Program (BDGP) as a major initiative to accelerate genetic progress for beef maternal 

efficiency traits and reduce GHG emissions. The potential system-wide impacts of trait genetic 

changes on GHG emissions therefore need to be quantified.   
The objectives of this study were to quantify the effects of each trait in this index on system 

GHG emissions intensity, and predict the overall effects of genetic change from index selection and 

BDGP strategies on system GHG emissions intensity.  

 

MATERIALS AND METHODS 

The ICBF beef Maternal Replacement Index is an economic index containing offspring and cow 

production, carcass, reproduction and survival traits. System-wide emissions intensity (EI) per 

breeding cow per year was calculated as the sum of all system emissions (Σe) divided by the sum of 

all meat produced in the system (Σm), as follows: 
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where o=number of slaughtered offspring per breeding cow per year, r=number of replacements 

reared per breeding cow per year, eoffspring=gross emissions (kg CO2e) per slaughtered offspring over 

its lifetime, ereplace=gross emissions per replacement over her rearing period, ecow=gross emissions 

per breeding cow per year, moffspring=meat output (kg meat) per slaughtered offspring, and mcow=meat 

output per breeding cow per year. These factors were considered as functions of the index genetic 

traits g.  

The change in EI per change in each index trait was calculated as the partial derivative of EI with 

respect to each trait g (dEI/dg), as follows: 
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where for each trait, βe.offspring(g), βe.replace(g), and βe.cow(g) are traits effects on gross emissions per 

slaughtered offspring over its lifetime, per replacement reared from birth until it becomes a breeding 

cow, and per breeding cow per year, respectively; βm.offspring(g) and βm.cow(g) are trait effects on meat 

produced per slaughtered offspring, and per breeding cow per year, respectively; βr(g) and βo(g) are 

trait effects on number of replacement heifers required and number of offspring reared, per breeding 

cow per year, respectively; and other variables as previously defined.   
For the current age-constant slaughter system, numbers of animals were o=0.6 and r=0.2. Gross 

emissions were calculated from feed intake, assuming feed intake of offspring, replacements, and 

cows of 3970.6 kg DM, 3522.4 kg DM, and 2874.6 kg DM, respectively, and conversion of 0.583 

kg CO2e/kg DM (Fennessy et al. 2015). Therefore, eoffspring=2314.9 kg CO2e, ereplace=2053.6 kg 

CO2e, and ecow=1675.9 kg CO2e, per breeding cow per year. Meat outputs were moffspring=234.61 kg 

meat and mcow=35.09 kg meat, per breeding cow per year. Therefore, Σe=3475.5 kg CO2e, Σm=175.9 

kg meat, and EI=160.5 kg CO2e/kg meat, per breeding cow per year. 

Estimated trait effects β(g) are shown in Table 1. Effects on gross emissions were based on how 

trait changes affect feed intake, with conversion of 0.583 kg CO2e/kg DM. Offspring emissions were 

affected by feed intake. Replacement emissions were affected by heifer live weight based on 

additional feed required of 9.406 kg DM/kg LW. Cow emissions were affected by cow live weight 
based on additional feed required of 3.197 kg DM/kg LW, and age at first calving based on additional 

feed required of 5.432 kg DM/d delay until calving. Meat produced was affected by carcass weight, 

conformation and fat (Drennan et al. 2009). Number of replacement heifers required was affected 

by cow survival. Number of offspring reared was affected by offspring mortality and calving 

interval. Other index traits were assumed to have no influence on equation terms. 

Trait responses to index selection (trait unit/€ index value; Table 1) were predicted from linear 

regressions of individual bulls’ ICBF proofs for each trait to their Maternal Replacement Index 

value. Trait-wise yearly responses in emissions intensity from index selection were calculated from 

trait dEI/dg, multiplied by the trait number of discounted genetic expressions (Table 1; Amer et al. 

2001) and the predicted trait responses to index selection. Values were summed over all traits to 

obtain total response in EI per unit of index genetic gain. 

 

RESULTS AND DISCUSSION 

 

Effects of index traits on system emissions intensity. Offspring feed intake, mortality, carcass fat, 

cow and heifer live weights, calving interval, and age at first calving had numerically positive 

relationships with system EI, while offspring carcass weight, carcass conformation, and cow 

survival had negative relationships with system EI (Table 1). These values could potentially be used 

as weightings in an index to evaluate individual bulls for GHG emissions intensity. However, an 

emissions-only index would not consider trait economics. A more practical index for would combine 

economics of production from the Replacement Index with the GHG emissions intensity changes 

and consider potential trade-offs between direct farm profit improvement and GHG intensity.   

 
Expected responses to index selection. Expected responses of increased offspring feed intake, 

decreased offspring carcass weight and conformation, increased carcass fat, and decreased cow 

carcass weight were predicted to increase system GHG intensity (Table 1). These were offset by 

expected decreases in offspring mortality, cow and heifer live weights, calving interval, and age at 
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first calving, and increased cow survival that were predicted to reduce system GHG intensity (Table 

1). Cow live weight, calving interval and survival had the greatest effects on system GHG intensity, 

while other traits had comparatively minor effects. Summed over responses in all traits, system GHG 

intensity was predicted to be reduced 0.0088603 kg CO2e/kg meat/breeding cow/year/€ index.  

 

Table 1. Maternal Replacement Index trait specific effects, effects on system emissions 

intensity, discounted genetic expressions (DGE) per year, and predicted trait unit and 

emissions intensity responses to index selection 

 

Trait (unit) Specific effects in model 

(change/trait unit) 

Effect on 

EI 

(kg 

CO2e/kg 

meat/trait 

unit) 

DGE Trait 

response 

(trait 

unit/€ 

index) 

EI response 

(kg 

CO2e/kg 

meat/€ 

index) 

Feed intake (kg 
DM/d) 

βe.offspring(FI)=0.583 kg CO2e  0.0020 0.54 0.0005 0.0000005 

Mortality (%) βo(M)=-0.01 offspring 0.1320 1.10 -0.0023 -0.0003297 
Carcass weight (kg) βm.offspring(CW)=0.686 kg meat -0.0463 0.54 -0.0205 0.0005131 

Carcass conformation 
(score) 

βm.offspring(CC)=4.072 kg meat -0.2746 0.54 -0.0017 0.0002507 

Carcass fat (score) βm.offspring(CF)=-2.982 kg meat 0.2011 0.54 0.0013 0.0001455 
Cow live weight (kg) βe.cow(CLW)=1.864 kg CO2e 0.0106 2.204 -0.1147 -0.0026804 
Heifer live weight 
(kg) 

βe.replace(HLW)=5.484 kg CO2e 0.0062 0.614 -0.1147 -0.0004393 

Calving interval (d) βe.cow(CI)=-1.232 kg CO2e, 
βo(CI)=-0.0027 offspring 

0.0292 2.204 -0.0283 -0.0018198 

Age at first calving 

(d) 

βe.cow(AFC)=3.167 kg CO2e 0.0180 0.614 -0.0454 -0.0005025 

Cow survival (%) βr(S)=-0.008 heifers -0.0940 2.204 0.0193 -0.0039989 
Cow carcass weight 
(kg) 

βm.cow(CCW)=0.6 kg meat -0.00002 0.288 -0.0777 0.0000004 

 

These findings are consistent with studies that have found GHG emissions benefits arising from 

productivity and efficiency gains over time (Wall et al. 2010; Capper 2011; Hayes et al. 2013). 

Generally, increasing growth rate and numbers of animals in a system will increase overall feed 

intake and resultant gross GHG produced by the system. However, genetic and management 

improvements have also increased system-wide efficiency, meaning that more product is made per 

unit feed input. This comes from more efficient feed utilization on an individual animal basis, plus 

improved reproductive and survival rates that mean each breeding animal and associated 
replacements can produce more output-generating animals. 

Genetic change from selection generates permanent and cumulative effects on traits, and 

therefore system-wide reductions in GHG achieved through selection will continue over 

generations. In previous studies (Hely et al. 2016; Hely and Amer 2016), genetic trends for the Irish 

BDGP were predicted for three scenarios: 1) current selection with Replacement Index; 2) genomic 

selection, increasing use of top progeny-tested maternal AI bulls to 30% in pedigree herds and 20% 

in commercial suckler herds; and 3) genomic selection with use of elite AI sires increased to 50% 

in pedigree herds and 30% in commercial herds (Table 2). Applying these predicted trends to the 

estimated reduction of 0.0088603 kg CO2e/kg meat/breeding cow/year/€ Replacement Index, and 

maintaining a fixed population size of 800,000 breeding cows, annual GHG emissions can be 

reduced up to 9.5% which corresponds to a total reduction of 3335 kt CO2e after 20 years (Table 2). 
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Therefore, Irish beef genetic improvement initiatives are predicted to have important outcomes of 

reducing GHG emissions. 

 

Table 2. Predictions of genetic trends in Maternal Replacement Index from 3 scenarios, and 

corresponding percent annual and total GHG emissions reductions after 5 and 20 years with 

constant population size 

 

Scenario Index 

trend (€/y) 

5y annual 

GHG 

5y GHG 

(kt CO2e) 

20y annual 

GHG 

20y GHG 

(kt CO2e) 

1) Current selection +1.67 -0.4% -34 -1.5% -481 
2) Genomic selection + 
increased use of elite AI sires 

+5 -1.9% -229 -5.4% -1952 

3) Genomic selection + 
maximum use of elite AI sires 

+9 -3.1% -350 -9.5% -3335 
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INVESTIGATING VARIATION IN THE TEST LENGTH REQUIRED TO ESTIMATE 

THE TRAIT OF RESIDUAL ENERGY INTAKE IN GROWING MATERNAL LAMBS 

 

P.L. Johnson, J. Wing, K. Knowler and P. Johnstone 

 
AgResearch Invermay, Mosgiel, New Zealand 

 

SUMMARY 

Residual energy (or feed) intake (REI) is one measure of feed efficiency, and is an estimate of 

whether an animal is consuming more or less energy for its biological outcomes than predicted.  To 

date, little research has been conducted in sheep, and a multi-year trial is underway to generate data 

for New Zealand maternal breeds, firstly targeting growing lambs.  Data required to estimate REI 

includes daily feed intake and live weight information from which growth rate can be calculated.  A 

key to data collection for the trait of REI is to determine the test length required to accurately 

estimate REI.  A dataset was available on approximately 600 growing maternal breed lambs from 3 

cohorts that were measured for daily feed intake of lucerne pellets for a period of 42 days (after 14 

days adjustment), with live weight measured twice weekly during the test period.  The full dataset 
was subsetted to simulate reduced test lengths and environmental variance was calculated for each 

cohort-data subset. Additionally the correlation between the REI estimates from the reduced length 

datasets and the full dataset was also estimated.  The results suggested that the variance of all traits 

stabilised within 21 to 28 days, and a correlation of greater than 0.90 existed between the estimates 

made on the data collected in 21 days versus the complete 42 day dataset.  These results suggest that 

the environmental variances stabilises quicker in lamb studies than in beef studies which require a 

minimum of 56 to 70 days’ worth of data.   

 

INTRODUCTION 

Residual energy (or feed) intake (REI) is one measure of feed efficiency, and is an estimate of 

whether an animal is consuming more or less energy for its biological outcomes than predicted.  Less 
research has been conducted on the trait of REI in sheep (compared with other production species), 

however, a series of studies are now being undertaken which are seeking to investigate the 

phenotypic and genetic variability of feed efficiency in sheep.   

As has been the case in all other species, one of the keys to generating feed efficiency data is the 

development of an optimum test period in which feed intake, live weight and liveweight gain (the 

key variables in the REI model) are to be measured.  This needs to be a balanced decision as the cost 

of data collection is high, but equally too short of a measurement period will result in poor parameter 

estimation.  In cattle the traits of feed intake and liveweight gain have been shown to require different 

test periods to obtain accurate (minimised variance) estimates (Archer et al. 1997).   

The paper investigates the optimum test period for young ewes, using a 42 day test period dataset 

collected on approximately 600 9-month old growing New Zealand maternal ewes.   

 

MATERIALS AND METHODS 

Animals and data.  The animals used in this study are the first cohorts of a multi-year trial 

investigating the trait of REI in New Zealand maternal sheep breeds. Details of the animals and traits 

measured during the test period are in Johnson et al. (2016) with the addition of animals from 

Greenhouse Gas selection lines (Elmes et al. 2014).  Briefly, 3 cohorts of 200 9-month old growing 

ewes of composite New Zealand maternal genetics were housed in an indoor feed intake facility in 

mobs of 40 and given ad libitum access to lucerne pellets via automated feeders which recorded 

individual feeding events per animal through the use of electronic identification tags.  The 

adjustment period was 14 days and the test period was 42 days.  The live weight (LWT) of the 
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animals was measured twice weekly in the morning, un-fasted.   

Analyses.  Residual energy intake was estimated as described in detail by Johnson et al. (2016) 

using the model first described by Koch et al. (1963).  Briefly, REI is the residual value of a 

regression model where energy intake is the dependent variable with mid-test metabolic live weight 

(LWT0.75), and daily liveweight gain (average daily gain: ADG) fitted as independent variables.   

In order to investigate the impact on environmental variance of reduced test lengths datasets 

based on cumulative days’ worth of data were generated.  For daily energy intake, 42 datasets were 

generated for each of the 3 cohorts including all data collected up to and including the day 

represented by the dataset. Specifically, dataset 1 only contained daily energy intake (DEI) data 

collected on day 1 of the trial, with Dataset 2 containing data collected on days 1 and 2 of the trial.  

Dataset 42, the final dataset, contained data from all of the days within the test period. Given LWT 

was only measured twice weekly only 13 of the datasets included additional live weight data.  For 
the datasets that contained additional LWT data, ADG and mid-test metabolic live weight were re-

calculated and REI re-estimated.  A summary of the data for the full 42 day dataset is in Table 1.   

The traits of DEI, LWT, ADG and REI from each cohort-subset of data were individually analysed 

in GenStat Version 13 (Payne et al. 2009) using a REML model and the estimate of error 

(environmental) variance reported.  All 42 datasets within a cohort were analysed for the trait of 

DEI, however, only datasets containing additional LWT data were analysed for the remainder of the 

traits.  The environmental variances from each analysis were collated for each trait and plotted per 

cohort against day of trial to demonstrate the change in environmental variance within increasing 

amounts of data contributing to the trait estimation. 

Correlation coefficients were estimated for each cohort for REI contrasting the full 42-day 

dataset with the sequential datasets.   The correlation coefficients were plotted against day of trial to 
observe the change in correlation with increasing amounts of data contributing to the estimation of 

REI. 

 

Table 1.  Summary statistics (mean ± std (range)) for 3 cohorts of 9-month old ewe lambs measured 

to estimate residual energy intake, with data collected over the full 42 day test period. 

 

 Cohort 1 Cohort 2a Cohort 2b 

Mid-test period metabolic midweight  

(LWT0.75) 

19.2 ± 1.8  

(14.1 – 25.7) 

21.2 ± 1.6  

(16.2 – 26.3) 

22.2 ± 1.8  

(17.0 – 27.6) 

Daily energy intake (MJ ME/day) 21.6 ± 2.9  

(12.7 – 29.3) 

23.3 ± 3.0  

(15.5 –31.38) 

29.7 ± 3.2  

(18.6 –36.8) 

Average daily gain (g/day) 314 ± 50  

(190 – 478) 

317 ± 58  

(178 – 503) 

380 ± 64  

(205 – 702) 

Residual energy intake (MJ ME/day) 0.0 ± 1.0  

1.0 (-2.8 – 3.4) 

0.0 ± 1.0  

(-2.5 – 2.8) 

0.0 ± 1.0  

(-4.1 – 2.5) 

 

RESULTS AND DISCUSSION 

Optimising the test length to estimate residual feed intake values is important in determining the 
potential throughput of animals tested, and also the cost of generating the trait data if it is to be 

implemented into breeding programmes. The changes in environmental variance estimates with 

increasing test length are presented in Figure 1 for 3 cohorts of growing maternal 9-month old ewes.    

For all traits the environmental trait variances stabilise with 21 to 28 days of measurements.  The 

only trait to show a small consistent trend of an increase in variance is live weight, however, this 

reflects differences in growth rate between individuals which results in further divergence between 

animals across the time period. 
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The phenotypic correlation between REI estimated for the different test lengths with the estimate 

from the full 42 day test length are in Figure 2 for the 3 cohorts.  The correlation between the full 

dataset was greater than 0.9 with just 21 days’ data, and greater than 0.95 with 32 days’ data. 

  

a) b)  

c) d)  
Figure 1. Cumulative error (environmental) variance with additional test length for a) daily energy 

intake, b) live weight, c) average daily gain and d) residual energy intake for three cohorts (,1; 

,2; ,3) of New Zealand maternal ewe lambs measured for daily intake through an indoor facility 

capturing daily feed intake data with live weight measured twice weekly. 

 

 

 
Figure 2. Correlation coefficient for residual energy intake calculated within increasing test length 

compared to the full 42-day test length for three cohorts (,1; ,2; ,3) of New Zealand maternal 

ewe lambs measured for daily intake through an indoor facility capturing daily feed intake data.  

 

In beef studies, it has been concluded that the length of time required for the variance of feed 

intake to stabilise is less than is required to obtain stable variances for the growth rate of the animals 

being measured (Archer et al. 1997; Wang et al. 2014).  However, further research has demonstrated 

that the frequency with which the live weight measurements are made also influences the test length 
required to obtain stable growth rate data (Archer et al.  1999; Kearney et al. 2004).  The conclusion 

from these studies was that feed intake in cattle can accurately be estimated with 35 days data, with 

growth estimated accurately with 56 days using daily automated weighing, but up to 70 days if only 

weighed fortnightly.  
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There is less published literature investigating test length in sheep.  In the study of Cockrum et 

al. (2013) only variance estimates for REI were reported, and did not observe the same level of 

stabilisation within the short time frames observed in this study. However, the proportion of 

variation in RFI explained by live weight and growth rate in their study was considerably lower than 

that reported for Cohort 1 by Johnson et al. (2016), which suggests that overall their feed intakes 
were influenced by other factors not accounted for in their models which could have contributed to 

increased variability.  Unpublished results from a study in Merinos support the findings of this study, 

in that their feed intakes stabilised by 3 weeks (B. Pagagoni pers. comm.). 

All production traits are subject to environmental variance, as they are not strictly under genetic 

control.  The results from this study support that the trial design, including the feed offered and the 

facility developed do not result in a large amount of ongoing environmental variability, and as such 

allow phenotypic estimates of REI to be obtained within a relatively short time frame when 

compared to the cattle equivalents.   

Given the ultimate aim of the genetic selection for REI, as reported by Archer et al. (1997), there 

is a further need to consider the genetic correlations for different test lengths.  Such an analysis will 

be conducted once further cohorts are collected.  Based on the results of Archer et al. (1997) it is 

likely the genetic correlations will be high for at least an equivalent if not shorter time period than 
is required to obtain high phenotypic correlations.  At the time of publication, the feed intake facility 

used in this study is being re-located. Further analysis on subsequent cohorts measured in the new 

facility will be required to confirm the findings of this paper. If it is validated, the current test length 

for growing maternal lambs has the potential to be reduced.   
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SUMMARY 

The inheritance of wrinkle on the neck and on the tail was investigated in a medium micron 

Merino flock in a Mediterranean environment from birth to hogget shearing. It was moderate to 
highly heritable (0.32 to 0.74) at all ages but it was not genetically the same trait at the different 

ages. Log transforming the data did not generally increase the heritability of the trait. Body wrinkle 

at birth was genetically moderately to lowly correlated with neck and skin wrinkle at later ages. The 

best time to score tail wrinkle in a Mediterranean environment is between yearling and hogget age 

as this is when the heritability and variation of the trait was the highest.   

INTRODUCTION 

High breech or tail skin wrinkle is one of the most important predisposing factors for breech 

strike in Merino sheep (Greeff et al. 2014; Smith et al. 2009). Morley et al. (1952), Brown et al. 
(2010), Greeff et al. (2014), Hatcher and Preston (2015) and Smith et al. (2009) showed that skin 

wrinkle is a heritable trait and Greeff et al. (2014) showed that neck wrinkle at yearling age was the 

best indicator trait to select for reduced wrinkle. Scholtz et al. (2010) reported that the correlations 

between neck wrinkle, body wrinkle and breech wrinkle scored at hogget age were generally high 

(rg > 0.89), implying that selecting on any trait will result in a correlated response in the other.  

However, the Mediterranean regions of Australia suffer from large fluctuations in rainfall from hot, 

dry summers to cold, wet winters. This results in dramatic changes in the feed supply during the 

year, often requiring animals to be supplementary fed during the dry times of the year. Schlink et al. 

(2000) and Herselman and King (1993) showed that large changes in skin wrinkles and skin weight 

can occur during the year in Merino sheep on high and low planes of nutrition. Adding the effect of 

different times of crutching and shearing, growers need to consider a range of environmental and 
management factors under their specific production system, in selecting the best indicator trait for 

reduced skin wrinkle at different ages. 

 

MATERIAL AND METHODS 

The Australian Wool Innovation Breech strike flock of the Department of Agriculture and Food 

Western Australia was used to investigate the inheritance of neck and tail wrinkle during the year 

up to hogget age, as well as the genetic and phenotypic relationships between neck and tail wrinkle 

from birth to hogget shearing. 

The flock consisted of 3623 lambs born from 1674 dams that were mated to 80 rams over a four-

year period (2010 to 2013). The lambs were scored for body wrinkle at birth and for neck wrinkle 

and tail wrinkle at marking, weaning, early post-weaning, post-weaning, yearling and hogget 

shearing (16 months), using the visual sheep scoring system (AWI, 2008). As the animals in the 
flock were relatively plain, and previous studies (Greeff, submitted) have shown that tail wrinkle 

was a better indicator trait to differentiate between sheep than breech wrinkle, tail wrinkle was used 

in this study. Skin wrinkle was scored from 1 (plain) to 5 (high wrinkle count), and half scores were 

allocated where appropriate. 

Lambs were born in July/August, and marked in late August. They were weaned at 

approximately 100 days of age. The lambs were shorn approximately 5 weeks after weaning, and 
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crutched at 12 months of age in July the following year. They were shorn with 12 months wool in 

early December when the sheep were approximately 18 months of age.     

 

STATISTICAL ANALYSIS 

ASREML (Gilmour et al. 2009) was used to analyse the data. A series of univariate analysis 
were carried out on each of the skin traits (body wrinkle at birth, neck and tail wrinkle at marking, 

weaning, early post-weaning, post-weaning, yearling, hogget and at post hogget shearing) to obtain 

estimates of the heritability of skin wrinkle at different ages on the neck and tail. Year of birth (2010-

2013), age of the dam (2-7 years), birth status (single or multiple) and sex of the lamb were fitted as 

fixed effects. All two-way interactions were initially fitted. Statistically non-significant factors were 

dropped from the final model.  This was followed by a bivariate analysis to obtain genetic and 

phenotypic (co)variances to estimate the phenotypic and genetic correlations between skin wrinkle 

on the neck and on the tail at different ages. Two analyses were carried out on each trait: one on the 

raw trait scores and one where the trait had been log transformed (log(wrinkle+10)) to normalise the 

data as it was skewed distributed in all cases, with low numbers of animals in the higher wrinkle 

categories. 

  

RESULTS AND DISCUSSION 

Table 1 shows that the highest expression of wrinkle was recorded for body wrinkle at birth. This 

is contrary to eastern state results which show that the highest expression of skin wrinkle was at 

weaning (Dun and Eastoe, 1970). In this study, the average neck and tail wrinkle then reduced by 

more than one unit score at marking, weaning, early and post weaning. This trend can be explained 

as it is difficult to score wrinkle on sheep with long wool. However, at yearling and at hogget age, 

tail wrinkle increased and was higher than neck wrinkle. This was probably due to the fact that tail 

wrinkle was scored post shearing in order to be able to better differentiate between animals. In 

addition, the scoring system may have also contributed as half scores were also used to capture as 

much of the differences as possible. 

 

Table 1. Average skin wrinkle scores (± SD) and the number of records in different ages 

 

 Birth Marking Wean 

Early post 

weaning 
Post 

weaning Yearling Hogget  

Body wrinkle 2.86       

SD 1.04       

Neck wrinkle  1.73 1.68 1.85 1.63 1.26 1.43 

SD  0.55 0.52 0.50 0.37 0.58 0.53 

Tail wrinkle  1.39 1.28 1.47 1.02 2.11 2.12 

SD  0.42 0.45 0.41 0.09 0.95 0.94 

No. of records 3623 2782 3585 1944 3501 1709 1680 

 

Body wrinkle at birth showed the highest amount of phenotypic variation, followed by tail 

wrinkle at yearling age. The lowest amount of phenotypic variation was found for post weaning 

wrinkle score. The heritability estimates of neck (Table 2) and tail wrinkle (Table 3) in general 
agreed with previously published results (Morley, 1952). However, it differed at different ages. The 

highest estimate on the raw data was at yearling age (0.74) which decreased to 0.37 when log 

transformed. Transformation of wrinkle sometimes increased the heritability estimate but in other 
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cases it decreased it. It appears that the accuracy of selection is higher for untransformed skin wrinkle 

score data in this flock. 

The phenotypic correlations between the neck wrinkle traits varied from 0.27 to 0.65. Traits 

closer together had higher correlations than traits further apart. However, neck wrinkle at yearling 

age appears to be less strongly correlated with the neck wrinkle traits scored at other times.   
The genetic correlation between neck wrinkle, and between tail wrinkle at different ages, were 

higher than the phenotypic correlations. Tail wrinkle and neck wrinkle were genetically highly 

correlated when scored at the same age (rg > 0.085) (estimates not shown). However, the genetic 

correlations between body wrinkle at birth, and neck or with tail wrinkle was generally low. Body 

wrinkle at birth was most correlated with neck wrinkle (rg = 0.54) and tail wrinkle (rg = 0.58). This 

indicates that body wrinkle at birth is not genetically the same trait as neck or skin wrinkle later in 

life.  

 

Table 2. Phenotypic variances (Vp), heritability (on diagonal), phenotypic correlations (above 

diagonal), and genetic correlations (below diagonal) of body wrinkle at birth (BBDWR) and 

neck (NKWR) at marking (M), weaning (W), early post weaning (E), post weaning (P), 

yearling (Y) and hogget (H) shearing  

 

 BBDWR MNKWR WNKWR ENKWR PNKWR YNKWR HNKWR 

Raw wrinkle scores  

Vp 1.01 0.31 0.27 0.25 0.14 0.33 0.28 

BBDWR 0.53 0.37 0.26 0.24 0.14 0.17 0.19 

MNKWR 0.54 0.66 0.48 0.51 0.30 0.27 0.40 

WNKWR 0.36 0.77 0.42 0.54 0.39 0.42 0.38 

ENKWR 0.34 0.78 0.77 0.55 0.47 0.39 0.47 

PNKWR 0.20 0.59 0.64 0.78 0.37 0.35 0.39 

YNKWR 0.25 0.55 0.69 0.71 0.64 0.32 0.65 

HNKWR 0.33 0.64 0.68 0.82 0.74 0.90 0.47 

SE range 0.04-0.07 0.02-0.08 0.02-0.07 0.02-0.08 0.02-0.08 0.02-0.05 0.02-0.02 

Log transformed wrinkle score (+10) 

Vp 0.006 0.002 0.002 0.002 0.001 0.002 0.002 

BBDWR 0.53 0.36 0.26 0.24 0.14 0.16 0.19 

MNKWR 0.52 0.62 0.50 0.47 0.31 0.27 0.39 

WNKWR 0.39 0.79 0.38 0.61 0.39 0.48 0.37 

ENKWR 0.37 0.80 0.82 0.48 0.49 0.39 0.46 

PNKWR 0.21 0.61 0.64 0.83 0.39 0.36 0.37 

YNKWR 0.23 0.45 0.77 0.59 0.62 0.37 0.66 

HNKWR 0.36 0.67 0.66 0.85 0.77 0.92 0.43 

SE range 0.04-0.10 0.02-0.08 0.02-0.07 0.02-0.10 0.02-0.06 0.02-0.07 0.02-0.05 

 

CONCLUSIONS 

Neck and tail wrinkle were moderately to highly heritable traits and log transforming the data 

did not appear to improve the accuracy of selection. Body wrinkle at birth and neck and tail wrinkle 

at marking, was not strongly genetically correlated to skin wrinkle at later ages. This study shows 

that the best time to measure skin wrinkle on the tail or neck was after crutching at yearling age or 
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after shearing at hogget age in a Mediterranean environment as this is when the heritability and 

phenotypic variation was highest. This time also coincided with the fly season in this environment.  

 

Table 3. Phenotypic variances (Vp), heritability (on diagonal), phenotypic correlations (above 

diagonal), and genetic correlations (below diagonal) of body wrinkle at birth (BBDWR) and 

tail wrinkle (TAWR) at marking (M), weaning (W), early post weaning (E), post weaning (P), 

yearling (Y) and hogget (H) shearing  

 

 BBDWR MTAWR WTAWR ETAWR YTAWR HTAWR 

Raw wrinkle scores 

Vp 1.01 0.16 0.19 0.16 0.52 0.17 

BBDWR 0.54 0.39 0.19 0.25 0.16 0.16 

MTAWR 0.58 0.56 0.40 0.48 0.26 0.33 

WTAWR 0.28 0.52 0.43 0.51 0.35 0.21 

ETAWR 0.42 0.67 0.80 0.46 0.55 0.48 

YTAWR 0.37 0.58 0.71 0.87 0.74 0.66 

HTAWR 0.27 0.55 0.40 0.79 0.90 0.47 

SE range 0.05-0.08 0.02-0.07 0.02-0.07 0.02-0.06 0.02-0.05 0.02-0.05 

Log transformed wrinkle score (+10) 

Vp 0.006 0.001 0.001 0.001 0.002 0.001 

BBDWR 0.54 0.37 0.19 0.24 0.15 0.17 

MTAWR 0.56 0.58 0.41 0.43 0.23 0.35 

WTAWR 0.31 0.55 0.35 * 0.39 0.21 

ETAWR 0.38 0.65 * 0.42 * * 

YTAWR 0.35 0.47 0.72 * 0.37 0.66 

HTAWR 0.28 0.59 0.41 * 1.01 0.48 

SE range 0.04-0.10 0.02-0.10 0.02-0.08 0.02-0.07 0.03-0.06 0.02-0.06 

* Not estimable 
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SUMMARY 

Genotyping strategies for both ram and ewe selection candidates were investigated to maximise 

the benefit of genomic selection while minimising genotyping costs. Through stochastic simulation 

we investigated both early and late-stage genomic selection of rams using a selection index that 

contained an early in life measurement (post-weaning weight) and a hard to measure trait (intra-

muscular fat) that was not measured on selection candidates. We also simulated genotyping 

strategies for female selection candidates in breeding programs using natural mating, multiple 

ovulation and embryo transfer (MOET) or juvenile in vitro fertilisation and embryo transfer 
(JIVET). Our results showed that genomic selection of rams lifted genetic gain by 40%. Genomic 

testing the top 20% of ram selection candidates achieved 80% of the maximum benefit using late-

stage genomic selection, while testing 47% of the top ranked rams implementing early-stage 

genomic selection was required to achieve 80% of the benefit. Genetic gain lifted by a maximum of 

15-65% for genomic testing in (only) ewe selection candidates. To achieve 80% of the maximum 

benefit of genomic selection, 65%, 35% and 45% of ewe selection candidates required genomic 

testing each year for natural, MOET and JIVET breeding programs, respectively. Genotyping ram 

selection candidates provided the best value for money. 

 

INTRODUCTION 

Limited research has been published about strategies to genotype selection candidates while 
minimising costs. Van der Werf et al. (2014) and Horton et al. (2015) proposed that genotyping 20% 

of ram selection candidates will return 80% of the maximum potential benefit (i.e. compared with 

testing all rams) and assuming 2-stage genomic selection. Van der Werf et al. (2014) also discussed 

multiple trait indexes with unfavourable correlations between early measured traits and late-in-life- 

or hard-to-measure traits and agreed with Sise and Amer (2009) that more candidates would need to 

be tested by genomic methods compared with simple single-trait indices. There is little published 

data investigating genotyping methods of the optimisation of ewe selection candidates, particularly 

when using female reproductive technologies.  

This paper aims to investigate genotyping strategies for early-stage and late-stage selection for 

ram selection candidates using a multi-trait index with a hard-to-measure trait to maximise genetic 

progress while minimising testing costs. This paper also investigates genotyping strategies in ewes. 

 

MATERIALS AND METHODS 

Stochastic simulation was used to model closed breeding schemes for 500 sheep. For each 

scenario we generated a base population of unrelated animals, and subsequently established a 15-

year breeding program with overlapping generations. We simulated an early-in-life measured trait 

(post-weaning weight - PWT) and a trait that did not get measured (intra-muscular fat - IMF).  

Heritabilities, genetic and phenotypic (co)variances for the parameters were used from Swan et al. 

(2015). Each year, individual animals had breeding values estimated (EBV) via pedigrees based on 

multi-trait Best Linear Unbiased Prediction (BLUP) using ASReml software (Gilmour et al. 2009).  
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For each breeding program and index the impact of genomic selection (GS), assuming all animals 

had genomic information available at birth, was assessed. The cost of GS was not accounted for in 

this study. Genomic information was modeled following the method of Dekkers (2007) which 

simulates a genomic breeding value as a correlated trait with a heritability of 0.999 and a correlation 

r to the measured trait, where r is the accuracy of the genomic breeding value for each trait. The 
accuracy of the genomic test varied for each trait (Swan et al. 2015).  

Genotyping strategies 

Truncation selection was used in all breeding programs (i.e. the highest ranked rams were 

randomly mated with the highest ranked ewes). Number of candidates genotyped in each breeding 

program ranged from zero (control) to 100% (maximum benefit). No ewe or ram selection 

candidates were genotyped in Scenarios 1-2 and Scenarios 3-5, respectively. 

Early-stage selection juvenile rams (Scenario 1) 
Juvenile rams were eligible to be genotyped prior to any phenotypic measurements or BLUP 

breeding values. Juvenile rams were sorted from highest ranked to lowest ranked based on parent 

average breeding values. No ewe selection candidates were genotyped in this scenario.  

 Late-stage selection mature rams (Scenario 2) 

Ram selection candidates were eligible to be genotyped at genetic evaluation that included a 

measurement of PWT and a BLUP calculation had been made. These rams were then sorted from 

highest lowest based on index breeding values. No ewe selection candidates were genotyped in this 

scenario.  

Late-stage selection mature ewes for natural mating (Scenario 3) 
Ewe selection candidates prior to their first year of mating were eligible to be genotyped after 

the initial measurement of PWT and a BLUP calculation had been made. These ewes were then 

sorted similar to Scenario 2. In the natural mating scenario 500 ewes were selected with the 

probability of one progeny born per mating.  

Late-stage selection mature ewes for MOET matings (Scenario 4) 

Ewe selection candidates prior to their first year of mating were eligible to be genotyped after 

the initial measurement of PWT and a BLUP calculation had been made. These ewes were then 

sorted similar to Scenario 2. In the MOET mating scenario 125 ewes were selected with the 

probability of zero to eight progeny born per mating with an average of 4 similar to Granleese et 

al.’s (2016) method.  

Early-stage selection juvenile ewes for JIVET matings (Scenario 5) 
Juvenile ewes were eligible to be genotyped prior to any phenotypic measurements or BLUP 

breeding values similar to Scenario 1. Because the generation interval for dams in JIVET sheep 

breeding programs are as little as 6 months, Scenario 5 required 2 rounds of mating a year. In the 

JIVET mating scenario 64 ewes were selected annually (or 32 each mating round) with the 

probability of zero to sixteen progeny born per mating, with an average of 8, similar to Granleese et 

al.’s (2016) method.  

 

RESULTS AND DISCUSSION 

When there was no genotyping in any strategy MOET breeding programs yielded the highest 

genetic gain (Figure 1a). However as genotyping increased in selection candidates, JIVET breeding 

programs yielded the highest genetic gain (Figure 1a). This corresponds to Granleese et al.’s (2016) 
results. However, genotyping male selection candidates resulted in the most cost-effective way to 

increase genetic gain in a breeding program when compared to the cost of female reproductive 

technologies.  

The maximum increase due to genomic selection in rams lifted genetic gain by 40% (Figure 1b). 

Genomic testing of the top 20% of ram selection candidates achieved 80% of the maximum benefit 

using late-stage genomic selection, while 47% required testing in early-stage genomic testing 
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(Figure 1c). This demonstrates the importance of using initial measurements and screening on 

breeding values that use selection indexes that have late-in-life or hard to measure traits.  Genetic 

gain lifted by a maximum of 15-65% for genomic testing in ewe selection candidates (Figure 1b). 

To achieve 80% of the maximum benefit of genomic selection, 65%, 35% and 45% of ewe selection 

candidates required genomic testing each year for natural, MOET and JIVET breeding programs, 
respectively (Figure 1c).  

 

 
Figure 1: All x-axis are presented in proportion of selection candidates genotyped. a) Genetic gain in 

genetic standard deviations of the breeding objective; b) Increased genetic gain from genotyping 

proportions of selection candidates (note that zero % is zero genotyping); c) Percentage of maximum 

benefit of genotyping selection candidates (note that 100% genotyping is 100% of the benefit) 

 

With the additional cost of producing lambs using female reproductive technologies (Granleese 

et al. 2017), genomic selection of ram selection provides the most favourable cost-benefit. Van der 

Werf et al. (2014) raised the idea of genotyping proportions of male selection candidates to receive 

the majority of the potential benefit. Our study demonstrates similar outcomes and reinforces that 

recording initial information prior to genotyping is crucial to achieving the “20-80” rule in ram 

selection candidates. Furthermore, important rules can be learned for using genomic selection in 

female selection candidates. It seems uneconomical to genotype all female selection candidates in 
natural mating or artificial insemination programs, particularly while genotyping costs are still 

relatively high. It would also be rare to find any sheep flocks in Australia that have their entire 

nucleus drop born to reproductive technologies as in our scenarios 4 and 5. However, many sheep 

studs in Australia have a proportion of their lambs born via reproductive technologies. This study 

and previous studies demonstrate the strong synergies between the two. Therefore, from this study 

we can use lessons to apply practically. For example if a breeder wanted to perform 10 MOETs or 

JIVETS on ewes, to get 80% of the maximum genomic selection benefit they should genotype 35 

or 45 selection candidates, respectively.     

 

CONCLUSIONS 

Genotyping strategies in sheep breeding programs are necessary to reduce cost. This study 
provides evidence that late-stage genomic selection is far more efficient than early-stage genotyping 

methods particularly when there is late-in-life or hard-to-measure traits in the breeding objective. 
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We demonstrate that strong synergies exist between genomic selection and female reproductive 

technologies and show that genotyping efficiencies exist too with females when using reproductive 

technologies.    
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SUMMARY 
Achieving increased adoption of objective genetic information has been a long-running issue in 

the Australian sheep industry, particularly for wool sheep. Improving the understanding within the 

commercial ram buying sector of Australian Sheep Breeding Values and how they can enhance the 

accuracy of genetic selection will lead to improved genetic gain in commercial flocks and increase 

demand for seedstock producers to adopt objective genetic selection. RamSelect workshops are 

designed to improve the knowledge and confidence of ram buyers in the use of breeding values to 

make informed decisions when purchasing rams based on both objective and visual assessment. A 

coordinated approach to the marketing and delivery of RamSelect workshops has been used in South 

Australia with great success. 

 

INTRODUCTION 
Sheep Genetics (SG) provides a national genetic information and evaluation service for the meat 

and wool sectors of the Australian sheep industry, delivered as LAMBPLAN, MERINOSELECT 

and DOHNE. Sheep are ranked according to various production traits using Australian Sheep 

Breeding Vales (ASBVs). ASBVs provide an estimate of an animal’s genetic merit and performance 

that will be passed onto their progeny. ASBVs enable sheep breeders to select rams based on genetic 

potential, rather than their visual appeal, which can be affected by environment and management. 

Selecting animals on their genetic merit for the traits that are important to the business will improve 

the rate of genetic gain, more reliably meet market specifications and improve overall productivity. 

Commercial ram buyers can use ASBVs to objectively compare rams and identify those that best 

suit their production system and target markets. However, the use of ASBVs by commercial ram 

buyers has historically not been as high as it could be (particularly in the wool/Merino sector), due 

mainly to a lack of understanding and thus mistrust of the science, and its application to their 

business.  

The CRC for Sheep Industry Innovation (Sheep CRC) and the NSW Department of Primary 

Industries, with input from Sheep Genetics, Meat and Livestock Australia, Australian Wool 

Innovation, the South Australian Research and Development Institute (SARDI) and the private 

sector, developed the RamSelect workshop with the aim of increasing ram buyer confidence in using 

ASBVs to select the best value rams for their breeding objective. The workshop provides skills in: 

• understanding ASBVs and indexes and how to use them 
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• understanding the value of selecting rams based on the expected performance of their 

progeny using ASBVs 

• assessing, grading and valuing rams for purchase using both visual assessed traits and 

ASBVs 

• describing a breeding objective 

• developing a strategy for buying rams at the next auction or selection day 
 

RamSelect received the Award for Excellence in Innovation at the 2014 CRC Association Awards. 

It was deemed to have resulted in significant uptake of new research and resulted in major 

improvements to industry productivity. 

 

APPROACH 

In April 2013, Rural Solutions SA, SARDI and the Sheep CRC recognised that a more 

coordinated approach to delivery of training to commercial sheep producers and their service 

providers on the commercial application of ASBVs, may increase the uptake and adoption of this 

proven technology.  A coordinator was appointed to work within South Australia. The role was to 

identify and approach potential workshop hosts, coordinate a network of RamSelect deliverers, 

create promotion and marketing opportunities, and manage a state wide delivery calendar. 

A network of ten service providers from both the government and private sector was established.  

New deliverers, who had not delivered the workshop previously were mentored and trained through 

co-delivery of the workshop.  Regular phone meetings of the network were held where planning, 

strategies and experiences were discussed, and these were complimented by regular email contact.  
Opportunities were identified and delivery coordinated across the state.  Potential hosts were 

identified by the network members and the coordinator was able to contact them personally.  The 

most successful approach in contacting studs as potential hosts was a personal email with 

information attached about the workshop, with a follow-up phone call. 

Workshop hosts were encouraged to actively seek involvement from local stock agents and also 

to involve local students when appropriate. 

The coordinator was able to organise promotional articles which appeared in print in the State 

rural press, regional newspapers and breed society publications, as well as electronic media. Press 

coverage of workshops across a range of breeds was also organised. Attendance at key industry 

events such as the Adelaide Show and SG Regional Forums also enabled promotion of the concept 

of hosting workshops. Education was also organised with the rural media, to ensure that rural 

reporters had a sound understanding of ASBVs and how to report them. 

 
RESULTS AND DISCUSSION 

During the period April 2013 to October 2015, 34 RamSelect workshops were delivered in South 

Australia, providing the latest approaches to using ASBVs for ram selection to 364 producers, 62 

stock agents and 274 tertiary and secondary students.  The most popular time for workshop delivery 

was in July – August which is in the lead up to most studs’ annual sales.  This means that workshop 

participants have an opportunity to apply their learnings in a practical situation very soon after the 

workshop.  The majority of studs who hosted workshops were from the traditional meat breeds, but 

an increasing number of Merino studs became involved towards the end of this period.  Stock agents 
were actively encouraged to be involved with workshops, and the large number (62) who did 

participate over this time has led to significant increases in their knowledge and confidence using 

ASBVs in ram buying decisions. 

Evaluation of the RamSelect workshops nationally has demonstrated very positive support from 

participants: 
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 93% indicated they now understood how to make better use of ASBVs 

 87% of participants could see how to improve their ram selection to increase returns 

 87% indicated they would use ASBVs to help select rams in the future 

 74% said they would ask their ram breeder for more information on the rams he is offering 

 Participants rated the workshop 8.5 out of 10 for usefulness in assisting with ram selection 

 Participants were highly likely to recommend the workshop to others 

 

Many seedstock producers have reported an increased interest in the use of ASBVs by 

commercial ram buyers when they are making their ram selections.  Producers who previously were 

not interested in looking at ASBV figures prior to purchase, possibly due to mistrust as a result of 

lack of understanding, now request the figures and actively scrutinise them prior to making ram 

purchase decisions. 

  

The key success factors with this approach taken in South Australia were: 

 A coordinated network of experienced, knowledgeable and credible deliverers, covering 

all regions of the State, and with a range of experiences enabling effective matching of 

deliverers with workshop opportunities 

 Active networking of the delivery group providing access to extensive producer networks 

 The network provided a supportive professional group that enabled sharing of experiences 

and ideas with workshop delivery 

 Two person delivery of the workshops works well for engagement and enabled mentoring 

of new deliverers 

 The dedicated coordinator was able to spend time approaching potential hosts personally, 

and also attend industry events with the express purpose of identifying potential workshop 

hosts 

 The coordinator was also able to dedicate time to promotional activities 

 

ACKNOWLEDGEMENTS 

  The Sheep CRC co-funded the delivery of RamSelect workshops with participants paying a fee 

to attend and hosts providing substantial in-kind contributions. The role of coordinator was funded 

by a grant from the former Department of Further Education, Employment, Science and Technology 
in South Australia, administered by SARDI and by the Sheep CRC. 





Proc. Assoc. Advmt. Anim. Breed. Genet. 22:341-344 

341 

USE OF GENOMIC DATA TO DETERMINE BREED COMPOSITION 

OF AUSTRALIAN SHEEP 

 

P.M. Gurman, A.A. Swan and V. Boerner 

 
Animal Genetics and Breeding Unit1, University of New England, Armidale, NSW 2351, 

Australia 

 

SUMMARY 

The Australian sheep industry is characterised by the use of many sheep breeds and regular 

crossing among them. For the purposes of genetic evaluation, sheep are currently assigned breed 

proportions based on pedigree. SNP genotypes have been used in many applications to reveal 

population structure including livestock breeds. In this paper, we investigate the use of SNP 

genotypes to determine breed structure in Australian sheep breeds using the genotype database 

assembled for genetic evaluation. Algorithms implemented in two software programs, 

ADMIXTURE and BreedComp were able to identify sheep breeds and genetic groups within the 

Merino breed. These results can potentially lead to more accurate identification of breed content, 
and more accurate predictions of breeding value through improved allocation to genetic groups. 

 

INTRODUCTION 

A number of sheep breeds play an important role in the Australian sheep meat and wool 

industries, with the Merino dominant for wool production, Border Leicester, Coopworth and 

composite breeds used for maternal performance, and Poll Dorset, Texel, and Suffolk and White 

Suffolk used as terminal sires for meat production. Crossing among these breeds is common not 

only at the commercial level, but also in seed-stock flocks where some breeders seek to exploit breed 

differences. Considerable genetic diversity is present within the Merino breed, such that many flocks 

are considered to be different genetic groups for the purposes of evaluation. Currently, the evaluation 

system accounts for breed and within-breed genetic group differences using the Westell-Quaas 
approach (Westell et al. 1988), in which the breed composition of each animal is modelled through 

the pedigree. With increasing availability of genomic data, the utility of this data in estimating sheep 

breeds and genetic groups within breeds has been examined. Various authors have investigated the 

use of genomic data to identify population structures in beef breeds (Sölkner et al. 2010; Kuehn et 

al. 2011a; VanRaden et al. 2011; Frkonja et al. 2012) and sheep breeds (Dodds et al. 2013). In this 

paper, we investigate the use of genomic data to identify breed and within-breed population 

structures in Australian sheep. 

 

MATERIALS AND METHODS 

50K SNP genotypes (as described by Moghaddar et al. (2015)) and pedigree-based breed 

proportions were collated for 31,125 sheep from the reference and industry populations used for 

genomic evaluation in Australia. These data contained records for  straight-bred sheep with 623 
Border Leicester, 1,966 Poll Dorsets, 28 Texels, 37 Suffolks, 39 White Suffolks, and 14,440 

Merinos, where “straight-bred” is defined here as containing at least 0.95 of that breed proportion 

from the pedigree. Of the recorded straight-bred Merino sheep, some were recorded as straight-bred 

of a particular Merino group with 456 as ‘ultra-fine’, 2,907 as ‘fine-medium’ and 967 as ‘strong’. 

The genomic relationship matrix (G) was calculated using the method by Yang et al. (2010) and a 

singular value decomposition performed on the G matrix, such that 𝐺 = 𝑈Σ𝑉. Vectors of the U 
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matrix were then analysed visually in ‘R’ (R Core Team 2016) to determine if breeds and genetic 

groups could be identified. 

Analytical tools were used to predict breed and genetic group proportions including supervised 

ADMIXTURE (Alexander et al. 2009) and constrained genomic regression, hereby referred to as  

BreedComp (Boerner, 2017), which is a constrained (i.e. estimated proportions are less than one) 
version of the approach by Chiang et al. (2010) and Kuehn et al. (2011).  For both algorithms, a 

training set of animals was created, comprising animals from straight-bred animal clusters for each 

breed or genetic group of Merinos based on previous pedigree-based breed proportions. This training 

set contained seven breeds,  497 Border Leicesters, 1902 Poll Dorsets, 21 Texels,  36 Suffolks, 339 

‘ultra fine’ Merinos, 488 ‘fine-medium’ Merinos and 216 ‘strong’ Merinos, resulting in 3,499 sheep 

used for training and 27,626 sheep for validation. While a group of straight-bred White Suffolks 

were recorded, these animals did not appear to be genetically different to sheep recorded as partly 

White Suffolk. This breed was not included in the training animals, with animals previously assigned 

to this breed attributed to proportions of the other breeds by the algorithms.  

Prediction accuracy was measured using Root Mean Squared Error (RMSE), based on the 

differences between current pedigree based breed assignments, and those estimated by the predictive 

algorithms. RMSE values for each breed or genetic group were calculated by 𝑅𝑀𝑆𝐸 =

√(∑ (𝑞̂𝑖 − 𝑞𝑖)
2𝑛

𝑖=1 )/𝑛 where 𝑞̂𝑖 is the breed proportion predicted using genomic data for the 𝑖th 

animal, 𝑞𝑖 is the breed proportion from the pedigree for the 𝑖th animal, and 𝑛 is the number of animals 

modelled. RMSE was calculated for each breed individually, as well as an overall value across all 

breeds. Algorithms producing lower RMSE values were deemed to produce more accurate estimates. 

 

RESULTS AND DISCUSSION 

Breeds could be differentiated in plots of the first two vectors of the 𝑈 matrix (see Figure 1). 

Distinct clusters of straight-bred Border Leicester, Poll Dorset and Merino animals could be 

identified in the extremes of these plots from their pedigree based breed assignments and a small 

cluster of Suffolk animals could be identified in the Suffolk plot. Further, groups of crossbred 

animals could also be differentiated in between the clusters of straight-bred animals, e.g. a group of 

¼ Merino and ¾ Border Leicester can be seen in the lower middle of the their respective plots. This 

is also true for other clusters of animals in these plots, which can be attributed visually to varying 

combinations of breeds.  

 It was also possible to identify genetic groups of Merino animals in the 4th and 5th vectors of the 

𝑈 matrix (see Figure 2), with differentiation of ultra-fine, fine-medium and strong sheep possible. It 
is evident from these plots that some sheep previously assigned to the fine-medium group may 

instead belong to the ultra-fine group. This would suggest that historically the fine-medium category 

has become a default category for sheep that have been hard to group. It can also be seen in Figures 

1 and 2 that many animals appear to have been assigned to the wrong breed or genetic group.  

The ADMIXTURE and BreedComp algorithms were able to predict breed and genetic group 

proportions based on the training animals provided to them, with BreedComp appearing to provide 

slightly more accurate estimates. RMSE values are presented, where possible (see Table 1), with 

BreedComp producing lower RMSE values for a larger number of breeds than ADMIXTURE. 

Caution is warranted in interpretation of these values presented here because of errors in the 

pedigree-based assignments. In addition, some Merino sheep of unknown type have been allocated 

to a default category. 
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Figure 1: Pedigree based breed proportions of main sheep breeds in each genotyped animal. 

Red points indicate animals with 100% content of the given breed, and blue points 0%. 

BreedComp was able to identify all breeds and genetic groups of sheep included in the training 

animals. ADMIXTURE did not identify the Texel breed from the training animals, instead 

identifying a fourth genetic group of merinos. Some sheep were reassigned by both algorithms, for 

instance, many sheep were reclassified from the fine-medium Merino group to the ultra-fine group. 

This can be seen in the RMSE values for these categories (see Table 1) which were larger than for 

the other categories. Importantly for routine application, BreedComp was approximately 45 times 

faster than ADMIXTURE, with BreedComp running for 4.1 minutes on a single CPU core, while 

ADMIXTURE ran for 3.1 hours on 28 CPU cores. BreedComp appears to be slightly more accurate 

and faster than ADMIXTURE for these data. 

 

 
Figure 2: Pedigree based proportions of each genetic group for Merinos. Red points indicate 

animals with 100% content of the given breed, and blue points 0%. 
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Table 1: RMSE for breed composition predictions for ADMIXTURE and BreedComp. 

Breed ADMIXTURE1 BreedComp 

Overall 0.181 0.170 

Border Leicester 0.059 0.055 

Poll Dorset 0.059 0.095 

Texel - 0.027 

Suffolk 0.172 0.072 

Merino (Ultra-Fine) 0.242 0.298 

Merino (Fine-Medium) 0.254 0.247 

Merino (Strong) 0.190 0.190 
1ADMIXTURE was unable to identify the Texels thus a RMSE value was not calculated.  

Another issue with using these algorithms to estimate breed proportions is their inability to 

estimate breed proportions for breeds lacking genotyped straight-bred animals. For instance, a small 

cluster of sheep can be identified just to the upper right of the Merinos that are ½ Merino and ½ 

Dorper. These sheep are currently being assigned by BreedComp as ¾ Merino and ¼ Poll Dorset. 

Without the inclusion of straight-bred Dorper sheep in the data, these sheep cannot be correctly 

classified. A small cluster can also be identified that contains a portion of Coopworth. 

Application of the BreedComp algorithm would allow for more accurate estimation of breeding 

values for Australian sheep, especially for animals without pedigree information and only genomic 

data. Animals previously assigned to the wrong breed or genetic group can also be reassigned, 
further improving genetic evaluation systems.  
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SUMMARY 

Lamb survival significantly limits the productivity of the Australian sheep industry, with twin 

and multiple-born lambs suffering greater mortality rates than single-born lambs. Using data from 

the Sheep CRC Information Nucleus Flocks, correlation estimates for gestation length, birthweight, 

and lamb survival across different birth types were examined. Gestation length and lamb survival 

are uncorrelated genetically in both singles and twins (0.02 and 0.04) but have a low genetic 

correlation of 0.27 for multiple-born lambs. Birthweight was lowly and negatively genetically 

correlated to singles survival (-0.29), negligibly correlated for twins (-0.15), and lowly positively 

correlated for multiples (0.37). The results of this study demonstrate that the influence of birthweight 
on survival varies significantly across different litter sizes, and selecting for birthweight to improve 

lamb survival would not be beneficial for survival across all birth types. 

 

INTRODUCTION 

Lamb survival is a significant problem in Australia, severely limiting the productivity of the 

sheep flock (Hinch and Brien 2014). Phenotypically, birthweight is one of the largest influences on 

lamb survival within the first few days of life (Oldham et al. 2011). Litter size significantly impacts 

lamb survival, with twin survival rates reported at 27% below single-born survival (Kleemann and 

Walker 2005) and is associated with lower birthweights and slower growth rates (Dwyer and Morgan 

2006). Gestation length is also known to be shorter for larger litters, leading to lower birthweights 

and lower lamb viability (Dwyer and Morgan 2006; Li and Brown 2015).  
Lamb survival has a very low direct heritability, with estimates generally calculated around 0.01-

0.03 and only marginally higher estimates for maternal heritability, averaging 0.05-0.06 (Safari et 

al. 2005; Brien et al. 2010), suggesting that direct selection to improve survival would be inefficient. 

Indirect selection to improve lamb survival may be more effective, however it is vital to account for 

any agonistic and antagonistic effects on survival as a consequence of correlations with other traits 

when indirect selection is practiced. The genetic parameters for birthweight are widely varied 

throughout literature, having anywhere between a low to moderate heritability and often with little 

to no genetic correlation with lamb survival despite the phenotypic curvilinear relationship (Brien 

et al. 2014). Despite reports of lamb survival and birthweight varying significantly depending on 

litter size, very few papers have examined this idea in detail (Li and Brown 2015). This paper reports 

on the analysis of the relationship of birthweight and lamb survival across different litter sizes and 

discusses whether they should be treated as separate traits depending on birth type.  
 

MATERIALS AND METHODS 

 

Information Nucleus Flock. The data used was from the Sheep CRC Information Nucleus Flock 

(INF), a collection of records from 2007-2011 over eight locations across Australia with Merino and 

crossbred ewes that were inseminated to Merino, maternal and terminal breed rams. Further details 

on design, data collection and management of the INF have been reported by Fogarty et al. (2007) 

and Geenty et al. (2014). Gestation length (GL) was treated as a trait of the lamb and calculated 

from AI dates (conception) and lamb birth dates, with records above 160 days and below 138 days 
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removed due to biological improbability. Lamb survival to three days (S3) was chosen as the primary 

focus as it accounts for 66% of lamb mortalities to weaning. Birthweight (BWT) was also analysed.  

 

Statistical Analysis. The statistical package ASReml (Gilmour 2015) was used to estimate genetic 

and phenotypic variance and covariance components, heritability, and correlations between GL, 
BWT, and S3 by fitting a linear mixed model with restricted maximum likelihood. An animal model 

was initially attempted, however, due to a lack of convergence, this was unable to test the hypotheses 

herein and so a sire model was used throughout the study. The dam permanent environmental effect 

was also removed from the model due to lack of depth within the pedigree.  

 

Model 1. Three univariate analyses were run to estimate variance components for GL, S3 and BWT. 

Analyses included the fixed effects of type of birth (TOB; singles, twins, multiples=3+), age of dam 

(AOD; 2-8+), sex (male (M) or female (F)), location (8 sites), genetic groups (dam breed, sire breed) 

and year (2007-2011), significant two-way interactions (AOD by year, flock by year, flock by year 

by TOB) and the random terms of sire and dam. The sire variance includes ¼ additive genetic 

whereas dam includes ¼ additive genetic variance plus maternal genetic and environmental effects. 

A trivariate analyses was performed to estimate genetic correlations between GL, S3 and BWT. 
 

Model 2. Separate univariate models for singles, twins and multiples were fitted to estimate separate 

sire and dam variance components for each TOB (singles, twins and multiples) for the three traits, 

GL, S3 and BWT. The fixed effects and random terms were as outlined in Model 1. Multiple records 

per litter were randomly removed for gestation and treated as missing as they all had the same 

gestation length, as per the technique used by Li and Brown (2015), leaving a total of 15,097 

gestation length records. A series of bivariate analyses were performed using Model 2 fixed and 

random effects to estimate the genetic and phenotypic correlation between GL, LS3 and BWT.  

 

RESULTS 

Basic statistics and heritability estimates were calculated for the overall traits as outline in Model 
1 and for the separated traits as outlined in Model 2 (Table 1). Separating the traits by TOB (Model 

2) was a significant improvement over Model 1 (Table 1).  

 

Table 1: Summary statistics and heritability estimates for gestation length (GL), birthweight 

(BWT) and lamb survival to three days (S3) for the overall trait (Model 1) and separated by 

type of birth (Model 2) with the Likelihood Ratio Test (LRT) statistic comparing Model 1 to 

Model 2 (* = significant at the 0.001 level - 32.91 at 12 degrees of freedom) 

 

 Mean σ Count h2 LTR 

GL 149.4 days 2.6 days 15 097 0.53 ± 0.05 

79.38* 
          Single 149.8 days 2.6 days 7 267 0.53 ± 0.05 

        Twin 149.1 days 2.5 days 6 762 0.54 ± 0.15 

         Multiple 148.6 days 2.5 days 1 068 0.54 ± 0.15 

BWT 4.8 kg 1.1 kg 23 619 0.16 ± 0.02 

386.82* 
         Single 5.5 kg 1.1 kg 7 267 0.21 ± 0.03 

       Twin 4.6 kg 1.0 kg 13 229 0.12 ± 0.02 

         Multiple 3.8 kg 0.9 kg 3 123 0.16 ± 0.07 

S3 0.88 0.32 23 619 0.02 ± 0.01 

320.88* 
          Single 0.94 0.25 7 267 0.01 ± 0.02 

        Twin 0.89 0.32 13 229 0.04 ± 0.01 

         Multiple 0.72 0.45 3 123 0.15 ± 0.06 
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An initial analysis was performed to calculate the correlation between GL, BWT, and S3 as 

singular traits in a univariate model (Model 1; Table 2) before the traits were considered separate by 

TOB (Model 2). Phenotypic correlations were not calculated between overall traits because the 

model was improved by separating the traits and it was deemed unnecessary.  

The between trait genetic correlations for BWT and S3 had an increasing trend, being lowly 
negative for single lambs, negligibly negative for twins, and lowly positive for multiples (Table 2). 

The correlation between GL and S3 were negligible for single and twin lambs while there was a low 

correlation for multiples (0.27), though with a large standard error. The phenotypic correlation 

between S3 and BWT was greater for larger litters (Table 2), with the phenotypic correlation 

between GL and S3 being negligible for all litter sizes. 

 

Table 2: Genetic sire correlations between gestation length (GL), birthweight (BWT) and lamb 

survival to three days (S3) by type of birth (with standard errors) 

 

 Genetic Phenotypic 

 GL-S3 GL-BWT BWT-S3 GL-S3 GL-BWT BWT-S3 

Overall -0.01 (0.11) 0.36 (0.06) -0.31 (0.13)    
Singles 0.07 (0.30) 0.31 (0.08) -0.29 (0.42) -0.02 (0.01) 0.34 (0.01) 0.07 (0.01) 
Twins -0.03 (0.13) 0.41 (0.08) -0.15 (0.17) 0.04 (0.01) 0.33 (0.01) 0.18 (0.01) 

Multiples 0.27 (0.24) 0.53 (0.22) 0.37 (0.29) 0.04 (0.03) 0.29 (0.03) 0.28 (0.02) 

 

DISCUSSION 
Birthweight has a complex relationship with lamb survival, as described in literature. The two 

traits are known to be phenotypically linked, with some reports referring to birthweight as one of 

the biggest factors influencing the initial survival of the lamb, with the relationship of a negative 

quadratic nature (Hatcher et al. 2009; Celi and Bush 2010; Oldham et al. 2011). Hatcher et al. (2009) 

have described the optimum phenotypic birthweight for lamb survival as being different between 

singles, twins, and multiples, with attempts to select for higher birthweight to improve twin and 

multiple-born lamb survival potentially resulting in a decrease in single-born lamb survival rates 

due to dystocia. Considering this, an expected trend was seen in the genetic correlation (Table 2) 

between birthweight and lamb survival where single and twin-born lambs were lowly negatively 
correlated, -0.29 and -0.15 respectively, while multiple-born lambs were lowly positively correlated 

(0.37). The overall genetic relationship between birthweight and survival was lowly negative (-0.31, 

Table 2) and within the range reported in previous literature (Brien et al. 2014); segregation by type 

of birth gave a clearer indication that lamb survival is a genetically separate trait across birth types 

(Table 1; Kelly et al. 2016). Female pigs, which consistently have large litter sizes, similarly 

demonstrate a low positive genetic correlation between survival and birthweight (Tabuaciri et al. 

2010). Phenotypically, the correlation between birthweight and survival increases as litter size 

increased (Table 3), indicating that birthweight had a more significant influence on survival in larger 

litter sizes and is likely due to the smaller size of lambs born as multiples. Despite following an 

expected trend, survival and birthweight were not as highly correlated as expected. Although the 

likelihood ratio test (Table 1) provides evidence that separating by birth type improves the statistical 
model, the precision of these correlations are low. Given the low heritability and variation, combined 

with the lack of precision in correlations estimates, suggests birthweight is unlikely to be a suitable 

indicator trait for lamb survival. 

The genetic correlations between gestation length and birthweight (Table 2) for twins and 

multiple-born lambs follow the expected trend of consistently moderately positive, as reported in 

piglets (Rydhmer et al. 2008). This aligns with the overall genetic correlation of 0.36 between 

gestation length and birthweight (Table 2). This suggests that longer gestation length may improve 
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the birthweight of multiple-born lambs and potentially improve their survival, but would also 

increase birthweight of single and twin lambs and this could be detrimental to their survival. The 

direct correlation between survival and gestation length for single and twin-born lambs was 

negligible (Table 2), which differs from earlier results from Li and Brown (2015), who reported low 

positive correlations between gestation length and lamb survival for single and twin-born lambs. 
Birthweight is critical to early lamb survival and is associated with many genetic factors, such 

as litter size. With the economic push to increase litter size in sheep (Swan 2009), it’s vital to 

understand the interaction between litter size, birthweight, and survival. The results of this study 

demonstrate that genetically selecting for birthweight to improve lamb survival does not appear to 

be beneficial for survival across different litter sizes. Despite interesting correlations seen in 

separating birthweight and lamb survival by birth type and that this is an improvement on the single-

trait model (Table 1), these correlations and their precisions are low (Table 2). Furthermore, treating 

the traits as separate by birth type would be difficult to implement in a practical breeding plan, 

although economic value for birthweight may change with mean litter size.  
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SUMMARY 

Previous studies have mapped the responsible locus for the polled phenotype to the 3’ region of 

RXFP2 at ovine chromosome 10. SNPs to determine whether the insertion is present are neither on 

the Ovine 50K nor on the OvineHD. In this study we tested different strategies for prediction of the 

horn phenotype, including single SNP, multiple SNP haplotypes and GBLUP. In total, 4,001 Merino 

sheep with HD genotype information were used. Prediction accuracies were calculated for each sex 

separately. Models with the highest prediction accuracies for horned used either single SNPs or 3-

SNP haplotypes and also included a polygenic effect estimated based on traditional pedigree 

relationships. The accuracies of predicting the ’horned‘ phenotype were 0.338 for females and 0.724 
for males. For predicting ‘polled’ phenotype, the best models were the same but included a genomic 

relationship matrix. The accuracies were 0.713 for females and 0.618 for males. Results show that 

prediction accuracy is high using a single SNP, although not unity as the causative mutation is not 

genotyped, but likely also because females show incomplete penetrance. As long as there is no 

genotype from a single SNP causative mutation, additional information through pedigree is valuable 

for the prediction of horned and polled phenotype. 

  

INTRODUCTION 

The genetic background of the polled phenotype has long been studied in horned species such as 

cattle and sheep (Castle 1940, Georges et al. 1993). The causative mutation in sheep has been 

mapped to chromosome 10 (Johnston et al. 2011). A 1.78-kb insertion in the 3’-untranslated region 
of RXFP2 causes the polled phenotype, as described by Wiedemar and Drogemuller (2015). 

However, this insertion is not completely explaining the phenotype in different sheep breeds 

(Lühken et al. 2016). The mode of inheritance is complex as expression differs between sexes and 

there is not yet a single locus model with complete penetrance. Currently the causative mutation is 

neither on the Illumina Ovine 50K chip nor on the OvineHD 600K chip. SNPs close to the region 

of insertion are currently used to predict the phenotype. The aim of this study is to test various 

strategies for predicting horned or polled phenotypes, including single SNP, multiple SNP 

haplotypes and SNPBLUP.   

 

MATERIALS AND METHODS 

Population and phenotypic data. The data consisted of purebred Merino sheep including Dohne 

Merino and polled Merino. The phenotype recorded was polled, scurs, knobs or horns, which was 
analysed as polled / non-polled and horned / non-horned. In total, 4,001 sheep were used. Table 1 

shows the distribution of polled and horned status between the two sexes.  

 

Table 1. Number of observed phenotypes for male and female Merinos. 

Sex Polled Non-Polled Horned Non-Horned 

Female 1325 1123 88 2360 

Male 1042 511 481 1072 
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Genotypes. Of all 4,001 animals in the dataset, 3,708 were genotyped with the Ovine 50K. The 

remaining animals were genotyped with the Ovine 12K and imputed up to 50K. All 4,001 animals 

were further imputed up to 600K. All 600K genotyped animals (~2300) were used for imputation, 

including 445 animals from the data set used in this study. In total 510,175 SNPs passed quality 

control and 17,280 SNPs were located at OAR10. 
Statistical analysis. We applied three methods to predict the phenotype polled or horned status. 

To select the best single SNP for prediction, we ran a local GWAS for chromosome 10 (OAR10).  

The single SNP was either fitted solely (base model), or together with a polygenic effect (fitted 

either by a traditional pedigree or by a genomic relationship matrix).  

The second method was using haplotypes. A haplotype was formed using the most significant 

SNPs from the single SNP GWAS (3, 5 or 10 SNPs). Genotype data was phased using EAGLE. 

Only haplotypes with a frequency >1% were fitted in the model, and otherwise placed in a bin (sum 

of all low frequency haplotypes). The number of haplotypes formed from three, five or 10 SNPs, 

was equal to three, three, and seven, respectively.   

The third method was applying a GBLUP analysis using a GRM based on all SNPs from the 

600K (Yang et al. 2010) or only those SNPs from OAR10. Additionally, a dominance relationship 

matrix was added to the model based on the same two sets of SNPs (Zhu et al. 2015). Breeding 
values from the additive and dominance GRM were summed to get the predicted phenotype.  

Mode of inheritance. We compared various models where the mode of inheritance was 

investigated. The model including a sex-dependent effect for the additive and dominance variance 

resulted in the best predictions (results not shown). Therefore, whenever possible, this mode of 

inheritance is used for prediction.  

Validation. A fivefold cross-validation was performed. In each replicate, 20% of the data was 

randomly blinded and the phenotype was predicted. Prediction accuracy was defined as the 

correlation of the breeding value with the 0/1 phenotype.  

 

RESULTS 

The local GWAS for polled / non polled and horned / non horned clearly indicates the known 
region with highly significant associations around 29.5 Mb (Figure 1). The most significant SNP for 

polled was OAR10_29546872.1 which differed from the most significant SNP for horned which 

was OAR10_29458450, although both SNPs are in high LD (r2=0.985). Those SNPs were used to 

perform the single SNP analyses.  

In Table 2 and 3, the frequencies of the genotypes with phenotype polled and horned by sex is 

shown. Using frequencies to determine the polled or horned status across the validation gives an 

average prediction accuracy of 0.71 for horned and 0.63 for polled (base model, Table 4). In Table 

4, the results of the different genetic models are shown. The highest accuracy for predicting polled 

was achieved when using a GRM additional to the single SNP, resulting in a correlation of 0.713 

for females and 0.618 for males. The highest accuracy for predicting horned was by using pedigree 

relationships additional to the single SNP, which resulted in a correlation of 0.338 for females and 

0.724 for males. Models where haplotypes were used resulted in similar accuracies as the single 
SNP approach. Haplotypes formed from 3 and 5 SNPs (hap3 and hap5), gave very similar prediction 

accuracies, where hap10 had a lower prediction accuracy.  

 

DISCUSSION AND CONCLUSION 

The most significant SNP for polled and horned where very close to the causative mutation, 

(OAR10_29546872.1: 29512572 and OAR10_29458450: 29458450) of which OAR10_29546872.1 

has been used by the Sheep CRC (J. van der Werf, pers. comm). Dominik et al. (2012) found a SNP 

OAR10_29389966_X.1 to be most predictive in Merino sheep. This SNP was also in the top10 of 

most significant SNPs in our GWAS. The reported SNP by Johnston et al. (2011) 
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OAR10_29448537.1 did not occur in the top100 SNPs of our GWAS.  

 

 
Figure 1. Local GWAS plot for the traits polled and horned of OAR10. The grey rectangle indicates 

the location of the gene RXFP2 (29.4-29.5 mb). The most significant SNP is indicated in red.   

 
Table 2. Frequencies of the SNP OAR10_29546872.1 per sex for the phenotype polled and 

probabilities for being polled, and frequencies of the SNP OAR10_29458450 per sex for the 

phenotype horned and probabilities for being horned.   

Sex Genotype 

Non 

Polled Polled 

Probability 

Polled  

Non 

Horned Horned 

Probability 

Horned 

Female 0 1058 174 0.14  1151 81 0.07 

 1 353 811 0.77  1047 6 0.01 

 2 25 138 0.84  162 1 0.01 

Male 0 675 29 0.04  229 475 0.67 

 1 340 385 0.53  719 6 0.01 

 2 27 97 0.78  124 0 0.00 

 

A model including pedigree information additional to the single SNP or haplotype had a better 

prediction accuracy compared to using only a single SNP for the prediction of both horned and 
polled. When the single SNP was not explicitly fitted (local GRM model), the prediction was 

reduced. For the trait polled and horned highly predictive SNPS close to the known causative 

mutation should be modelled explicitly. Applying methods which shrink all SNP effects equally like 

GBLUP will therefore have a lower prediction accuracy in the presence of a large QTL. Mixture 

models such as Bayes B or C, should perform better.   

Clearly prediction accuracy was not close to one, in spite of highly significant SNPs close to a 

known causative mutation. This indicates that the most significant SNP is not in complete LD with 

the causative mutation or it does not confer complete penetrance. This is also indicated by the 

explained variance from the genotypes. For the trait horned, 85% of the phenotypic variance was 

explained by the single SNP, and 95% of the phenotypic variance when pedigree was also included. 

For the trait polled, 67% of the phenotypic variance was explained by the single SNP, and 80% of 
the phenotypic variance when pedigree was also included.  
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Table 4. Prediction accuracies for horned and polled for the different models for the whole dataset 

or split by sex with or without fitting a polygenic effect (Ped).    
Correlation Horned  Correlation Polled 

Method Ped Average Female Male  Average Female Male 

Single SNP - 0.711 0.173 0.721  0.630 0.644 0.581 

Single SNP A 0.723 0.338 0.724  0.644 0.665 0.580 

Single SNP GRM 0.719 0.302 0.723  0.686 0.712 0.617 

Hap3 A 0.723 0.324 0.726  0.647 0.671 0.579 

Hap5 A 0.721 0.324 0.723  0.646 0.673 0.573 

Hap10 A 0.673 0.224 0.681  0.632 0.658 0.560 

Hap3 GRM 0.722 0.302 0.727  0.687 0.713 0.618 

Hap5 GRM 0.721 0.300 0.725  0.676 0.703 0.604 

Hap10 GRM 0.696 0.285 0.691  0.670 0.697 0.599 

GRM OAR10 GRM 0.391 0.226 0.628  0.617 0.657 0.574 

GRM GRM 0.3801 0.273 0.561  0.5802 0.620 0.526 
1Four of the five replicates converged. 2Only two of the five replicates converged. 

 

Differences between males and females have been described previously (Dolling 1961, Dominik 

et al. 2012) in Merino sheep. Possibly incomplete penetrance is causing the sporadic horned 

phenotype in females, and makes prediction more difficult (prediction accuracy 0.338 vs 0.724 for 

horned in females and males). 
Different approaches to validate the different genetic models (e.g. regress back to 0/1 trait by 

using a threshold on the predicted phenotypes) could clarify results further, and will be investigated 

additionally. 

To conclude, prediction of polled and horned is already successful using a single SNP (~0.7), 

although not 1 as the causative mutation is not genotyped (on the new 15K Ovine chip it should be 

present), but likely also because females show incomplete penetrance. Additional information 

through pedigree is valuable for the prediction of the horned and polled phenotype as long as the 

causative mutation is not genotyped. 
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SUMMARY 

Genomic selection is transforming animal and plant breeding across developed countries 

globally, with economic benefits of billions of dollars annually. Despite huge potential for livestock 
industries in developing countries to achieve similar transformations, to date there has been very 

limited use of genomic selection in grazing livestock in those countries. This is attributable to several 

major challenges. This paper discusses those challenges and proposes options to overcome or reduce 

them. It also identifies priority areas of research that must be undertaken if grazing livestock in 

developing countries are to benefit from genomic selection. Achieving genetic gains through 

genomic selection in smallholder cattle herd in Southern Africa and opportunities to extend the 

concept to other livestock species, and other developing countries, is also briefly examined. 

 

INTRODUCTION 

The world’s population is predicted to increase from 7 billion in 2011 to 9 or 10 billion by 2050, 

with most growth occurring in Africa and Asia (Gerland et al. 2014). Incomes of many people in 
these countries are increasing, and with rising incomes, demand for meat and dairy products is also 

increasing. The increased demand is predicted to continue through to 2050 (Delgado et al. 1999).   

This presents a major opportunity for livestock industries in tropical and sub-tropical environments 

where ruminant species consume pastures that have few alternative economical uses. 

To capture these opportunities, livestock enterprise and industry efficiency must increase by 2.0-

2.5% p.a., equivalent to doubling outputs from constant resources over the next 35 years (Mullen 

2012). Due to pressures on agriculture in developed countries and the developing world’s 

requirement for high volumes of low-cost food, much of that increased production must occur in the 

regions of greatest need i.e. Africa and Asia. This increased demand for food is leading to greater 

competition for inputs such as land, water, fertilizer, grain and labour, driving up costs of livestock 

production. Climate change is predicted to add to the challenge (Hughes 2003), requiring livestock 

that are productive under hotter and drier climates and, in the tropics and sub-tropics, requiring 
animals which tolerate increased ecto- and endo-parasitic burdens and vector-borne diseases.  

To double outputs from constant resources by 2050, farmers need to adopt cost-effective, 

transformational technologies for use in animals that are well adapted to their production 

environments. Traditional technologies delivering incremental changes will assist in improving 

productivity, but use of genomic information in proven genetic improvement methods could 

accelerate the required productivity improvements by increasing the rates of genetic gain for all 

economically important traits in livestock.  

Genomic selection is the use of genome-wide genetic markers to estimate the genetic merit of 

individual animals (Meuwissen et al. 2001).  Genome wide markers are required to capture variation 
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from all the mutations affecting complex traits such as yields and fertility. Recently Meuwissen et 

al. (2016) reported that most economically important traits in livestock are affected by somewhere 

between 2,000 and 10,000 genes. Single Nucleotide Polymorphisms (SNPs) are the markers most 

commonly used in genomic selection, owing to low cost of genotyping and ability to genotype tens 

or hundreds of thousands of SNP in a single assay. Genomic selection therefore estimates the effect 
of all the SNP on the target trait simultaneously. Genomic selection is now transforming animal and 

plant breeding across developed countries globally, with enormous economic benefits. However 

there are no known examples of the successful use of genomic selection in grazing livestock in 

developing countries. This paper examines the constraints to use of genomic selection in those 

countries and explores opportunities to overcome them particularly in ruminants (beef and dairy 

cattle, sheep and goats) grazed at pasture in the tropics and sub-tropics where the greatest 

opportunities for productivity improvements also exist.   

 

CONSTRAINTS TO USE OF GENOMIC SELECTION IN DEVELOPING COUNTRIES 

In this paper we exclude ongoing development of the genomic selection methodology per sé as 

there are highly-competent research groups around the world undertaking such development. We 

are confident they will overcome any methodology issues, probably well ahead of development of 
solutions to other constraints that discourage the use of genomic selection in developing countries. 

Several of those constraints are also common to extensive livestock production systems in developed 

countries. The constraints and possible solutions are discussed briefly below. 

Lack of phenotypes recorded in accurately-defined contemporary groups. In developed and 

developing countries, the major constraint to use of genomic (and conventional) selection in 

livestock is the difficulty and expense of accurately identifying appropriate fixed effects and 

contemporary groups and measuring the full range of economically important productive and 

adaptive traits required to achieve a well informed and balanced breeding objective. As discussed 

by Burrow and Henshall (2014), technology may in future provide a way of measuring animals, but 

it cannot replace the statistical imperative that, for the measurements to be meaningful, 

contemporary groups of appropriate structure and sufficient size are required. In extensive 
production systems and in developing countries, this presents difficulties in both managing and 

routinely recording large cohort groups. However if the design is inadequate in terms of 

contemporary group size and structure, the measurements will not provide useful predictions of 

genetic merit. This is perhaps the greatest constraint for smallholder farmers in developing countries, 

as often they own only a small number of breeding animals and they generally practice year-round 

joining.  

To overcome this constraint, reference populations which are specifically designed to accurately 

manage and record animals within contemporary groups and capture data for the traits of interest 

have been established in some developed countries to exploit the opportunities provided by genomic 

selection. Examples of these populations in beef cattle are described by Upton et al. (2001) for 

growth, feed efficiency and carcase and beef quality and Burrow et al. (2003), Barwick et al. (2009) 

and Johnston et al. (2009) for the full range of productive and adaptive traits in the breeding 
objective. Van der Werf et al. (2010) and Swan et al. (2012) describe similar populations designed 

to capture data for a range of productive attributes in meat and wool sheep. A large study in the USA 

also developed specific populations to record resistance or susceptibility to Bovine Respiratory 

Disease in both beef and dairy cattle (BRD CAP 2017). 

In future, Meuwissen et al. (2016) anticipate that accuracy of within-breed genomic selection 

will be achieved by use of very large within-breed reference populations. Alternately, genomic 

selection may be applied across-breeds, with accuracy obtained from across-breed reference 

populations and high-density genomic selection methods focusing on causative genomic regions 

discovered through programs such as the 1000 bull genome project (Hayes et al. 2014). In their 
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opinion, it is highly likely that future applications will increasingly turn towards across-breed 

genomic selection (Meuwissen et al. 2016). This has considerations for application of genomic 

selection to developing countries as discussed in a later section of this paper. 

Pedigrees and relationships. The benefits from knowledge of pedigree are well understood, 

allowing progeny test or BLUP-based selection in preference to selection on phenotype. In other 
than an intensive management system though, the costs are significant. Genomics provides a genuine 

alternative to the labour-intensive practices of single-sire mating and mothering-up, with the proviso 

that genotyping is cost-effective. The cost of the cheapest DNA assays on the market are now of the 

same magnitude as the cost of obtaining a tissue sample and of data management, and the cost of 

moderate-density SNP assays is not much more. With a thousand-SNP panel, parentage assignment 

is trivial. With a slightly larger (tens of thousands) SNP panel such as those used for genomic 

selection, it is not necessary to estimate discrete pedigrees at all, with relationships based solely on 

genomic similarity (Meuwissen et al. 2001).  

Creating genetic linkages across livestock populations. Establishing large reference 

populations where expensive or hard-to-measure traits are routinely measured in accurately-defined 

contemporary groups requires that genetic linkages be created with the seedstock and commercial 

livestock populations targeted for genetic improvement. The best way of achieving these genetic 
linkages is through widespread use of artificial insemination (AI), though there are difficulties with 

AI programs under both extensive production systems and in developing countries. However as has 

been shown in the beef industry in northern Australia, where beef producers are prepared to put in 

the effort, successful AI programs are feasible. Another option for consideration where breeding 

populations are within relatively close proximity is to rotate sires amongst the breeding herds/flocks 

so genetic linkages are created through natural mating. Very importantly, the concept of genetic 

linkage changes with genomic information. When genomic information is available, what is needed 

is for chromosome segments to be represented across herds and environments, not sires or relatives 

per se. This is one of the advantages of genomic selection: it may be much easier to have 

chromosome segments, from a common ancestor quite a number of generation ago, represented 

across herds and environments, rather than progeny of link sires.   
Need for consistent trait definitions across livestock populations. When designing resource 

populations for use in genomic selection programs, consideration must be given to trait definitions, 

to ensure that animals in multiple populations are recorded for the same trait(s). Alternately the 

resource populations need to be large enough to allow estimation of genetic correlations with 

indicator traits, if consistent recording of the same trait(s) cannot be achieved across all populations.  

Again, estimating these genomic correlations and genotype by environment interactions becomes 

more straightforward with genomic information, as what is required is observations of the 

traits/environments on common chromosome segments, rather than sires progeny (Visscher et al. 

2104; Hayes et al. 2016).    

Lack of infrastructure and human capacity. Two problems of major significance in 

developing countries are: a) the lack of infrastructure required to undertake all aspects of a genomic 

selection program including on-farm management and phenotyping, laboratory testing of animal 
samples, data capture and storage and lack of computing facilities etc.; and b) lack of human 

capacity, particularly in areas of technological capability and data analysis and interpretation. 

Possibility of Genotype x Environment interactions. Livestock breeders, and particularly 

those in developing countries in the tropics, need to be cognisant of the possibility of Genotype x 

Environment (GxE) interactions which could arise from vastly different markets and/or production 

systems. An earlier review of the literature concluded that GxE interactions were problematic if 

poorly adapted breeds were compared across temperate and tropical environments, but they were 

unlikely to be a problem in tropically adapted beef cattle and sheep grazed in either temperate or 

tropical environments (Burrow 2012). However that review was based on production systems that 
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aimed to optimise female reproductive performance and achieve premium meat market 

specifications from sale animals. It did not include consideration of vastly different market endpoints 

e.g. targeting high-value meat markets in developed countries cf. production of high volumes of low-

cost meat in the beef, sheep and goat industries of many developing countries. A similar example 

can be found in the dairy industry, where ‘high-performing’ genetics now used very widely across 
developed countries globally are often found to be sub-optimal when used in low-input dairy farms 

in developing countries. 

Difficulties of negotiating collaborative research agreements. An important constraint which 

must be considered during development of any research collaborations is the much greater difficulty 

and complexity of completing formal research agreements in developing countries (cf. those in 

developed countries). In the authors’ experiences in different developing countries, completion of 

the formal agreements can sometimes take several years longer than anticipated (which also often 

means the research needs in the draft agreements have substantially changed in the interim period).  

 

OVERCOMING THE CONSTRAINTS: PHENOTYPING AND GENOTYPING USING 

BEEF CATTLE EXAMPLES FROM SOUTHERN AFRICA 

As flagged by Meuwissen et al. (2016), improved accuracy of genomic selection will be achieved 
in future by use of very large within- or (more likely) across-breed reference populations. The 

within-breed approach has already proved very successful in dairy and other livestock industries in 

developed countries. However it is not clear how farmers in developing countries could establish 

such reference populations due to a lack of both funding for phenotyping and genotyping and 

technical capacity to design and manage the populations within appropriate contemporary groups. 

Maiwashe and Banga (2013) suggested that in terms of funding, genotyping and phenotyping should 

be considered as international and national responsibilities respectively. But livestock farmers in 

developed countries had already adopted a more commercially-oriented ‘user-pays’ approach. 

Subsequently though, the South African government (through its Technology Innovation Agency - 

TIA) initiated a ‘Beef Genomics Program’ (BGP) in 2014 (and a similar program for dairy cattle in 

2016 and potentially also for sheep and goats in future) in conjunction with seedstock breeders in 
South Africa and other Southern African countries, with the aim of developing within-breed 

reference populations designed to capture the phenotypes and genotypes necessary for genomic 

selection.  

Beef Genomics Program (BGP) in Southern Africa. Currently, seedstock cattle breeders in 

Southern Africa use different genetic evaluation services and breeders aligned with the different 

service providers therefore use different approaches to phenotyping and genotyping. Under TIA 

funding guidelines, each breed society develops its own strategy with respect to use of genomic 

information. In 2016, 12 cattle breeds (Afrikaner, Beefmaster, Bonsmara, Boran, Brahman, 

Charolais, Drakensberger, Hereford, Limousin, Santa Gertrudis, Simbra and Simmental) were 

actively participating in the BGP with Brangus, Nguni and Tuli anticipated to participate from 2017 

(Becker, 2016).  

Beef cattle breeds aligned with SA Stud Book (26 breeds comprising 60% of registered beef 
cattle in South Africa, with the Bonsmara being the predominant breed; Stud Book, 2017) are 

currently focusing on genotyping primarily Bonsmara, Beefmaster and Drakensberger animals 

which already have Estimated Breeding Values (EBVs) for growth, feed conversion ratio and 

reproduction traits. Growth and reproduction phenotypes are recorded on the properties of birth of 

the animals, while feed efficiency is measured on selected bull calves from each on-farm weaning 

cohort in central bull testing stations. This approach means the phenotyping costs for existing 

phenotypes are met directly by the seedstock breeders, whereas the genotyping costs are met by the 

BGP. As a result, proof-of-concept for genomic selection will be demonstrated with the accuracy of 

available EBVs being marginally increased in these breeds with the inclusion of genomic 
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information. However phenotypes for other economically important traits such as carcass and meat 

quality and adaptation are not currently recorded in those breeds, though it is likely they will be 

included in the anticipated next round of funding in 2018. 

The Livestock Registration Foundation (LRF) represents the remaining 40% of registered beef 

cattle in South Africa, 80% of registered beef cattle in Namibia and 100% of registered beef cattle 
in Zimbabwe. These breeds have collectively agreed to undertake a 3-year program to collect data 

in structured contemporary groups using AI or natural mating across designated seedstock herds. 

All breeds are working at establishing a biobank for storage of DNA samples and genomic reference 

populations for each participating breed. The LRF breeds are focusing on establishing new 

phenotypes for traits which are economically important to measure (e.g. feed efficiency, carcass and 

meat quality and non-traditional measures of reproduction), as well as developing stronger genetic 

linkages between and within breeds across countries. They also intend to examine the potential for 

cross-continent genetic evaluations and cross-breed genomic evaluations (Becker 2016). 

One genuine opportunity for Southern Africa, to overcome the difficulty of maintaining very 

large resource populations with accurate phenotypes and matching genotypes for all economically 

important traits derived from accurately-defined contemporary groups, would be to deliberately 

create genetic links with existing beef cattle resource populations in developed countries such as 
Australia. Australian resource populations could include: a) the Beef Information Nucleus (BIN) 

herds which comprise a nation-wide progeny test program for five cattle breeds, developed 

collaboratively by seedstock breeders and cattle breed societies in conjunction with Meat and 

Livestock Australia (MLA; Beef Information Nucleus 2017); and b) the MLA-funded 

‘Repronomics®’ project which is building on the cattle and extensive phenotypic and genotypic 

databases from the previous Beef CRC herds (Johnston et al. 2009) to specifically develop new 

female reproductive traits using a combination of female and male reproductive traits, novel 

molecular genetics approaches and innovative application strategies (Johnston 2016). This type of 

collaboration may also have the added benefit of addressing and at least partially overcoming the 

lack of laboratory infrastructure that is a common constraint in developing countries. 

If it was possible to achieve cross-country collaborations to allow pooling of phenotypes based 
on common definitions of traits and matching genotypes derived from genetically-linked and 

accurately-defined contemporary groups, significant benefits would be created for the cattle 

industries of all partner countries due to a previously unstated constraint that breeders of tropical 

beef cattle in Australia and Africa have few alternatives to link with other cattle breeds in a similar 

way that breeders of temperate breeds have done in developed countries to maximise the numbers 

of animals, thereby sharing the costs of phenotyping and genotyping more broadly, whilst also 

significantly increasing the accuracy of genomic selection. However significant new research would 

be needed to benefit the full range of economically important traits and livestock breeds. 

 

OVERCOMING OTHER CONSTRAINTS 

Genetic/genomic linkages across livestock populations. Assuming cross-country 

collaborations can be negotiated as suggested above, there will be a need at the outset to specifically 
design the extent of genetic and genomic linkages required across the different resource populations.  

Use of consistent trait definitions. Generally ‘traditional’ phenotypes such as weights and 

weight gains tend to be consistent across different resource populations. However for most 

economically important traits there will be a need for further research to either estimate genetic 

correlations between alternative measures of the traits or to re-define measurements using common 

definitions to allow valid use of genomic selection across the populations. In beef cattle this would 

require investigation of alternative measures of male and female reproductive traits, bull traits as 

indicators of male and female reproduction, alternative measures of carcass and meat quality 

attributes, feed intake and feed efficiency and cost-effective methods of measuring cattle resistance 
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to environmental stressors such as parasites, diseases and high temperatures and humidity. 

Lack of human capacity. As indicated by Maiwashe and Banga (2013), where genomics 

research has occurred in developing countries, it has tended to focus on ‘low-hanging fruits’ that are 

also relatively low-cost e.g. use of SNP data to select against genetic defects, breed characterisation, 

selection for individual heterozygosity to manage inbreeding, parentage verification and individual 
SNP associations with phenotypes based on relatively small numbers of animals, with the latter 

primarily being part of PhD-level training. However the technical capacity required to design and 

fully implement a genomic selection program is now largely lacking amongst livestock researchers 

in many/most developing countries, primarily because to date there simply has been no need for 

such expertise. If it was possible to collaborate with developed countries to implement genomic 

selection across resource populations as suggested above, then the lack of technical expertise would 

become a critical deficiency. That deficiency could be overcome either by outsourcing the essential 

services to a developed country with appropriate expertise (not desirable from a developing country 

perspective) or implementing intensive training programs, ideally with staff from the developing 

countries visiting international laboratories to undergo the essential training. A particular need 

identified in Southern Africa is that training in genomic selection and selection indexes needs to 

occur across all levels from university through to technical and industry levels. 
Technical capacity is also required for the development of some phenotypes such as ovarian and 

carcass ultrasound scanning, measurement of indicators of male reproductive performance, animal 

body-condition scoring, measurement of meat quality attributes etc. as well as mentoring and quality 

assurance training for the intermediaries who will ultimately become responsible for training 

farmers and farm workers. 

 
PRIORITY RESEARCH AREAS 

Assuming it is possible to overcome most of the constraints identified above (as we believe to 

be the case), several priority research areas would need to be addressed to develop and implement a 
genomic selection program for breeders of grazing livestock across developing and developed 

countries. The first priority is to establish large reference populations, with animals measured for 

the target traits and genotyped in appropriate environments.  Then priorities include: 

Cross-country genetic/genomic evaluations. Estimates of genetic/genomic relationships 

would need to be developed for the full range of economically important traits included in the pooled 

phenotypes and genotypes. This would include examining the scope for combining data across 

countries for multi-trait genetic/genomic evaluations at a trait by country level to inform an 

understanding of the differences and similarities of traits not recorded identically in different 

countries. There would also be a need to construct joint G matrices to inform the capacity for joint 

single-step analysis. Assuming it is feasible, joint single-step analyses could then be undertaken to 

deliver prototype cross-country joint evaluations. A logical next-step from joint single-step analyses 
would be the coordinated use of young sires initially within breeds across countries and possibly 

through shared use of the MateSel program (MateSel 2017). Protocols for the coordinated use of 

young sires would be informed by the joint G matrix and joint evaluation results. 

Use of sequence data in genetic evaluations. A number of research areas could be undertaken 

to promote the use of genomic selection in developing countries. Specifically with regard to potential 

collaborative beef research across Australia and Africa described above, this might include: 

 Development of a new low-cost SNP chip for use in Bos taurus, Bos indicus and tropically 

adapted Bos taurus breeds (the southern African Sanga breeds and the West/East African taurine 

breeds). This would allow an improvement in the accuracy of genomic EBVs across the range 

of cattle breeds, composites and their crosses used on both continents; 

 Development of computationally efficient genomic evaluation algorithms that utilise whole 
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genome sequence data suitable for multi-breed and crossbred evaluations. As demonstrated by 

Kemper et al. (2015) and Macleod et al. (2016), using 50K SNP genotypes and BLUP 

methodology does not enable genomic estimated breeding values that work across breeds and in 

crossbreeds/composites (i.e. do not result in increased accuracy in composites when information 

from the founder breeds are included). Much higher density of markers (up to whole genome 

sequence) enables multi-breed predictions where breeds not in the reference set, or with only 

limited numbers in the reference set, can achieve more accurate genomic evaluations; 

 Detection of embryonic lethal and other deleterious mutations in the major breeds used in Africa 

and Australia based on a haplotype analysis to examine if there are regions in the genome where 

some haplotypes are never observed in a homozygous state, despite the frequencies of these 

haplotypes being high enough that multiple animals are expected to be homozygous for the 

haplotypes. 

Multi-breed genomic evaluations. Within breeds, accuracy of genomic selection depends on 

the number of animals in the reference population and strength of linkage disequilibrium (LD) and 

family relationships between the reference and selection candidates. Across breeds, factors such as 

differences in LD, allele frequencies and SNP effects between breeds also impact on the accuracy. 

Pooling reference populations across breeds appears to be a promising method to increase the size 

of the reference population, particularly in numerically smaller populations, with the proviso the 

populations being pooled are not genetically distant (Kizilkaya et al. 2010). This component of the 

research would: i) use deterministic methods to determine the prediction accuracy with smaller 

numbers of genotyped animals before incurring high costs of large-scale genotyping; and ii) 

undertake a formal breeding program design to determine the feasibility of pooling data across multi-

breed populations across continents. Assuming it is feasible to pool data across breeds, the research 
would also examine options to implement a single-step, multi-breed genomic evaluation. 

Selection indexes and GxE interactions. This would involve two elements: i) definition of 

production system x target market examples on a breed x country basis to determine the extent of 

differences/similarities between and across objectives in the different regions; and ii) if appropriate, 

extension of the selection index modelling to include new traits relevant to the production marketing 

systems for the particular grazing livestock. 

 

APPLICATION OF RESULTS TO SMALLHOLDER FARMERS IN SOUTHERN AFRICA 

Once genomic selection is implemented in southern African commercial herds, it will then be 

relatively straightforward to transfer the benefits of improved genetic gain to smallholder farmers 

using bulls and semen from superior sires in schemes similar to the ARC’s ‘Kaonafatso ya Dikgomo’ 
(KyD – animal recording; KyD 2017) scheme in South Africa. Currently the KyD scheme is 

assisting smallholder farmers across all provinces in South Africa to continually improve their cattle 

production through recording and monitoring productivity and profitability and providing advice on 

production, animal health and marketing. 

 

OPPORTUNITIES TO EXTEND THE COLLABORATIONS TO OTHER DEVELOPING 

COUNTRIES AND OTHER LIVESTOCK SPECIES 

Assuming results from the multi-breed genomic evaluations mentioned in the research section 

above indicate feasibility, there is good potential to extend the BGP concept to other African 

countries such as Kenya and West Africa in partnership with the International Livestock Research 

Institute. However the cattle breeds commonly used in East and West Africa are not the same as 
those participating in the BGP across Northern Australia and Southern Africa, so achieving an 

expansion in tropically adapted beef resource populations to other countries will also depend on the 

devlopment of the proposed SNP panel for African and other cattle breeds as described above. 
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Opportunities also exist to expand the concept to other livestock species, including planning 

already underway to establish sheep resource populations across Australia and South Africa. 
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BREEDPLAN IN A GENOMICS WORLD – OPPORTUNITIES AND CHALLENGES 

 

H. Nivison 

 

Agricultural Business Research Institute, University of New England, Armidale NSW 2354 
 

SUMMARY 

The Agricultural Business Research Institute has been providing estimates of breeding values to 

cattle breeders for over 40 years. In that time, it has progressed from within herd, to BREEDPLAN, 

Group BREEDPLAN, and multi-country analyses. For most of that time, the data analysed was 

phenotypic, with genomic data only included fairly recently via blending. 

In April 2017, ABRI released a production BREEDPLAN run to the Australian Brahman 

Breeders’ Association using Single-Step methodology. This full multi-trait analysis, using pedigree, 

performance and genomic data simultaneously, was a world first for beef cattle. 

The incorporation of genomic data into routine Single-Step BREEDPLAN runs opens many 

opportunities to cattle breeders around the world, including the potential to significantly enhance 

the accuracy of analyses, allow breeders to make more accurate selection decisions, and therefore 
increase the rate of genetic gain. However, there remain significant challenges to overcome before 

these opportunities can be fully realised. 

 

INTRODUCTION 

This presentation is intended to examine the practical implications, opportunities and challenges 

for cattle breeders resulting from the introduction of Single-Step BREEDPLAN analyses. It is not a 

scientific paper. There are other technical papers available detailing Single-Step BREEDPLAN 

methodology in these proceedings. 

Hugh Nivison has been Managing Director of ABRI since October 2015. He is not a geneticist, 

coming from a background of sheep and cattle breeding in northern NSW. Hugh holds a Bachelor 

of Veterinary Science from the University of Sydney, and is an Adjunct Associate Professor at the 
School of Veterinary Medicine with the University of Queensland. His career has been spent 

working in agricultural production (primarily livestock) in Australia and overseas. 

The Agricultural Business Research Institute (ABRI) is responsible for commercialising the 

BREEDPLAN suite of software, holding the exclusive licence from the owners of the software, 

Meat and Livestock Australia (MLA), University of New England (UNE) and New South Wales 

Department of Primary Industries (NSWDPI). The software is developed by the Animal Genetics 

and Breeding Unit (AGBU), a joint venture of UNE and NSWDPI, with funding from MLA. 

ABRI provides genetic analyses for 84 discrete beef cattle breed associations or clients, many as 

part of combined multi-country analyses (Trans-Tasman Angus, Pan-American Hereford, Southern-

African Brahman for example). ABRI and AGBU are collaborating in two MLA Donor Company 

funded projects to expand capacity to provide multi-country analyses, and to investigate the 

technical and data limitations on providing full multi-trait, multi-breed analyses. 
 

DISCUSSION 

The practical outcome for any genetic analysis system must be increased rate of genetic gain 

through more accurate and more timely selection decisions on farm. The key components of that 

desired outcome are: 

1. More accurate predictions 

2. Earlier predictions 

3. On-farm adoption 

 



Industry II 

362 

OPPORTUNITIES 

 Pedigree 

o Provided animals have genomic data, Single-Step BREEDPLAN accurately assigns 

relationships based on the true genetic comparisons of the animals. Whereas 

relationships have traditionally been described as ½, ¼, 1/8 etc. they can now be 

described more accurately. Half-sibs can range from 0.16 to 0.34 (vs 0.25) allowing 

increased accuracy from the BLUP calculation 

o Single-Step BREEDPLAN identifies errors in existing pedigrees that have gone 

uncorrected previously. Significant improvements in accuracy result from correct 

parentage assignment, and elimination of previously unknown pedigree errors. 

o Single-Step BREEDPLAN can fill the blanks for some animals where there was no 

previously recorded pedigree if the parent/s and offspring have genomic information. 

Some breed societies already require DNA parent verification, but this process can add 

accuracy for those breeds where this does not currently occur. 

o Accurate assignment of genetic relationships is a key factor in producing accurate 

BLUP analyses. Single-Step BREEDPLAN allows for greater accuracy in pedigree 

than was previously available. 

 Hard to Measure (HTM) traits 

o Many economically important traits are difficult to measure on animals retained as 

seedstock sires and dams. Carcase and long term fertility traits are obvious examples. 

o Animals that are related genomically, although perhaps not by pedigree, to animals 

that have the phenotypic records for HTM traits will be able to receive EBVs for those 

traits if the relationship and accuracy is high enough. 

o Early selection of replacement females using fertility traits generated by Single-Step 

BREEDPLAN can significantly increase the rate of genetic gain for those traits as 

opposed to waiting for the animal to generate phenotypic data. 

 Animals with no performance 

o Animals with no phenotypic records can receive accurate EBVs for a wide variety of 

traits provided they have a genomic result, and are closely enough related to animals 

with phenotypic data in the analysis. 

o Dairy heifer selection is an excellent example of this practice, but its application in 
beef is likely to be less as there is not the dominance of small numbers of sires as in 

dairy herds. 

 Combining discrete data sets 

o Data sets that currently have no linkage via pedigree may be used to inform a Single-

Step BREEDPLAN analysis via their genomic linkage. Abattoir data combined with 

BREEDPLAN data holds an exciting prospect of better informing both seedstock and 

commercial cattle selection systems. 

o Highly accurate carcase EBVs for breeding animals, and highly accurate feed 

efficiency estimates for feedlot cattle are some of the possibilities. 
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CHALLENGES 

As attractive as the opportunities are for cattle breeders, there remain some disincentives that 

may prevent uptake of the technology. 

 (mis)Understanding 

o There will be some major EBV changes, and some of those will be for well-known 

and well used sires. While the changes will have justification (pedigree correction for 

example), some breeders will see this as an example of the analyses being unreliable. 

o Single-Step BREEDPLAN is currently designed to work for pure-bred animals. 

During the analysis, a Breed percentage is calculated based on an individual’s 

relationship with a reference population representative of the various breeds existing 

in Australia. Animals less than a threshold (80% for example) are excluded as not 

being purebreds. Unfortunately, some breeders have seen this as meaning animals less 

than 100% are not “Pure” and are attempting to use this analysis procedure for political 

gain. 

o Managing expectations will remain a challenge. Some breeders expect that they will 

now be able to just pull a tail hair and receive full BREEDPLAN EBVs without any 

data collection irrespective of how closely they are related to other animals in the 

analysis. 

o Breed Societies and others charged with administration of the pedigree, performance 

and genomic databases will have an increased responsibility for ensuring the accuracy 

of these data sources. Potential errors in pedigree, or breed will need to be investigated, 

and if confirmed will need to be rectified. Telling a breeder the recorded pedigree for 

his well-used sire is incorrect will be an uncomfortable role for breed society staff. 

This is likely to be a short term issue until the various inconsistencies are resolved. 

 Cost 

o SNP data is currently expensive to collect when considering the sample collection and 

testing charges together. As volume increases for laboratory testing, costs can be 

expected to decrease, but the on-farm cost will remain similar. While cattle prices 

remain buoyant, producers are likely to embrace the technology. However, if they are 

forced to prioritise discretionary expenditure in a downturn, they may reconsider their 

participation in genomics, particularly on a whole-herd scale. 

o There will need to be some consideration given to the differing influence of phenotypic 

and genomic data in the Single-Step BREEDPLAN analyses, including the option of 
differential pricing structures based on the value of the contribution from different data 

sources. Accurate collection of phenotypic data, particularly for HTM trait will need 

to be encouraged, potentially via financial incentives.   

 Reduced phenotypic recording 

o The beef industry in general, and breed societies in particular will need to actively 

ensure sufficient, accurate and linked phenotypic performance data continues to be 

collected to enable the Single-Step BREEDPLAN analyses. Systems including 

Reference populations and BINs can provide this data, but are expensive to operate, 

and will likely require industry funding as they are usually beyond the financial 

abilities of individual breeds. Innovative alternative methods of collecting and 

generating this data in a more cost-effective manner should be investigated. 
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o The education of seedstock and commercial breeders on the importance of phenotypic 

data, and possible financial incentives for collection will need to be a focus for both 

breed societies and the wider industry. 

 No of tested animals 

o Breeds with smaller populations may initially struggle to implement Single-Step 

BREEDPLAN due to their low numbers of total genomic results. The GBLUP method 

of Single-Step BREEDPLAN requires the generation of a Genomic Relationship 

Matrix (GRM) which may have stability issues at low level of results. 

 Technical 

o The sheer volume of extra data generated by combining genomic results with existing 

pedigree and performance datasets will lead to challenges in both storage and 

transmission. Breed societies and the BREEDPLAN service will need to develop 

innovative methods for ensuring efficient and cost effective data management during 

Single-Step BREEDPLAN runs. 

o The technical complexity of combining datasets for multi-country or multi-breed 

analyses is further complicated by the addition of genomic data. Many of the current 

BREEDLAN analyses are conducted on a multi-country basis, and further expansion 

of this service is planned. BREEDPLAN is also exploring opportunities for robust 

multi-breed, multi-trait analyses and the associated complexity of merging the 

pedigree, performance and genomic datasets involved. 

o The much greater computational requirements of Single-Step BREEDPLAN could 

have potentially slowed the speed of analysis down considerably. Innovative 

development by AGBU has ensured that the full multi-trait Single-Step BREEDPLAN 

analyses run in a time comparable with existing BREEDPLAN runs. Further 

enhancements in software and hardware are planned, and will be essential as many 

BREEDPLAN clients move to more frequent evaluations. 

BREEDPLAN in a genomics world (Single-Step BREEDPLAN) will provide cattle breeders 

with more accurate analyses, leading to more accurate selection decisions, and resulting in increased 

rates of genetic gain. The challenges involved in achieving this outcome are not insignificant, but 

the rewards of adoption should ensure the opportunities will be realised. 
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SUMMARY 

Substantial genetic progress has been made by the Australian sheep industry in the era of across-
flock genetic evaluation which began in the early 1990s. Rates of gain in standard indexes increased 

throughout the 2000’s for maternal breeds and terminal sires, but have plateaued or slightly 

decreased since 2010. For Merinos, the rate of gain has remained relatively constant over the same 

period. Average rates of gain for each breed group are currently as high as 94% of “potential” gain 

for terminals sires, 84% for Coopworth and maternal composite flocks, 49% for Border Leicesters, 

and up to 47% for Merinos. However, the top 20% of breeders are exceeding potential gain for all 

breed groups except Border Leicester, and it is the poor performance of the bottom 20% of breeders 

which leads to lower performance on average for a breed group, particularly for Merinos. 

 

INTRODUCTION 

The Australian sheep industry has made substantial and measurable genetic progress since the 

advent of across-flock genetic evaluation systems in the early 1990’s, underpinned by pedigree and 
performance recording in ram breeding flocks and extensive use of artificial insemination. The 

effectiveness of selection has varied across different breed groups, with Swan et al. (2009) finding 

that terminal sire breeds were achieving 110% of “potential” gain, maternal breeds up to 79%, and 

Merinos 33%. In this study we present an updated analysis of genetic progress for the major 

Australian sheep breed groups. 

 

MATERIALS AND METHODS 

The main across-flock genetic evaluations for Australian sheep are currently conducted within 

three breed groups, maternal breeds, Merinos, and terminal sire breeds (Brown et al. 2007). Genetic 

trends were estimated from analyses published in January 2017, averaging estimated breeding values 

(ASBVs) and index values by year of birth, starting at 1989, the first year where significant numbers 
of animals were available, and ending at 2015, the most complete recent cohort. For terminal sires, 

the breeds selected where Poll Dorset, Dorset, Texel, and White Suffolk, while for Merinos, flocks 

of Australian Merino or Australian Poll Merino origin were selected, excluding central test sire 

evaluation flocks. For maternal breeds, Border Leicester (BL) was considered separately to 

Coopworth and maternal composite flocks (CM), because the former are used in a production system 

based on crossbred ewes, while the latter are used in self-replacing production systems. 

Trends were calculated for six standard indexes, the Maternal Dollar index (MATDOL) for both 

BL and CM; Dual Purpose Plus (DPP), Merino Production Plus (MPP), and Fibre Production Plus 

(FPP) for Merinos; and Carcass Plus (CPLUS) and Lamb 2020 (LP2020) for terminal sires. Because 

these indexes are presented to breeders expressed on different scales, the results were scaled by the 

standard deviation of each breeding objective. 

Rates of gain in indexes were calculated in sliding 10 year windows, by regressing average index 
value on year of birth. So for example, the rate of gain for the year 2000 was the estimated slope of 

the regression for years 1991 to 2000.  

Rates of gain in indexes were compared to potential rates of gain based on deterministic selection 

index predictions. The assumptions used in these calculations were full pedigree recording, with the 

traits typically recorded by breeders in each breed group, including birth weight (BWT), weaning 
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weight (WWT), post-weaning weight (PWT), yearling weight (YWT), adult weight (AWT), eye 

muscle (EMD), fat (FAT), worm egg count (WEC), fleece weight (CFW), fibre diameter (FD), 

staple strength (SS), and number of lambs weaned (NLW). A summary of the traits included for 

each index is shown in Table 1, along with index accuracy based on the traits measured, and potential 

gain per year. The latter was calculated as the index accuracy multiplied by 𝑖/𝐿, where 𝑖 is the 

selection intensity and 𝐿 the generation interval, both calculated from recent data in the evaluation 

databases for each breed group. 

 

Table 1:  index accuracy, potential gain per year (per standard deviation of objective), and 

traits measured to calculate index accuracy. 

Index Accuracy Potential gain Traits measured to calculate index accuracy 

MATDOL 0.45 0.199 BWT, WWT, PWT, EMD, WEC, CFW, NLW 

DPP 0.30 0.078 YWT, AWT, EMD, CFW, FD, SS 

MPP 0.36 0.094 YWT, AWT, CFW, FD, SS 

FPP 0.44 0.116 YWT, AWT, CFW, FD, SS, WEC 

CPLUS 0.61 0.230 WWT, PWT, EMD, FAT 

LP2020 0.60 0.228 BWT, WWT, PWT, EMD, FAT, WEC 

 

Trends were also calculated for individual flocks currently in the evaluation, restricted to those 

with more than 50 progeny per year with ASBVs, and 7 or more cohorts present out of the most 

recent 10. There were 38 BL flocks and 20 CM flocks in the maternal analysis, 138 flocks in the 

Merino analysis, and 274 flocks in the terminal sire analysis. The rate of gain for each flock was 

calculated between 2006 and 2015, and compared to the potential gain. These results were 

summarised within the top 20% of flocks and bottom 20% of flocks. 
Finally, the contribution of individual traits to index gain over time was calculated by estimating 

the rate of gain for each trait within the sliding 10 year windows described above, multiplying by 

the relative economic value, and expressing as a percentage of the total index gain.  

 

RESULTS AND DISCUSSION 

Index trends in Figure 1 show that substantial genetic progress has been achieved since 1989. 

Most is observed for the CPLUS index in terminal sires (approximately 5 Standard Deviations), 

followed by LP2020. For the MATDOL index, CM have increased by over 3 SD, and BL by 1.5 

SD. Merinos have made the least gain, between 0.5 and 1 SD. 

 
Figure 1: Trends in index performance for maternal breeds (Mat), Merinos (Mer), and 

terminal sires (Term). 

As shown in Table 1, Merino indexes have the lowest index accuracies and potential genetic 

gain, and this is accounted for in Figure 2. In addition, Figure 2 shows that the rate of gain in terminal 
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sires and the maternal breeds increased substantially through to approximately 2010, but has since 

plateaued, or perhaps declined slightly in the case of terminal sires. For Merinos, the rate of gain has 

been slowly increasing for the DPP and MPP indexes from a low point in 2005, while the rate of 

gain has been declining for the FPP index, which reflects a reduction in emphasis throughout the 

industry on fibre diameter, the dominant trait in this index. 
 

 
Figure 2: Percentage of potential rate of index gain for maternal breeds (Mat), Merinos (Mer), 

and terminal sires (Term). 

While a plateauing of the rate of gain may not necessarily be an issue, it needs to be noted that 

the potential rates of gain we have used here have been deliberately set at a conservative level in 

order to match the recording programs and population structures within the current databases. 

Exceeding these potential gains is possible, by increasing selection accuracy with better recording 

programs, optimising breeding programs, and/or utilisation of across-flock and across-breed 
differences in performance. As shown in Table 2, the top 20% of breeders exceed the potential gain 

in most cases. In addition, for all cases with the exception of CPLUS in terminal sires (94% of 

potential gain) and MATDOL in CM (84%), the realised gain is substantially lower than the 

potential: 49% for MATDOL in BL, and 43, 47, and 37% for DPP, MPP, and FPP in Merinos. 

 

Table 2: Percentage of potential genetic gain for top 20% of flocks, bottom 20% of flocks and 

mean across flocks. 

Percentile 

 
MATDOL 

(BL) 
MATDOL 

(CM) 
DPP 
(Mer) 

MPP 
(Mer) 

FPP 
(Mer) 

CPLUS 
(Term) 

LP2020 
(Term) 

Top 20% 82 125 102 111 91 134 107 

Bottom 20% 19 39 -4 -6 -3 45 35 

Mean 49 84 43 47 37 94 73 

 
Possible reasons for not achieving potential rates of gain include firstly the lack of measurement 

of key traits in the index. This is the case for the LP2020 index in terminal sires, where the 

measurement of WEC is not common in ram breeding flocks. Secondly, selection may be taking 

place on traits outside the index, for example, in Merinos there has been a move from horned to poll 

Merinos over the last decade, and possible selection on breech and other visual traits. In terminal 

sires, ASBVs for eating quality traits have been available since 2011, and these are negatively 

correlated to some traits in the CPLUS and LP2020 indexes. An additional factor in maternal breeds 

is that maternal composites and Coopworths have had greater ability to capitalise on across-breed 

effects than Border Leicesters. However, taking these points into account, it seems that the biggest 

issue is simply that selection is ineffective in some flocks. On average, selection in Merinos and BL 

is much less effective than in CM and terminal sires, but the top 20% of flocks are approaching and 
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exceeding the potential gain in all breeds (Table 2). It is poor performance in the bottom 20% of 

flocks which is reducing average gain, particularly for Merinos. This means that one strategy to 

increase industry gain would be to focus on improving poor performing flocks, which could be 

achieved by better application of relatively simple technology. Sheep Genetics is introducing a 

program working with individual breeders through the “RAMping Up Genetic Gain” project in 
collaboration with NSW DPI, AGBU, and the Sheep CRC. Through this program, breeders can 

assess the quality and quantity of information in their breeding program, determine how effectively 

it can be used in the evaluation analysis, and consider how well it is then used to make selection 

decisions. It should also be noted that while the differences between the top and bottom flocks are 

shown to be large, we have not assessed how the industry impact of different flocks may vary. 

The changing contribution of individual traits is shown for the main indexes (those which are 

achieving the most gain for their respective breeds) in Figure 3. In the early phases of across-flock 

evaluation, body weight (WWT and PWT) made the biggest contribution to gain for maternal breeds 

and terminal sires. Since 2005, the contribution of eye muscle depth (EMD) has increased for both 

breed groups, as well as reproduction (NLW) for the maternal breeds. This is partly due to 

measurement of these traits becoming more common, and has contributed to increases in the overall 

rates of gain seen in Figure 2. In the CPLUS index, fat depth (FAT) has a negative relative economic 
value, because the breeding goal has essentially been to improve lean meat yield. The influence of 

fat on the index has been declining, partly because of periodic updates to CPLUS to reduce the 

relative economic value, and because of a positive genetic correlation between FAT and EMD. 

In the early phases of evaluation for Merinos, fibre diameter was the dominant trait, but from 

2005 the influence of body weight (YWT) began to increase. Note that adult body weight in Merinos 

(AWT) is making a negative contribution to index gain because although the genetic trend is 

positive, the relative economic value is negative due to the impact of the trait on ewe flock feed 

costs. In terms of overall response, higher adult weight is favourably associated with early growth 

and reproduction. In a third phase from 2010, emphasis on fleece weight (CFW) has substantially 

increased, and this is related to a small negative contribution to the index from fibre diameter (FD) 

caused by a small positive trend in the trait. 
 

 

Figure 3: Changes in the contribution of individual traits to gain in selected indexes (Maternal 

Dollar index (MATDOL) for Border Leicester (BL) and maternal composite flocks (CM), 

Merino Production Plus (MPP), and Carcass Plus (CPLUS) for terminal sires over time. 
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SUMMARY 

Two genetic evaluations were carried out for a vertically-integrated beef production operation 

running a 600 cow Charolais purebred herd providing terminal sires for a 10,000 commercial cow 

herd to determine the effect of genotyping on accuracy of genetic predictions, rate of genetic gain, 

and discounted revenue for breeding sires. Genetic evaluation A included phenotypes from purebred 

and crossbred offspring and a pedigree containing purebred relationships as well as sire-calf 
relationships for crossbred calves derived from parentage assignment. Genetic evaluation B 

contained the same information as A, with the addition of 9K genotypes for purebred and crossbred 

animals. Genotyping resulted in an 11.9% increase in the average accuracy (RTI) of the estimated 

breeding values (EBV) over parentage assignment alone. Gene flow methodology was used to 

estimate the cumulative discounted expressions (CDE) resulting from the selection of a genetically 

superior purebred (PB) and commercial (CM) sire. Additional discounted revenue derived from the 

increased accuracy due to 9K genotyping in genetic evaluation B was $465 for a CM sire, and 

$10,355 for a retained PB sire. The cumulative net present value (CNPV) over a 20 year planning 

horizon was $9,400,910 and $17,930,183 for scenario A and B, respectively, assuming 25% of the 

CM progeny were assigned parentage or genotyped annually at a cost of $15/parentage assignment 

or $35/9K genotype. These estimates assume the value from genetic improvement is returned to the 
enterprise. In this scenario genotyping PB selection candidates and some proportion of CM progeny 

resulted in a positive return on investment over parentage assignment alone. 

 

INTRODUCTION 

Adoption of genomic technology in the beef cattle industry provides an opportunity to accelerate 

genetic gain and increase income (Meuwissen et al. 2013). In a vertically integrated production 

system there is opportunity to capture additional profit generated from genotyping by implementing 

a genetic evaluation using some combination of phenotypes, pedigree information, and genotypes 

(Aguilar et al. 2010). Increased genetic gain from genotype information results from an increase in 

the accuracy of the prediction of genetic merit and the reduction of generation interval through 

genomic selection on young unproven sires (Todd et al. 2014). The objective of this study was to 

compare the accuracy of genetic evaluations obtained from pedigree relationships derived from 
parentage with those obtained when using ~9K genotypes. A secondary objective was to calculate 

the estimated additional economic returns associated with the accelerated genetic gain in both 

scenarios. Inference was to a genetic evaluation program for a vertically-integrated, two-tiered beef 

cattle production system producing Charolais terminal sires for 10,000 commercial cows. 

 

MATERIALS AND METHODS 

Data used in this study consisted of records from a Charolais purebred herd combined with 

feedlot and carcass performance records from their crossbred calves finished at a common feeding 

facility. Historic pedigree information (n=8,361 pedigree records) was available for the purebred 
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herd. During the course of three years, 568 purebred Charolais bulls and 8,776 crossbred calves were 

genotyped using a combination of the GeneSeek Genomic Profiler LD (26k) v.1.1-4 and HD (76k) 

SNP arrays, which allowed for the reconstruction of sire-calf pedigree relationships. There were 

8,549 SNP markers common to all animals in the evaluation after trimming for call rate (≥0.90) and 

removing markers on sex chromosomes. Phenotypes collected from purebred Charolais bulls 
included birth weight (BW), weaning weight (WW), GrowSafe (GrowSafe Systems, Ltd, Airdrie, 

AB Canada) dry matter intake (DMI), average daily gain (ADG), ultrasound 12TH rib fat depth 

(URFAT), ultrasound intramuscular fat percentage (UIMF), and ultrasound ribeye area (UREA). 

Phenotypes collected from crossbred calves finished in the feedlot included WW (collected at 

feedlot arrival), DMI, 12th rib fat depth (FAT), marbling score (MARB) determined by image 

analysis (VBG 2000 E+V, Oranienburg, Germany), and carcass ribeye area (REA). 

Pedigree-based and genomic EBVs were estimated using the single-step approach to 

simultaneously evaluate genotyped and non-genotyped animals with pedigree information. 

Inclusion criteria for purebred sires to be evaluated in this study were a recorded pedigree 

relationship, a genotype, ultrasound and DMI records, and at least one recorded crossbred calf. For 

evaluations where crossbred carcass traits were available, ultrasound indicator traits were analyzed 

in a bivariate animal model (MacNeil et al. 2010). Beef Improvement Federation (BIF) EBV 
accuracies were calculated using standard errors derived from single-step GBLUP according to BIF 

guidelines (2015).   

𝐵𝐼𝐹𝑎𝑐𝑐 = 1 −  √
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
   [1] 

This accuracy was then transformed to an approximation of the correlation between the true and 

estimated breeding value (RTI): 

𝑅𝑇𝐼 =  √1 −  (1 −  𝐵𝐼𝐹𝑎𝑐𝑐)2     [2] 

The average accuracy in each genetic evaluation was also used to estimate the expected genetic gain 

in profit per year (ΔG$/yr) using economic index coefficients for each trait: 

𝛥𝐺 = ∑   𝛼𝑗 𝐼 𝑅𝑇𝐼𝑗
 𝜎𝐴𝑗

𝑛
𝑗=1         [3] 

Where αj equals the economic value for trait j ($/marketed crossbred carcass), I equals the selection 

intensity of PB or CM bulls, 𝑅𝑇𝐼𝑗
 equals the average accuracy for trait j, 𝜎𝐴𝑗

equals the additive 

genetic standard deviation for trait j. Selection intensities were chosen to create a replacement rate 

that would maintain the current population structure. 

 The gene flow method of Hill (1974) was utilized to estimate the cumulative discounted 

expression (CDE) resulting from the selection of a genetically superior CM or PB sire using the 
population structure, age classes, and selection intensity for a combined 600 cow nucleus herd and 

10,000 commercial cow production system as described (Van Eenennaam et al. 2011).  A discount 

rate of 5% and a 20 year planning horizon was used to determine the present value resulting from 

the future expression of production traits after selection decisions have been made. The discounted 

revenue derived from CM sires was estimated as: 

$𝐶𝑀 =
𝛥𝐺 𝑥 𝐶𝐷𝐸𝐶𝑀 𝑥 𝑁𝑜.𝑜𝑓 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑐𝑜𝑤𝑠

𝑁𝑜.  𝑜𝑓 𝑦𝑒𝑎𝑟𝑙𝑖𝑛𝑔 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑏𝑢𝑙𝑙𝑠 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑
  [4] 

Similarly, the discounted revenue derived from PB sires was estimated as: 

$𝑃𝐵 =
𝛥𝐺 𝑥 𝐶𝐷𝐸𝑃𝐵 𝑥 𝑁𝑜.𝑜𝑓 𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑐𝑜𝑤𝑠

𝑁𝑜.  𝑜𝑓 𝑃𝐵 𝑠𝑖𝑟𝑒𝑠 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑
   [5] 

In addition, cumulative net present value (CNPV) over a 20 year planning horizon was calculated 
using the accuracies and resulting rate of genetic gain, along with the internal rate of return (IRR). 

 

RESULTS AND DISCUSSION 

Table 1 displays the population structure and breeding system assumptions used in this study.  
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Table 1. Population structure and system parameters commercial (CM) and purebred (PB).  

Parameter Assumed Value 

No. of PB bull calves born each year 231 
PB bull:cow ratio 1:25 

No. of PB cows 600 
No. of PB bulls selected each year 10 (4.3%, i = 2.11) 
No. of bulls selected as CM bulls 154 (69.7%, i = 0.50) 
CM bull:cow ratio 1:20 
No. of CM cows 10,000 
Age structure of PB bulls (2 to 4 yr) 0.41, 0.33, 0.26 
Age structure of CM bulls (2 to 5 yr) 0.34, 0.27, 0.22, 0.17 
Age structure of cows in CM herd 0.2, 0.18, 0.17, 0.15, 0.12, 0.09, 0.05, 0.03, 0.01 

 

Average accuracy of EBVs for the traits included in the genetic evaluation are shown in Table 2 

for the 248 purebred Charolais bulls that were included in this comparison. Genetic evaluation A 

and B contained the same pedigree and phenotypes, but genotypes were added to genetic evaluation 

B. The addition of genotypes to the genetic evaluation resulted in an 11.9% increase in the average 

accuracy over parentage assignment alone.  

 

Table 2. Accuracy (RTI) of Genetic evaluation. Evaluation (A) contained phenotypes from 

purebred and crossbred animals and a pedigree derived from SNP parentage assignment and 

(B) with the addition of 9K SNP genotypes 

 Accuracy of Genetic Evaluation 

Trait1 A B 

D2H    0.474 ±0.008   0.490 ±0.005 
DMI    0.569 ±0.018   0.648 ±0.006 
FAT    0.628 ±0.008*   0.749 ±0.008* 

HCW    0.602 ±0.009   0.721 ±0.005 
MARB    0.621 ±0.011*   0.712 ±0.005* 
REA    0.666 ±0.008*   0.725 ±0.004* 
UFAT    0.597 ±0.003*   0.606 ±0.006* 
UIMF    0.661 ±0.002*   0.712 ±0.002* 
UREA    0.630 ±0.004*   0.655 ±0.003* 
WW    0.699 ±0.006   0.711 ±0.004 
YG    0.635 ±0.009   0.745 ±0.004 

*Bivariate model with carcass traits evaluated with ultrasound indicator trait.  
 
1D2H = days to harvest, FAT = carcass backfat thickness, MARB = camera-based marbling score, 

UFAT = ultrasound backfat thickness, UIMF = ultrasound intramuscular fat, UREA = ultrasound 

ribeye area. 
 

The discounted revenue from genetic evaluation is shown in Table 3. Additional discounted 

revenue derived from accuracy due to genotyping in genetic evaluation B was $465 per CM sire. If 

154 CM sires are retained each year (69.7%, i = 0.50) as breeding males that produce commercial 

offspring, then the annual economic return becomes $71,610 on an enterprise basis. 

Increased discounted revenue derived from genotyping for PB sires was $10,355 If 10 PB sires 

are retained as herd sires (4.3%, i = 2.11) this value becomes $103,550 on an enterprise basis. The 

total discounted revenue derived from genotyping is then $175,160 for the enterprise per year. 

Additionally, the CNPV derived from estimates of genetic gain in $/PB bull in both genetic 

evaluations was estimated over the first 20 years of selection. Assuming a cost of $15/parentage test 

and $100 or $45 in phenotyping costs for PB and CM animals, respectively, the initial investment 
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for scenario A was $591,880. Assuming a cost of $35/test for the GGPLD and the same phenotyping 

costs, the initial investment for scenario B was $778,760 (Table 3).  

 

Table 3. Discounted revenue per year and cumulative net present value (CNPV) for purebred 

(PB) and commercial (CM) sires in genetic evaluation scenarios A and B. 

Genetic 
Evaluation 

 
Income/expense source 

 
N 

 
Expense 

 
Income 

 
Total 

A CM  progeny phenotyping ($100/hd) 1875 $187,500   
 PB bull phenotyping ($100/hd) 231 $23,100   
 Parentage ($15/hd) 2106 $31,590   
 Startup cost  $591,880   

 20 year CNPV    $9,400,910 
 20 year internal rate of return    9.2% 

B CM  progeny phenotyping ($100/hd) 1875 $187,500   
 PB bull phenotyping ($100/hd) 231 $23,100   
 Genotyping ($35/hd) 2106 $73,710   
 Startup cost  $778,760   
 20 year CNPV    $17,930,183 
 20 year internal rate of return    16.3% 

        Difference in CNPV after 20 yr   $8,529,273 
 

This example assumes 25% of the CM progeny and 100% of the PB males were assigned 

parentage or genotyped each year of the 20 year period. Scenarios A and B reach breakeven value 
after 12 and 10 years of selection, respectively. Scenario B also generates approximately $8,529,273 

additional cumulative revenue over 20 years. These economic returns may be inflated as they were 

based on single trait accuracies which may be overestimated as they did not account for information 

that might be provided from correlated traits. 

 

The CNPV estimate suggests a positive return on investment can be derived from 9K genotyping 

young PB selection candidates and a portion of the CM progeny in this two-tiered beef cattle 

production system as compared to a genetic evaluation using a pedigree containing purebred 

relationships and sire-calf relationships for crossbred calves based on parentage analysis alone. 
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SUMMARY 

A range of players or sectors make investments into genetic improvement in the extensive livestock 

industries, but overall returns are heavily dependent on decisions made by bull- (and ram-) breeders. 

They in turn rely on sales of genetic material to cover their own investments and maintain 

profitability. Some broad-scale characteristics of the investments and of the markets for genetic 

material are reviewed, leading to the observation of very high uncertainty in those markets. This 

uncertainty is almost certainly acting as a brake on genetic progress, and some possible approaches 

to reduce the uncertainty are considered. Such approaches will aim to improve efficiency of the 

market for genetic material, and will need to be designed to be robust, transparent and simple and 
cheap to apply. 

 

INTRODUCTION 

For any livestock improvement system, return on investment must be satisfactory both to 

maintain profitability and to fund further improvement. For single, vertically-integrated enterprises, 

this should be straightforward in terms of accounting and response, and the same conclusion likely 

applies for breeding enterprises in multi-vendor situations, provided that they have enough scale and 

market share. For multi-enterprise industries, such as beef cattle and sheep in Australia, things may 

not be so straightforward. Discussion of opportunities, and research, is often quite sensibly focussed 

on technical questions, which can ultimately be summarised as how to achieve higher accuracy of 

selection for a given investment and with possible constraints on inbreeding. Increasingly however, 
and especially when there is a mix of public, collective and private investment, some focus is on 

how to improve investment return: in simple terms, how to increase the rate of genetic progress? 

In livestock industries such as beef cattle and sheep, investment in genetic improvement can be 

grouped into two categories: performance recording, and research, development and extension. The 

returns ultimately accrue as increased value of sales of products and margins distributed in some 

way through the value chain, or at worst reduced rate of decline in the real value of these things. 

Who makes the investments, and what returns they receive, could have important effects. 

This paper focusses on these distributions of risk and reward, and explores whether they might 

be affecting rates of genetic progress, and if so, what responses might be considered. This paper 

focusses on the beef industry, but the limited available evidence suggests similar patterns apply in 

sheep. 

 

RATES OF PROGRESS ACHIEVED 

Previous reports of genetic progress being achieved in the beef and sheep industries indicate that: 

a) Averages are consistent with, or higher than, those achieved in other countries (Swan 2009, 

these proceedings) 

b) There is wide variation in rates within and between breeds (Johnston, 2007). 

Adoption rates, estimated as proportion of sires entering the market either with BVs themselves, 

or sired by animals with BVs, are moderate to high. 

Together, these observations suggest that the technologies and the forms in which they are 

offered/provided, enable very satisfactory genetic progress. Given the opportunity costs of genetic 
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progress being slower than potential, it is reasonable to ask what causes the difference. 

 

INVESTMENTS AND RETURNS 

Data collection and availability of total investments and returns is limited, but some high level 

approximations can be used. Table 1 summarises estimates for the beef industry for the decade 
leading to the end of the Beef CRC. 

 

Table 1: Estimated annual investments in Research, Development and Extension/Adoption 

and Implementation in the Australian beef industry, 2002-2012 

Stage Estimated Annual Investment ($m) Funding Source %  
Cash In-kind Total Breeders Producer 

levies 

Gov’ts 

Strategic research $7.48 $8.10 $15.58   6% 94% 

Applied RDE $1.00   $1.00   50% 50% 

Extension to breeders $0.50   $0.50 42%   58% 

Implementation $2.50   $2.50 50%   50% 

Routine evaluation $0.60   $0.60 100%     

Data collection in 

studs $3.75   $3.75 100%     

  $15.83 $8.10 $23.93       

The key observation from this summary is that overall investment is substantial, and it is sharply 

divided between pre-implementation Research, Development and Extension/Adoption, borne 

predominantly by tax-payers and producers, and implementation, which is borne predominantly by 

breeders. This raises the question of how returns flow to the different investors. 

In the case of estimated returns, there are 3 sources (breed, herd, and within-herd): 

- Estimates of returns to sectors, using Equilibrium Displacement modelling (Zhao et al, 2000). 

These estimate that the distribution of returns from improved productivity, or marketing (which 

can be treated as a proxy for improved product quality) is approximately 30% to producers, and 

approximately 67% to domestic and international consumers (Table 2). Note that the form such 

benefits (to either the consumer, or ultimately the producer and breeder) take when consumers 

essentially pay the world price may not be clear, and some of the estimated consumer benefits 
may accrue to local land values, to the benefit of domestic producers.  

 

Table 2: Distribution of Returns (%) by sector R&D investment into improved production or 

improved demand (Zhao et al, 2000) 

Sector Beef 

 Production Research Promotion Research 

Producers 24-34 20-30 

Feedlots 0.1-0.2 0.3 

Processors 1 1 

Retailers 4 4-7 

Domestic Consumers 50-55 50-65 

Overseas Consumers 8-9 5-12 

 

- Data from breed societies on bull sales, at the breed and herd level.  

o Breed level: at the time of writing, only a very limited sample of such data has been 

analysed: average prices for Angus bulls across years, and average prices for Angus studs 
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within a year. The former analysis suggests a relatively constant relationship between the 

average price across all bulls sold in a year and the prevailing price for young cattle. The 

ratio of average bull price in dollars to Eastern Young Cattle indicator in c/kg across the 

period 1996-20104 is 10.8:1. Using a standard carcase weight and number of lifetime 

progeny, this ratio equates to 5.4% of total on-farm earnings per bull (and therefore 
approximately 1.6% of total value chain income per bull). 

o Herd level: the regression of herd average bull price in 2014 (adjusted for season and state) 

on herd average merit for $Index for the 2012 drop, in Angus herds across Australia is = ($ 

17.26 x Herd Average Merit) – 1813, with an r-squared of 6.6%. Certainly this is a small 

sample, but there are two interesting aspects in these numbers: firstly, that the regression – 

the amount paid to the breeder per $Index point, is close to half the proportion of the value-

added per bull received by the commercial producer, meaning that the bull-buyer is on 

average sharing the “rewards” from genetic improvement with the bull breeder; and 

secondly, that there is a great deal of variation around the regression, meaning that there is 

considerable uncertainty for the breeder about how much reward he/she will receive for the 

genetic improvement generated and offered for sale.   

o Data from samples of individual bull sales: Van Eeenannam (pers. comm.) analysed data 
from individual stud sales for Angus studs for regression of price on index value, within 

stud, and found regressions ranging from $80-160 per index point, with r-squared values 

in the range 20-26%. Similarly, analysis of data from 8 Angus studs for the 2016 selling 

year reveal regressions of sale price on $Index across studs averaging $88 extra per $Index 

point (range $34 to $134) and r-squared averaging 19% (range 7% to 32%). The data for 

these sales also show very variable but sometimes strong relationships of price with weight 

of sale day (not shown). 

Some caution is needed in considering the meaning of these results: 

- it is likely that buyers of Angus bulls have the most appreciation of BREEDPLAN 

information, reflecting the focus on the technology and its extension over many years,  

- the price data includes stud and herd bull sales, in varying proportions across studs, but this 
is likely to bias upwards both the across-herd and within-herd regressions of price on merit,  

- the studs for which individual regressions have been investigated could be realistically 

described as technology leaders, and so their clients may not be representative of the 

average bull-buyer. 

 

IMPLICATIONS 

Overall investment into genetic improvement in the beef industry can be categorised into “pre-

commercialisation” investment (R&D, extension) and commercialisation or implementation 

investment. The former creates potential for genetic progress and hence wealth generation, the latter 

converts potential into reality. 

The distribution of the investment into these 2 categories almost perfectly maps to 2 categories 

of investors: the former to tax-payers and commercial producers acting collectively, and the latter 
to bull breeders. In general analyses of return on investment in genetic improvement show very 

favourable long-term and industry- or community-wide returns. However, such outcomes are 

completely dependent on the behaviour of the breeding sector, or more precisely on the large number 

of heterogeneous agents who comprise it: – how much they invest, how they invest and how they 

make selection decisions. Those decisions all ultimately depend on the returns obtained from selling 

genetic material – and more particularly on both the expected level of return and the uncertainty 

about that expectation. 

The limited analysis of sale results for Angus cattle has two main messages. First, there is a 

relatively stable relationship between overall average price of bulls and the current price of 



Industry II 

376 

commercial cattle. It is as if the market estimates and applies some function of steer price in 

determining the price it is willing to pay for bulls. Second, there is some variation around this overall 

average, related to herd merit and animal merit within herd. So, the market can be said to be paying 

for genetic merit, albeit with very wide variation about how much it pays. And further, there is very 

wide variation around the across- and within-herd regressions, indicating considerable uncertainty 
for the bull breeder. This has most relevance to genetic improvement in relation to the across-herd 

regression of average price on merit. The low r-squared implies that obtaining a reliable return on 

investment in (additional) herd recording and faster genetic progress cannot be guaranteed. 

In these circumstances, it is not unreasonable to expect under-investment (the utility value of an 

investment being its expectation minus a function of its uncertainty, and the uncertainty in this case 

is clearly high), and potentially some excess caution in decisions relating to breeding direction and 

selection differential. Both these responses limit the overall returns, for all investors. Accordingly, 

there would be value in industry and community consideration of strategic mechanisms to reduce 

the uncertainties. Note that this does not relate to industry and community support for RDE – those 

investments are to create potential. The mechanisms needed are to in some way reduce the 

uncertainty and/or improve the returns – which can almost be considered as modifying the implicit 

license under which the knowledge and tools of genetic evaluation and improvement are made 
available to the breeding sector, which in turns supplies a service called genetic improvement. 

Currently, the rest of industry incentivizes the breeding sector via the market for genetic material, 

which the data reviewed here suggests to have very low efficiency in its signalling – there is a lot of 

noise in the market, as reflected by the low and variable r-squared values. One approach to changing 

the terms of the transaction between breeders and the rest of the value chain, developed in the grains 

industry of this country, is to collect an end-point royalty on production, and funnel that back to 

breeding companies. This levy can be used to offset breeding program costs. This approach goes 

part way towards solving the problem, but the link between returns and genetic merit is still filtered 

through market perceptions and knowledge informed by a system of variety comparison. This is 

essentially almost equivalent to funding breeders for their recording costs, although it does not 

deliver that specificity. This still leaves the returns for better breeding decisions uncertain. It would 
be worth considering whether other or additional mechanisms could be developed that more directly 

reward genetic merit, and thus increase the r-squared in relationships between price and merit. 

These ideas may seem impractical or anti-market, but in fact groups of interested players or their 

agents define rules of operation for many markets. Leaving genetic improvement, and the wealth it 

can generate, solely to an imperfect market has only one merit, and that is that it is easy. 

 

CONCLUSION 

Markets for genetic material (beef in this case) are the means by which incentives for genetic 

improvement are delivered, and hence by which returns on investment generated. These markets 

appear to be very noisy despite signs of underlying rationality. Mechanisms to reduce that noisiness 

are worth investigation, as such reduction should improve incentives and hence overall returns. 
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SUMMARY 

In recent years, breeders have combined the use of phenotypic appraisal and the estimation of 

breeding values (PTA or EPD) to make genetic selection decisions in beef and dairy cattle that 

have resulted in a steady genetic gain of 2% per year. However, the most extensive application of 

genomics has occurred in the dairy industry with the estimation of molecular breeding values that 

has improved selection efficiency to a much higher order of magnitude. Despite a growing 

molecular and physiological understanding of complex traits, little is known about the genes 
determining the traits and their precise function, and a significant unexplained source of variation 

of phenotypes remains in livestock. Within this context, a more complete understanding of the 

genes and regulatory pathways and networks involved in economically important traits (i.e. 

fertility and reproduction, feed efficiency, meat quality and carcass traits) in beef and dairy cattle 

will provide knowledge to help improve genetic selection and reproductive management. 

Therefore, high throughput -OMICS technology (i.e., transcriptomics, metagenomics, 

metabolomics, as well as epigenomics amongst several others), will complement these tools and 

further advance identification of functional genes within a systems biology approach. 

 

INTRODUCTION 

The field of genetics and genomics in most of the livestock species has experienced a dramatic 
technological revolution in the last 5 years. During the earlier 2000’s, the emphasis in livestock 

genetics was in linkage maps with single markers and quantification of some genes using real time 

qPCR. The first bovine genome assembly was published in 2009 (Elsik et al., 2009), and since that 

time, the development and use of various whole genome-omics tools has accelerated research in 

cattle genetics (Reverter et al., 2013; Snelling et al., 2013). After the development of the livestock 

genome sequences, new technologies such as microarrays were introduced allowing the study of 

gene expression of the entire transcriptome. With that, the concept of “Genetical Genomics” was 

developed with the idea of integrating structural and functional genomic data, combining gene 

expression from microarray technology with genotype data from marker genotypes. Currently, the 

field of Genetical Genomics or the integration of structural and functional genomic data, has 

expanded as high throughput tools have become available for genomic analysis such as high-

density (HD) genotyping-chips (Illumina, San Diego, CA), whole genome sequencing and 
genotyping by sequencing and RNA-Sequencing to measure the gene expression in the entire 

transcriptome (in a more accurate way than microarray technology; Wickramasinghe et al. 2014). 

Currently, with all the new available technologies in livestock combined with statistical 

methodologies, the integration of structural and functional genomics information with other –

OMICS into a systems biology approach has allowed development of a better biological 

understanding of phenotypes. As part of the genomics tool box the HD-genotyping SNP chips 

such as 50K and 800K,  whole genome sequencing technologies are now available in most of the 

livestock species and have been extensively utilized, such as in dairy cattle, in genetic 

improvement.  As a part of high throughput tools available for genomic analysis, RNA-
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Sequencing allows measuring not only gene expression, but also examining genome structure 

identifying SNP and other structural variation such as insertions, deletions and splice variants 

(Wickramasinghe et al. 2014; Cánovas et al. 2010). The expectation is that the integration of all 

these types of genomic data will accelerate the genetic improvement by improving accuracy of 

selection and reducing the generation interval. 
Combining the information from the –OMICS technologies together with metabolic pathways 

and functional/biological analysis into a Systems biology approach allows the identification of 

functional SNP increasing the accuracy of selection. Briefly, trancriptomics using RNA-

Sequencing technology measures gene expression of the entire transcriptome, as well as structural 

variation (i.e. SNP, insertions, deletions and splice variants in coding regions). Also, it allows the 

identification of the differential expressed splice variants affecting genes overlapping significant 

SNPs in significant QTL regions. Metagenomics, identifies and quantifies the microbial profiles 

and determine their functionality in specific bovine samples (i.e. rumen fluid) using 16SrRNA 

based profiling of microbial populations as well as partial protozoa and fungal 18S rRNA 

(Handerson et al., 2015). Metabolomics, identifies circulating plasma and/or rumen fluid 

metabolites as potential biomarkers to assess physiological and hormonal states relative to 

performance by Gas-chromatography-Mass-spectrometry (GC-MS) and NMR analysis. For each 
analysis, internal standards are included for normalization to allow comparisons between samples. 

Temporal and treatment changes in metabolites can be determined to be significant after 

normalization and can be correlated to the microbial profiles and gene expression obtained from 

RNA-Sequencing. The microbial profiles and/or microbial activities of each animal can be then 

defined and associated with the phenotype of interest using a multivariate approach. 

The particular benefits of new integrated high throughput genomics technologies will be most 

likely for genetic improvement of those traits that are difficult to measure such as feed efficiency, 

methane emission and fertility and reproduction traits. 

 

BEEF AND DAIRY CATTLE GENETIC IMPROVEMENT USING GENOMIC 

TECHNOLOGIES 
In general, the beef industry is highly segmented (seedstock, cow-calf, feedlot, processor, 

retailer and consumer). This segmentation is seen in the way various stakeholders along the supply 

chain make logical decisions for their own business, yet in the light of the entire chain, these 

decisions are detrimental to the end product and consumer satisfaction. With little or no market 

signal from consumer to seedstock, needed changes are not made for the end product to be desired 

and competitive with other protein choices of the consumer. Poor information flow along the beef 

supply chain is leading to massive inefficiency as demonstrated in the dramatic decline in high 

yielding carcasses in the past decade (down from 66% to 41%), Canadian Beef Grading Agency 

data). This drop resulted from overfeeding in an attempt to increase the level of intramuscular fat 

(marbling). The past thirty years has seen a dramatic and consistent decline in per capita beef 

consumption, due in part as a result of inconsistent product, primarily in the important trait of 

tenderness. Over the past thirty years (and even more drastically the last 10 years), beef 
consumption per capita in Canada has declined from 27 to 19 Kg while that of chicken has risen 

from 21 to 33 kg.  

The many studies of the beef industry completed in the past 20 years all identified lack of 

information flow as a serious impediment to the industry. This is more currently demonstrated by 

the inclusion of connectedness (information flow along and back the supply chain) as one of four 

target areas of focus in the Canadian Cattlemen’s Association’s (CCA’s) national beef strategy 

(beefstrategy.com). The utilization of genomics in the beef industry has been limited (compare to 

dairy industry), due in part to the 1) complicating factor of multiple breeds and correspondence of 

SNP effects, 2) in general, the genetic evaluations are carried out by the multiple breed 
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associations using different methods to calculate the EPDs, 3) reporting different EPDs for 

different breeds confusing the data comparisons from different evaluations (Van Eenennaam 

2016). International Genetics Solutions (IGS) is trying to leverage a multibreed database that 

enables the comparison of EPDs across breeds associations (Chianina, Gelbvieh, Limousin, 

Maine-Anjou, Red Angus, Simmental, Shorthorn, Canadian Simmental, Canadian Gelbvieh, 
Canadian Limousin, Canadin Angus and Canadian Shorthom). 

Genomic approaches offer an opportunity to accelerate the genetic improvement, but genomics 

requires accurate phenotypes (and genotypes) from genomically linked individual animals. 

Therefore, the focus is on collecting data to enable generation of GEBV for all animals in a 

population. Industry breeding strategies will then incorporate these new genetic evaluations to 

improve production efficiency and to provide a more consistent and competitive product to 

consumers. Also, beef producers often make breeding decisions without current knowledge of the 

science, existing systems and tools that they can use on farm to benefit from this research. Taken 

in isolation, a research finding can be confusing and lack any meaningful connection to the real 

world of production in which producers make decisions. Thus, producers require more concise, 

layman’s terms presentation of the benefits of implementing change in their businesses, as well as 

a more clearly defined stepwise approach they can take to implement that change. Therefore, is 
important to do an effort to translate and transfer the research knowledge associated to genetics 

and the importance of collecting phenotypes (and genotypes) which is key to affecting change 

necessary to enhance and accelerate innovation in beef industry. 

Using genomics-based approaches to improve beef genetics will result in increased production 

efficiency, making beef a more attractive protein option than current relative to poultry and pork. 

Effective use of genomics will also provide the consumer with a more consistently tender product 

and therefore help to address declining consumption. Therefore, it’s important to capture and make 

use of data in the development of genomically enhanced Expected Progeny Differences (GEPD’s) 

which are simply more accurate indicators of an animal’s true genetic merit. Although there are 

phenotypes (related to meat quality and carcass traits) and genotype data collected, more 

phenotype and genotype data are required to enable generation of GEPDs to incorporate into beef 
industry breeding strategies. New sets of data will be crucial to enlarge the reference set of animals 

with genotype and phenotype, but most important, will provide the researchers with additional 

information collected at the whole chain scope, which will be unique to improve the quality of 

prediction equations and at the same time, enhance economical analysis of the desired traits. 

GEPDs have a significant role to play in the effective selection for these traits. The selection 

efficiency with GEPDs will be higher with the knowledge gained from functional genomics 

studies. Despite a growing molecular and physiological understanding of complex traits such as 

carcass traits, little is known about the genes determining the traits associated to tenderness and 

their precise function, and a significant unexplained source of variation of phenotypes remains in 

beef. Within this context, a more complete understanding of the genes and regulatory pathways 

and networks involved in economically important traits such as tenderness and carcass traits in 

beef cattle will provide knowledge to help improve genetic selection. By leveraging -OMICS and 
systems biology, we can develop more robust approaches for genetic selection that can be 

incorporated to industry breeding plans for improving meat quality focusing on tenderness and 

carcass traits in beef cattle. 

Large databases containing genomic and phenomic information, together with the data 

generated using the new genomic technologies (for example, gene expression data from RNA-

Sequencing together with the results from GWAS (using the phenotypes and genotypes) could be 

subjected to genome wide association studies to identify quantitative trait loci (QTLs) for carcass 

quality which will assist in the ranking of functional variants. These analyses can be used to 
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develop prediction equations for gEPDs which are incorporated into multi-trait value indices that 

perform well in commercial cattle.  

Gains in prediction accuracy achievable by the addition of subsets of functional variants to 

existing panels can be quantified by imputing the variants into training and testing populations 

already genotyped. Information about variant function can be incorporated into genomic 
predictions through the use of the BayesRC method (MacLeod et al. 2014) or weighted genomic 

best linear unbiased prediction (GBLUP). Another important aspect to successfully exploit the 

power of applying the new genomic technologies to accelerate the genetic improvement in beef 

and dairy cattle is the annotation of the bovine genome. Although the first bovine genome 

assembly in 2009 and the subsequent releases in the last years, still there are several gaps and 

errors in the annotation of the current bovine genome. In order to improve the annotation and 

taking advantage of the results generated using the new –OMICS technologies available, there is 

the international initiative on the Functional Annotation of Animal Genomes (FAANG); a 

coordinated international action to accelerate Genome to Phenome (see web site for more detail: 

http://www.faang.org/index). The project is expecting to close the genotype-to-phenotype gap 

providing new information on genetic variants that explain variation in the target traits that can be 

used to increase the accuracy of the genomic predictions. 
 

APPLYING GENOMICS TO IMPROVE BULL AND COW FERTILITY AND THEIR 

ASSOCIATION WITH FEED EFFICIENCY 

Transmission ratio distortion (TRD) occurs when one of the two alleles from a heterozygous 

locus is preferentially transmitted to the progeny. This phenomenon typically causes a departure of 

the expected Mendelian inheritance ratios in the offspring. TRD has been reported in a broad range 

of organisms including plants, insects, fish, birds, and mammals. However, little is known of its 

effects on livestock species. Several biological mechanisms can cause TRD, including the 

preferential transmission of one of the two alleles carried by a heterozygote parent to the zygote at 

the time of fertilization, also known as meiotic drive, as well as embryo or fetal failure or 

differential viability during early neonatal life under a given genotype. Independent of the specific 
cause, TRD must be viewed as a genetic mechanism that can have important effects impairing 

fertility or viability in the early developmental stages. In this study the analysis of TRD will be 

used to discover new regions of the genome and the genes located in those regions that may have 

an effect on reproduction. Such regions, if they affect male and female fertility through embryonic 

or early calf mortality, are expected to change the distribution of genotypes among progeny in 

relation to the genotypes of the parents. Once TRD regions have been identified, their phenotypic 

effects will be analyzed by genetical genomics, integrating structural and functional genomic data 

through associations (GWAS) using the new bovine genome assembly ARS-UCD1.0 that is 

currently being developed with fertility phenotypes or genetic evaluations (e.g., sire conception 

rate, non-return rate and semen quality traits) and functional studies (gene ontology and biological 

pathways analysis).  

In addition, the association between SNP located in the genes with TRD and feed efficiency 
traits will also be examined in order to study possible correlation between feed efficiency traits and 

fertility in young beef and dairy bulls. Although feed costs are a major factor influencing the 

profitability of beef production, successful reproduction in the cow-calf sector is a primary driver 

affecting profitability. The number and percentage of cows successfully bred during the breeding 

season is a major factor influencing the profitability of the cow/calf operation. Bull fertility plays a 

key role in the success of calf production. Identifying bulls with superior fertility and with superior 

feed efficiency could significantly impact cow-calf production efficiency. However, it is important 

to understand the relationships between fertility and feed efficiency to avoid undesirable 
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consequences of selection for a single trait as the beef and dairy cattle industry is beginning to 

more aggressively select animals for improved feed efficiency. 

Genomic regions with TRD will be identified as well as the key regulator genes and functional 

SNP affecting fertility and reproduction in 9 beef and 1 Dairy cattle breeds and its correlation with 

feed efficiency in young bulls. In order to identify the causal mutations, further validation of the 
most promising genes found will be investigated applying the new OMCIS technologies using the 

two groups of animals with extreme phenotypes (fertility traits). Regarding the studied beef 

breeds, populations with a ranged from 340 to 75,000 trios of genotypes (genotypes in both 

parental and offspring generations) will be used to identified the TRD regions in Angus (225,984), 

Beef Booster (997), Charolais (863), Gelbvieh (927), Hereford (1,077), Limousin (717), Simental 

(827), Alberta Composite (747) and Guelph Composite (1,596; most of them, Angus x 

Simmental). Genotyping from the different beef breeds were performed using different genotyping 

platforms (medium density panels (i.e., 50K SNP), and high density panels (i.e., 700K SNP). In 

dairy cattle, more than 1,100,000 genotypes from Holstein provided by Canadian Dairy Network 

(CDN, Guelph, Canada), Semex Alliance and CDCB will be used in the proposed project to 

enhance statistical power and validate the results from the 9 beef cattle breeds under study. 

 In relation to reproduction, another example of combining the new genomic technologies 
is the analysis of puberty in beef cattle by examining the genes and regulatory pathways and 

networks involved in this complex physiological event. Puberty is the process by which animals 

mature into an adult capable of sexual reproduction (Dorn and Biro 2011). The process to achieve 

the puberty is similar in the two bovine sub-species (i.e., Bos indicus and Bos taurus), but occurs 

at markedly older ages in Bos indicus heifers (Rodrigues et al., 2002; Nogueira, 2004). However, 

despite a growing molecular and physiological understanding of the reproductive system, 

knowledge of the precise mechanisms regulating puberty in cattle is limited, and phenotypic 

identification of animals that undergo puberty at an early age is costly and labor-intensive. 

Therefore, enhancing our understanding of the genes and regulatory pathways and networks 

involved in bovine puberty can provide a window to help improve genetic selection and 

reproductive management in cattle. 
 Whole genome single nucleotide polymorphism (SNP)-chip and RNA-Sequencing data 

from the hypothalamus have been used to construct gene networks associated with puberty in 

cattle (Fortes et al. 2010 and 2011). Results from these approaches allowed postulating that 

regulatory loci underlying the quantitative trait loci (QTL) associated with heifer fertility traits 

influence puberty. Livestock production traits are usually complex and involve multiple tissues. 

Therefore, the transcriptome of five tissues related to reproduction (i.e. hypothalamus, pituitary 

gland, ovary, uterus, and endometrium) has been characterized as well as tissues known to be 

relevant to growth and metabolism needed for cattle to achieve puberty (i.e., longissimus dorsi 

muscle, fat, and liver) in PRE and POST puberty heifers using RNA-Sequencing (Cánovas et al. 

2014). In order to exploit the power of complementary -OMICS analyses, PRE and POST puberty 

co-expression gene networks were constructed by combining the results from RNA-Sequencing, 

genome-wide association study (GWAS), and bovine transcription factors. As a result of 
combining the power of the different genomic technologies this reduced the complexity of the 

large lists of SNP and/or genes identified associated with puberty (Figure 2). Thus, combining the 

results from RNA-Sequencing and GWAS identified a total of 25 eQTL associated to heifer 

fertility. Applying the new genomic technologies and integrating the structural and functional 

genomic data revealed key transcriptional regulators (i.e., PITX2, FOXA1, TSG1D1, DACH2, 

LHX4, PROP1 and SIX6). As a validation of the approach used combining data from several 

genomic technologies, six genes captured in the cattle network were concordant with the human 

network that reported 30 loci for age at menarche using other functional analysis (Elks et al. 2010). 

Results from multiples sources of -omics data will facilitate the design of breeding strategies to 
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improve fertility in Bos indicus-influenced composite cattle (Cánovas et al. 2014). Multi-tissue 

omics analyses improve understanding of the number of genes and their complex interactions for 

puberty in cattle. These results also help discovering genes that contain biologically relevant SNP-

genotypes to validate in an independent population that can be used in genetic improvement 

processes of Bos indicus-influenced composite cattle. 
 

 

 
 

Figure 1. Combining results from different genomic technologies to identify the key 

regulator genes and/or functional SNP associated with puberty using the list of: 1) 

Differentially expressed genes between pre- and post-puberty, 2) Genes tissue specific, 3) 

Transcription factors and 4) Genes harboring SNP observed with GWAS and associated 

with indicator traits of puberty (age at puberty as measured by the presence of the first 

corpus luteum, first service conception and heifer pregnancy). 

 

Genetic advancement in the beef industry has been limited in a number of ways including the 

high cost of determining genetic merit (low selection efficiency).  While genomics has proven 

highly effective in the dairy industry, the challenges faced by the beef sector will require a more 

sophisticated approach than what is currently available. Utilization of genomics in the beef 

industry has been low to date, due in part to the complicating factor of multiple breeds and 

correspondence of SNP effects. The incorporation of new –OMICS technologies will enhance the 

accuracy of determination of genetic merit and make genomics more applicable and useful to beef 
breeders. In this way, the new high throughput tools available for genomic analysis will build upon 

all of the genomics work to date and have the effect of making genomics applicable to an entire 

sector, which would have a particular benefit to beef production. That paradigm shift will provide 

beef breeders with a tool that will let them become much more competitive with other protein 

producing sectors through improved feed efficiency, weight gain in a reduced time span, more 

consistent product and reduced negative environmental impact. 
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In beef cattle, the best genomics prediction using SNP markers has an accuracy of only 20%, 

which is insufficient for impact and adoption. However, as described by Karisa et al. (2014), 

metabolites could explain over 75% of the variation in residual feed intake (RFI) and result in 

~80% accuracy of prediction. One of the objectives is to reduce the complexity of the large lists of 

SNP and/or genes associated with a trait of interest to identify the key regulator genes and 
functional SNP (and genomic regions) associated to feed efficiency and methane emission by 

integrating functional genomics with the new –OMICS technologies into a system biology 

approach for more reliable results that could be implemented in dairy and beef breeding strategies 

to improve the accuracy of selection. 

To have a more complete understanding of the biological knowledge and the genes and 

mutations affecting feed efficiency, it is also important to study the microbiota profile associated 

to the genotype of the animal and its interactions affecting the feed efficiency in rumen fluid. A 

metatranscriptome (using also RNA-Sequencing) approach can used to identify the active 

microbial phylotypes including bacteria, archaea, eukyrotic (fungi and protozoa) and rumen 

microbial activities from animals with different RFI ranking. Metatranscriptomic can not only 

generate taxonomy profiles for active organisms, but also can be used to evaluate the activities of 

the rumen microbiome. Also, metagenomics to identify and quantify microbial profiles and 
determine their functional capacity in bovine rumen fluid samples. Total DNA is extracted and 

partial bacterial and archaeal 16S rRNA gene as well as partial protozoa and fungal 18S rRNA 

gene is amplified as previously described by Handerson et al. (2015) and sequenced using 

Illumina-Miseq. The purpose of this analysis is to profile the rumen microbiota and rumen 

microbial metagenomic profiles generated can be correlated with feed efficiency and methane 

emission phenotypes. 
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SUMMARY 

This paper provides a brief description of a large breeding and genotyping project currently 

being conducted in northern Australia using three tropically-adapted beef breeds. Intensive 
recording of early-in-life female reproduction phenotypes using real-time ultrasound on large 

numbers of females will significantly increase the size of the genomic reference populations for 

these key traits and breeds. This phenotypic data, along with high density SNP genotypes, will 

provide crucial data to enable the effective implementation of new BREEDPLAN genomic 

evaluations currently being developed for the Australian beef industry, and will assist in increasing 

the accuracy of selection, especially in young bulls. The project design will also allow 

investigations of GxE interactions for female reproduction traits; the potential development of new 

traits; and methodologies required for the implementation of across-breed genomic evaluations.    

 

INTRODUCTION 

Reproduction is a key profit driver in northern Australia and the recent Beef CRC northern 

reproduction project, and earlier research (e.g. Hetzel et al. 1989), showed there is a clear role for 

genetics in improving commercial weaning rates. Heritability and genetic variance estimates for 

reproduction traits from the Beef CRC suggest considerable genetic progress is possible in both 

Brahmans and Tropical Composites. This is particularly the case for component traits of 

reproduction measured earlier in a cow’s reproductive life. Two of these traits identified as 
important for genetic improvement are heifer age at puberty (Johnston et al. 2009) and first-

lactation anoestrous interval (Johnston et al. 2014a). Male reproductive measures are also heritable 

(Corbet et al. 2013) and can be used with other novel traits as indirect measures of reproduction 

(Johnston et al. 2014b; Barwick et al. 2014). Genomics research has also shown that this emerging 

technology has the potential to add significantly (Hawken et al. 2012 and Zhang et al. 2014) to our 

ability to make genetic progress in reproduction (Barwick et al. 2014). However to move the 

research outcomes more rapidly into industry breeding programs requires the collection of 

considerably more reproductive phenotypes and genotypes to build the size of the genomic 
reference populations across an increased number of northern beef breeds. This is the aim of a new 

5 year project (MLA B.NBP.0759) known as the RepronomicsTM project that has been running for 

3.5 years and has generated significant numbers of calves and has recorded large numbers of 

females for age at puberty, lactation anoestrous interval, calving and weaning rates, along with 

many other traits in 3 major northern beef breeds. These records are being combined with DNA 

SNP genotypes on all project animals, as well as key industry animals, to drive new genomics 

enhanced BREEDPLAN evaluations. This paper provides a brief description of the experimental 

design and an update on the recording that is occurring in the project. 

                                                
* AGBU is a joint venture of NSW Agriculture and the University of New England 
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LOCATION AND BREEDS 

 The project is utilising the 3 numerically largest tropically adapted beef breeds (viz. Brahman, 

Droughtmaster and Santa Gertrudis) in northern Australia. The research is being conducted on 

Queensland Department of Agriculture and Fisheries (DAF) research facilities (Brian Pastures, 
Gayndah; Spyglass, Charters Towers) and the Northern Territory Department of Primary Industry 

and Fisheries’ Douglas Daly Research Farm, Daly River. The project is also utilizing industry 

seedstock herds located throughout Queensland. The Douglas Daly Brahman herd is part of a large 

long-term fertility selection experiment (Schatz et al. 2010). The Brian Pastures and Spyglass 

herds consist of pedigree and performance recorded females, and include a proportion of ex-Beef 

CRC cows used as base females. All herds are fully BREEDPLAN recorded and genetic linkages 

exist with the Beef CRC project, the Brahman Beef Information Nucleus herds, the Smart Futures 

Fund Next-Gen project industry herds and other key industry seedstock herds. At Brian Pastures, 
all 3 breeds are present, whereas at Spyglass there are Brahman and Droughtmasters. At each 

location, the breeds are managed and recorded together, and this is providing unique data for the 

future development of across-breed EBVs. 

 

SIRES USED 

The sires used in the project include naturally mated bulls purchased by DAF, and in recent 

years AI sires have been chosen that are currently influential in each of the breeds in terms of the 

number of offspring generated in the last 5 years. In addition, some emerging young sires have 

been used in each breed. The sires are chosen particularly if they have limited or no daughters 

recorded for reproduction in BREEDPLAN. Poll status is considered, but is not the primary 
selection criterion. The aim is to generate 15-20 daughters from each sire and intensively record 

them for early reproduction. For Droughtmasters, a selection of older sires has also been used to 

allow estimation of breed genetic parameters, particularly for female reproduction traits. To-date, 

the project has generated progeny on 236 sires, with 86 currently having 10 or more daughters, not 

including calves generated in the latest 2017 born calf crop. 

 

FEMALES GENERATED AND KEY TRAIT RECORDING 

Currently the project has generated approximately 4,200 calves from 4 year drops. Breeding is 

by natural mating for maidens and first-lactation cows. At the Douglas Daly herd, heifers are 
mated as yearlings, but in the DAF herds the heifers are mated first as 2-year olds. The majority of 

older cows have been used for AI (2 rounds fixed-time program) to generate progeny on the key 

industry sires, and although the project has experienced below average seasonal conditions in the 

first 2 years, the resultant calving rates to AI have been very good, averaging 50%.  

The project is using real-time ultrasound and highly skilled ultrasonographers to perform 

regular ovarian assessments on all females to accurately determine the follicle development, and 

importantly, the presence of a corpus luteum (CL). Every year the cohort of maiden heifers are 

regularly scanned to determine age at observed CL (see Figure 1) which is used as a measure of 

age at puberty for each heifer. All first-lactation cows are also regularly scanned during the mating 

season to determine their time to return to cycling post-calving. Post-weaning all acyclic females 
continue to be scanned until a CL is observed. To-date the project has recorded more than 1,500 

heifers on the research station herds for age at puberty and about 1,000 first-lactation cows for 

their anoestrous interval.  

All females are regularly recorded for body weight, hip height, body condition score, 

subcutaneous fat depth, and eye muscle area. At calving, each cow is scored for calving ease, teat 

and udder score, maternal behaviour and body condition. The data is checked to ensure highest 

quality and continuously loaded onto a custom-built project database. All BREEDPLAN traits are 
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regularly extracted and sent to ABRI’s northern multi-breed research database and made available 

for use in routine BREEDPLAN evaluations of the 3 breeds. 

 

  
Figure 1. Cumulative frequencies of first observed CL from regular ovarian scanning of the 

2014 drop Spyglass heifers weaned mid-2014. 

 

DNA GENOTYPING 
To enable the development of genomic selection, all females have been DNA parent verified 

and genotyped with a 25K SNP chip, and all project sires are genotyped with an 80K Bos indicus 
SNP chip. Large numbers of seedstock animals have also been genotyped, including sires in co-

operator industry herds (2-3 herds/breed) and other sires in Brahman and Santa Gertrudis with 

high accuracy BREEDPLAN days to calving EBVs. As the project progresses, cohorts of young 

bulls in co-operator seedstock herds will be genotyped, and will provide a demonstration of the 

benefits in increased accuracy from the project recording. All DNA data is checked and stored on 

the project database and is available for inclusion in subsequent genomic evaluations.  

 

STEER PROGENY 
 All calves generated in the project are intensively recorded from birth to weaning - including 

accurate birth date, birth weight, gestation length (AI calves only), calving ease and survival, 

weaning weight, flight time, plus several other research measures. The Douglas Daly male calves 

remain entire, whereas at branding the DAF bull calves are castrated. After weaning, several steer 

cohorts have entered a northern MLA Donor Company-funded BIN project. The steers are grown-

out and recorded for post-weaning performance and subsequent full abattoir carcase and meat 

quality assessments. The steer recording complements the female recording at the research 

stations, and completes the suite of key profit driver traits for northern beef production systems. 
 

ENABLING GENOMIC SELECTION 

The new single-step procedure represents a seminal change in the evolution of the 

BREEDPLAN genetic evaluation system. Single-step evaluations (Misztal et al. 2009) allow 

simultaneous use of existing pedigree relationships (for the majority of animals) in conjunction 

with a genomic relationship matrix (GRM) of genotyped animals from high density SNP profiles 

(e.g. 20K or 50K). The procedure simplifies, and is equivalent to, the use of genomic information 

currently using estimated genomic values derived from genomic prediction equations, and allows 
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the evaluation to be continually updated as additional phenotypes and genotypes are added. 

Currently, the existing pedigree relationship matrix allows differences in phenotypic performance 

to be transmitted to known relatives, whereas the single-step evaluation will allow genetic 

differences between individuals to be influenced through their degree of genomic relationship. 

Therefore animals with large amounts of phenotypic information when genotyped will influence 
the EBVs and accuracies of any animal that is genomically related.  

As the genetic evaluations of the tropical breeds move towards single-step methodologies, the 

data and research outcomes from this project will be pivotal in driving this new era of genetic 

evaluation. While the Beef CRC genotyped and phenotyped large numbers of tropically adapted 

cattle for female and male reproduction traits, it did not include Santa Gertrudis or Droughtmaster 

breeds, a gap that this project is addressing. The project is also generating phenotypes and 

genotypes on current industry-relevant genetics and this provides the northern breeding industry 

with the unique opportunity to implement genomic selection, increasing the accuracy of selection 

of young bulls, particularly for important female reproduction traits.  

 

CONCLUSIONS 

The project is well underway and achieving its targets in generating females and intensive 
recording of female reproduction. Levels of recording of the project-generated females are 

increasing and the data is feeding into new BREEDPLAN evaluations that will enable tropical 

breeds to make genetic change in improving female reproduction rates. The project is building 

uniquely recorded herds that will allow genetics to be compared across environments, and will be 

a powerful resource enabling industry herds to be benchmarked for reproduction traits, as well as 

many other traits including overall genetic merit. Finally, the head-to-head management of breeds 

will provide the necessary data to generate across-breed genomic EBVs for large numbers of traits. 
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SUMMARY 

Anecdotal evidence suggests that mating specific sire and dam lines will produce superior 

offspring compared to those of equivalent expected merit but in random combinations. 

BREEDPLAN allows for genetic selection of sires and dams to advance carcass trait expression in 

progeny by utilising, mostly, additive genetic relationships. This program does not intentionally 

account for non-additive genetic effects in the genotype. The influence of non-additive genetic 

effects in Wagyu, and specifically, their effect on marbling performance has not been widely 

investigated. Non-additive genetic effects had negligible impact. 

 

INTRODUCTION  

Development of a genetic evaluation program in Australia started as the National Beef 

Recording Scheme (NBRS) in the late 1970’s and became BREEDPLAN in 1985 (Graser and 

Hammond 1985). The purpose of BREEDPLAN is to quantitatively evaluate an individual’s 

genetic merits before they are selected as breeding stock on a breed by breed basis. Genetic 

variation can be partitioned into two components, additive and non-additive variance (Falconer 

1981). BREEDPLAN produces, for each trait analysed, an estimated breeding value (EBV) which 

is a representation of the additive genetic component of the individual’s genotype (Tempelman 

and Burnside 1989). BREEDPLAN does not intentionally account for non-additive genetic 

variance, such as dominance or epistatic interactions, although some may be absorbed by a fitted 
sire x herd interaction effect.  This is not reported to breeders, but improves the estimation of the 

reported EBVs (Graser et al. 2005). The program has evolved from the initial two-trait analysis 

with a sire-maternal grandsire model, to a multi-trait animal model analysis system (Quaas and 

Pollak 1980), including growth, reproduction and carcass traits. One such carcass trait is marbling 

performance which is defined as the accumulation of triacylglycerol in muscle tissue occurring 

primarily within adipocytes located between muscle fibre bundles (Harper and Pethick 2004).  

Anecdotal evidence from breeders suggests that matings of specific superior sire and dam lines 

will produce superior performing offspring compared to other matings of equivalent expected 

merit but in random combinations. In Wagyu these so called ‘superior offspring’ would be those 

that produce the most highly marbled carcasses. This performance above expectation has been 

attributed to non-additive genetic components in the genotype (Seath and Lush 1940; Tempelman 

and Burnside 1989) and among breeders is referred to as “Nicking”. Few studies have investigated 
the importance of nicking to marbling performance and even fewer have done so using Wagyu 

data. The aim of this project is to provide breeders with information as to whether non-additive 

genetic effects should be included in the genetic evaluation of animals or whether the sole focus 

should remain on additive genetic effects.  

 

MATERIALS AND METHODS 

Data. Data for this study was collected and provided by a single Full-blood Wagyu herd 

located in the Lower South East agricultural region near Millicent, South Australia. All cattle are 

born, raised and feedlot finished for 300 days on property. Calves were weaned as a group of 
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similar age and kept within their respective weaning groups, following the same ration program, 

until slaughter at 2-2.5 years of age. Data supplied was for animals slaughtered between June 2010 

and July 2016 and included pedigree information for all animals slaughtered. The dataset consisted 

of records for 1357 animals comprising 33 and 994 sires and dams respectively, where all sires 

included had greater than or equal to 10 progeny each. Pedigree went as deep as 5 generations. 
Traits of interest. Raw AUS-MEAT chiller assessment records on hot standard carcass weight 

(HSCW, kg), marble score (MS, score 0-12), loin eye muscle area (EMA, cm2) and fat depth at the 

rump P8 site (P8, mm) were utilised for analysis (n=1357). An indicative carcass value (VALUE, 

$) was calculated based on approximate current values as HSCWx(4+MS) where a carcass with 

MS=0 was estimated to receive $4/kg and every increase in MS achieved an additional $1/kg.  

The average carcass weight was 412 kg with 16 mm of P8 fat, 95 cm2 EMA, a marble score of 

8 and worth $4945. Marbling and P8 were highly variable with a coefficient of variation (CV) of 

23% and 37% respectively followed by VALUE (CV 18%), whereas HSCW and EMA were far 

less variable (CV 9-10%). All traits were normally distributed with the exception of P8 fat that 

was transformed by taking the square-root of the record prior to analysis.   

Model Development and Statistical Analysis. Data were analysed with a general linear 

mixed model using ASReml 3.0 (Gilmour et al. 2009). Model 1 was developed beginning with a 
sire model and increasing in complexity to include an animal model with random terms fitted. All 

models included fixed effects of management group (in this case Kill-date was used to account for 

calving/weaning group), year and season effects (having a correlation of 0.95 and 0.99 with date of 

birth and feedlot induction date respectively), age of dam (2-10+ years) and sex (heifers and 

steers). Models for traits other than HSCW included HSCW as a covariate. All significant 

(P<0.05) two way interactions among these fixed effects were included. Inbreeding coefficients 

were calculated based on all available pedigree information (mean 5% and ranging from 0-26%) 

and were fitted in Model 3. Models varied in the random terms included. 

 

Model 1. The base “animal” model, which served as a baseline, included the random term of 

animal to account for the additive genetic effects inherited by the calf.  
Model 2. Model 1 plus the maternal additive genetic effect to account for the genes inherited by 

the dam that affect performance of offspring (e.g. milk production). 

Model 3. Model 2 plus non-additive effects modelled as inbreeding and sire by maternal grandsire 

(SxMGS) interaction were fitted together where; 

 Inbreeding was fitted as a random covariate to test the importance of dominance 

genetic effects contributing to Nicking; 

 SxMGS accounts for epistatic genetic effects, inherited from two sire lines, 

associated with Nicking.  

To formally test the importance of the non-additive genetic effects, the likelihood ratio test was 

used to determine which random terms were significant (P<0.05).  

 

RESULTS AND DISCUSSION 

Carcass weight, EMA, MS and VALUE were all moderately heritable (0.24, 0.33, 0.39 and 

0.36 respectively, Table 1) while P8 was lowly heritable (0.19). The non-additive genetic effect of 

nicking as estimated from the sire by maternal grand-sire effect was minimal, accounting for up to 

0.6% of the phenotypic variance for the muscling traits (HSCW and EMA) and zero variance for 

the fat traits (P8 and MS). Additionally there was no evidence to suggest that inbreeding accounted 
for any of the phenotypic variation across traits (Table 1).   
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Table 1: Chi Squared (2 probability) test of significance (Model 2 vs 3) and proportion (%) of 

phenotypic variance accounted for by random terms (Model 3) as well as the direct 

heritability (ha
2) and accompanying standard error (SE) for each trait of interest (Model 2) 

 

Trait Additive1 Inbreeding1 SxMGS1 Dam additive1 2 Prob ha
2 SE of h2 

HSCW (kg) 24.0 0.0 0.5 6.9 0.95 0.24 0.11 

P8 (mm)* 19.5 0.0 0.0 3.9 1.00 0.19 0.09 

MS (0-12)* 37.5 0.0 0.0 2.1 1.00 0.39 0.12 

EMA (cm2)* 32.5 0.0 0.6 0.0 0.99 0.33 0.09 

VALUE ($) 30.9 0.0 0.0 6.0 1.00 0.36 0.11 

* indicates trait adjusted for HSCW  
       1 random terms fitted in Model 3: Additive; Additive genetic effects, Inbreeding; Inbreeding coefficient            
partitioning dominance, SxMGS; Sire by maternal grandsire interaction effect partitioning epistatic 
interactions, Dam additive; partitioning additive genetic effects inherited by the dam.  

 

As inbreeding depression is resultant of increasing homozygosity and hence the loss of 
dominance effects (reduction in genetic variation), the SxMGS term then would be partitioning 

any epistatic effects while inbreeding partitioned dominance. Model 3 was not significantly 

different from Model 2 indicating that the additional random terms, accounting for non-additive 

genetic components, did not offer a significant statistical improvement on the additive model. 

However, despite Model 3 not statistically improving the model, it was able to estimate a variance 

component attributed to nicking for the muscling traits which suggests that these values should not 

be completely discounted. 

Few studies in beef cattle exist to compare these results with and even fewer that include 

Wagyu data. However, many authors have commented on the influence of non-additive genetic 

effects on dairy production. Johnson et al. (1940) investigated the effect of nicking in Jersey cows 

and concluded that while their study had not shown nicking to influence pounds of milk butterfat 
yielded, there was not enough evidence to suggest that nicking does not exist amongst Jersey 

matings. Seath and Lush (1940) reported similar inconclusive results regarding milk production 

and butterfat percentage while Tempelman and Burnside (1989) reported that dominance effects, 

which nicking has been partly ascribed to, were important for milk fat yield. It is clear the previous 

dairy studies have attributed nicking to dominance effects while the present study has partitioned 

nicking as epistatic effects. It is possible that the pedigree herein is not sufficiently deep enough to 

account for all the dominance variation through fitting inbreeding coefficient as a random effect 

and hence some dominance variation has been absorbed into the SxMGS term.  

In a genome wide association scan fitting additive and dominance effects of single SNPs, 

Bolormaa et al. (2015) found that significant (P<0.001) dominance effects occur for IMF% 

accounting for 10% of the phenotypic variance in the trait. This suggests that dominance effects 

would have an impact on marble score however that was not the result in the present study. The 
results of Bolormaa et al. (2015) were similar with the study herein, in that dominance effects 

accounted for 0% of the phenotypic variance for P8 fat depth however the author stated that the 

inclusion of dominance effects did not improve the accuracy of predicting genetic value of 

individuals. 

It could be argued that nicking effects may be present when multi-trait selection is considered, 

as is currently practiced in industry since multiple traits affect profitability. To investigate this, a 

multi trait index (VALUE) was created encompassing the estimated dollar value of HSCW and 
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MS which are the most important economic traits to Wagyu producers. There was no-evidence to 

suggest that nicking had any effect on VALUE (Table 1). 

The results herein demonstrated that non-additive genetic effects (dominance and epistasis) 

have a negligible impact on carcass traits. This is consistent with a study by Hill et al. (2008) that 

found additive genetic effects have the greatest influence by far, accounting for often 50 to 100% 
of the total genetic variance for complex traits. Hence the inclusion of non-additive genetic 

variances in the estimation of individual genetic merit is not likely to result in any potential 

reward, except for perhaps slight increases in estimation accuracy, and therefore additive genetic 

variance should continue to have sole focus in Wagyu breeding programs. 
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SUMMARY 
Records from artificial insemination programs and accurate birth date recording on 812 calves 

were used to compute gestation length (GL) for 3 tropically adapted beef breeds in northern Australia. 

Calves were a subset of those generated across 2 years and 2 locations as part of an ongoing beef 

genetics project in northern Australia. Analyses revealed few fixed effects were significantly 

influencing the trait, however calf sex was highly significant in all three breeds with males having 2.1, 

3.0 and 3.7 days longer GL than females in Droughtmaster, Santa Gertrudis and Brahman, 

respectively. Large sire differences (up to 13 days) were also observed within each breed, and indicate 

a large degree of genetic control on the trait. These results have implications for breeding program 
design, parentage assignment and the development of a genetic evaluation for this trait, both within 

and across-breeds. 

 

INTRODUCTION 
Gestation length (GL) is a trait that can be easily generated from AI mating records, and is an 

important component of calving ease (Jeyaruban et al. 2016) and may be associated with increased 

calf losses from low birth weight calves in tropical breeds (Wolcott et al. 2016). However, few 

estimates exist of the heritability and associated fixed effects for GL in tropical beef breeds. The 

distribution of GL and magnitude of sire differences will have implications for management of AI 

programs and assigning of parentage. Therefore this study aimed to investigate factors influencing GL 

and estimate their size of effects in 3 tropically-adapted beef breeds.  
 

MATERIALS AND METHODS 
Animals. The animals used in this study were a subset of those from 2 research herds that are 

currently involved in a large genetics project in northern Australia (MLA B.NBP.0759) – known as the 

RepronomicsTM project. In brief, the project aims to enable increased accuracy of genomic selection by 

collecting high quality female reproduction phenotypes and other economically important traits on 

influential sires in each breed. The phenotypic records will be combined with high density genotyping 

to drive new single-step genetic evaluation methods which are being developed for Australian beef 

industry (Johnston et al. 2017).  

The research herds involved include Spyglass Research Facility (SPY) located 120km NW 

Charters Towers, QLD, comprising Brahman (BM) and Droughtmaster (DM) herds. The second 

location is the Brian Pastures Research Facility (BP), Gayndah, QLD, and includes BM and DM herds 
as well as a Santa Gertrudis herd. The calves used in this study were generated at each location using 2 

rounds of fixed-time AI over 2 years. All cows were inspected daily over the calving season to 

establish accurate date of birth for each calf and sire parentage was determined by DNA verification. 

For all breeds, common sires were used across years, and for DM and BM several sires were used 

across locations. Numbers of records by location, breed and across-location link sires are presented in 

Table 1. The smaller herd sizes at BP restricted the number of sires used compared to SPY, however 

                                                
* AGBU is a joint venture of NSW Agriculture and the University of New England 
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all sires used at BP in BM and DM were also used at SPY (plus additional sires). At both locations all 

matings were as purebreds, however at BP the cow herd included Beef CRC tropical composite cows. 

Table 1. Data description for gestation length (days) records in Brahman, Droughtmaster and 

Santa Gertrudis cattle at each location 

 
Breed Total 

  N 
Location N Mean 

(d) 
Std range N 

sires 
N progeny by 

link sires 

Brahman 377 Brian Pastures 103 291.7 5.5 277-310 12 309 
  Spyglass 274 292.3 5.5 278-309 18*  
Droughtmaster 337 Brian Pastures   52 290.8 5.5 278-303 8 200 
  Spyglass 285 288.3 5.5 272-312 15*  
Santa Gertrudis   98 Brian Pastures   98 284.9 5.6 271-298 5  

Total 812      38  

* includes all sires used at Brian Pastures 

  

Trait definition. Gestation length was computed as the number of days between the successful AI 

date and subsequent date of birth. Data edits included removing records from multiple births and one 

record was removed as a suspected premature birth GL=266 and only 22kg birth weight. All records 

were confirmed to be the result of AI mating by DNA sire verification. Two records were removed 
because the breed of sire was incorrect (i.e. AI straw error). Due to differences in cow age structures in 

the herds and breeds, cow age was grouped into 3 classes based on cow year of birth. At BP, cow 

genotype and cow age were confounded and were therefore fitted as a combined effect. Descriptive 

statistics of the raw data by breed and location are presented in Table 1. 

 

Statistical methods. Analyses were performed for each breed separately using REML procedures in 

SAS (SAS Institute Inc. Cary, NC, USA).  Gestation length (in days) was included in the mixed model 

as the dependent variable and the initial models included terms for year (year 1, year 2), cow lactation 

status at AI (wet, dry), sex of calf (male, female), cow age class (old, medium, young), and all first 

order interactions. For DM and BM analyses also included terms for location (BP, SPY), and 

importantly, a term for sire x location. For all analyses a term for cow was included as a random effect. 

Non-significant terms (P >0.05) were sequentially removed to yield the final model for each breed. 
Least squares means were computed for significant fixed effects using the LSMEANS procedure in 

SAS. 

 

RESULTS 
a) Brahman.  A total of 377 records were available for Brahmans from a total of 18 sires with an 

adjusted mean of 291.7 days. The final model included significant terms for sire, calf sex and location. 

Sire x location was not significant indicating that although SPY had longer GL there was no evidence 

of re-ranking of the sires. 

Least squares means for gestation length in Brahmans are plotted in Figure 1. Calves from SPY 

had longer GL than BP, and male calves were 3.7 days longer gestation than females. Large 

differences also existed between the Brahman sires.  
 

b) Droughtmaster. A total of 337 records were available for Droughtmaster from 15 sires with an 

adjusted mean of 288.4 days. The final model included significant terms for sire and calf sex. Location 

and sire x location effects were not significant. Least squares means are plotted in Figure 2 and show 

male calves were 2.1 days longer gestation than females. Large differences also existed between the 

sires with a range of almost 2 weeks. 
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c) Santa Gertrudis. A total of 98 records were analysed for Santa Gertrudis from 5 sires with an 

adjusted mean of 284.5 days. The final model included sire and calf sex. Male calves were 3.0 days 

longer GL than females (see Figure 3). 

 
Figure 1. Brahman gestation length (days) least squares means for location (red), calf sex (green) 

and sires (blue).  

 

  
Figure 2. Droughtmaster gestation length (days) least squares means for location (red), calf sex 

(green) and sires (blue).  
 

DISCUSSION 
Although the results and least squares means are not directly comparable across breeds in the 

current analyses, the identified significant fixed effects and their magnitude of effect were consistent. 

The large sire differences were not surprising given the high heritability estimates of the trait in 

temperate beef breed (see Jeyaruban et al. 2016), however few estimates exist for tropical beef breeds. 

Calf sex had a consistent and large effect in all breeds, with male calves having significantly longer 

GL than females. Plasse et al. (1968) reported a 1.9 day sex difference in purebred Brahmans. 



Beef III 

396 

Consistent with the results from the current study, few significant fixed effects were reported by 

Corbet et al. (1997) and Plasse et al. (1968). The extended GL of these tropically adapted breeds 

(especially Brahman) compared to temperate beef breeds is consistent with a review of Chenoweth 

(1994) and may indicate a mechanism of adaptation, possibly to high ambient temperatures. It could 

be due to Bos Indicus cattle having less uterine capacity as an evolutionary development to reduce 
internal heat production, and thus requires longer GL to produce a viable calf.  

 
Figure 3. Santa Gertrudis gestation length (days) least squares means for calf sex (green) and 

sires (blue).  
 

There was no evidence of sire x location interactions, however Brahmans had slightly longer GL at 

SPY compared to BP. This effect may been due to the slight difference in the sample of sires used or 

in the genetics of the cow herd, but may also be related to the hotter environment at SPY compared to 

BP, and may be further evidence of heat adaptation impacting GL.   
 

CONCLUSIONS 

This study confirmed the longer GL in these tropical breeds compared to temperate beef breeds 

and has ramifications for the design of breeding programs and parentage assignment. It also highlights 

the importance of modelling gender in genetic evaluations of the trait. In the future, these data will 

allow the estimation of genetic parameters (direct and maternal additive variance, and heritability) and 
this will contribute to each breed’s genetic evaluation for GL, as well as to the development of an 

across-breed EBV for GL. Future work is also possible relating GL to its effects on calf birth weight 

and calf losses, and possible consequences on female reproductive performance. 
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SUMMARY 

The ability of beef cattle to remain productive in tropical environments is largely determined by 

heat tolerance and tick resistance.  In Australia, crossbreeding and composite breeding with Bos 

indicus cattle have been used to introduce these traits into Bos taurus breed backgrounds. We 

examined SNP genotyping data and phenotypes for six production traits from a Tropical Composite 

herd in Central Queensland to test whether the Bos indicus ancestry (Indicus) percentage was able 

to explain the performance of beef cattle in tropical Australia. Tick count and coat length were 

significantly linked to Indicus percentage, while live weight, body condition, rectal temperature and 

scrotal circumference were not influenced by the Indicus content of the genome. 

 

INTRODUCTION 

Tropical Composites and the Brahman breed are the main types of cattle across Northern 

Australia. The term “Tropical Composite” generally refers, to minimally stable crossbred herds of 

European ancestry (Bos taurus) with varying degree of crosses with Bos indicus influenced cattle 

(Porto-Neto et al., 2014). These types of cattle have been chosen for their adaptation or tolerance to 

challenges in tropical environments (Barwick et al., 2009; Prayaga et al., 2009).  

The complex ancestry of the cattle per se does not limit the potential genetic improvement of 

those herds, but when combined with extensive herd management practices, and lack of relationship 

(pedigree) information, the intricacy of breed ancestry does add another layer of complexity to 

derive accurate estimates of genetic merit. In recent years, advanced analytical tools have been 

developed to better explore genotypes derived from single nucleotide polymorphisms (SNP) arrays. 
These new methods facilitate broader adoption of genomic technology as it, for instance, gives an 

alternative approach around the lack of pedigree, and allows the estimation of breed ancestry. 

Here we analysed a Tropical Composite herd genotyped for around 50,000 SNP (Harrison et al., 

2012), with multiple observations for six phenotypes. We used the molecular data to study the 

population structure, estimate heritabilities, genomic correlations, breed composition, and to test the 

effect of ancestry on observed phenotypes. 

 

MATERIALS AND METHODS 

We targeted a Tropical Composite commercial population (TXX, n = 877) from central 

Queensland (Harrison et al., 2012), and, for some analyses, used a set of animals as genotypic 

references representing ancestral breeds of the targeted population. These included Charolais (CHA, 

n = 90), Senepol (SEN, n = 69), Belmont Red (BEL, n = 73), and Brahman (BRM, n = 90) (Barwick 
et al., 2009; Porto-Neto et al., 2013). Most animals were genotyped using the BovineSNP50 v1 

(Illumina Inc., San Diego, CA), the remaining animals were genotyped using more recent platforms 

(e.g. BovineSNP50 v2 or BovineHD). Standard quality control was applied to genotypes. If the 

analyses required samples that were genotyped using different arrays, only SNP that were in 

common across all platforms were kept for analyses. 

Animals were phenotyped between 2 to 4 times across two years. Most animals were phenotyped 

around yearling age. The observed phenotypes were transformed tick counts (Tick, log2 of average 

tick counts), coat score (Coat, average coat score), condition score (Cond, average body condition 
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score), rectal temperature (Temp, average rectal temperature), scrotal circumference (SC, single 

observation) and live weight (WT, average weight).   

To assist the visualization of the populations substructure we ran principal components analysis 

(PCA) using PLINK 1.9 (Chang et al., 2015), and estimated the ancestral proporti ons of Bos taurus 

and Bos indicus using Admixture software (Alexander et al., 2009), as previously described (Porto-
Neto et al., 2014). A hexa-variate analysis was run to estimate heritabilities and genomic correlations 

between phenotypes fitting a precomputed genomic relationship matrix (VanRaden, 2008) in Qxpak 

v5 (Perez-Enciso and Misztal, 2011). Finally, we tested the effect of ancestral proportions on the 

observed phenotypes using SAS (SAS Inst., Cary, NC). The statistical model included the covariates 

of estimated percentage of Bos indicus and age at observation for each measurement, and the fixed 

effects of sex, breed type, management group, and operator (tick counts). For WT, after some 

exploratory analyses, an additional interaction between percent Bos indicus and sex was fitted. 

 

RESULTS AND DISCUSSION 

After quality control, around 760 animals (TXX) with genotypes (n = 49,573) and phenotypes 

were available for analysis, apart from SC which had a reduced number of observations (Table 1). 

There was large variation in phenotypes within the analysed population.  

 

Table 1. Summary statistics of observed phenotypes 

  

Phenotype N Mean Std. Dev. Min. Max. 

Tick 758 3.58 1.76 0.00 6.89 

Coat 760 3.67 0.92 1.00 8.00 

Cond 760 6.33 1.38 3.00 10.00 

Temp 757 39.64 0.49 38.30 41.80 

SC 248 28.41 3.70 17.50 38.00 

WT 760 294.39 73.79 126.50 562.00 

Indicus 761 24.48 7.64 5.02 60.45 

Transformed tick counts (Tick), Coat score (Coat), Condition score (Cond), Rectal temperature 

(Temp), Scrotal circumference (SC), Weight (WT), and SNP-based percent estimate of Bos indicus 

ancestry (Indicus). 

 

To explore and visualize potential population substructures we ran PCA analysis using additional 

cattle samples representing the breeds used during the formation of the targeted population (Figure 

1). The majority of the animals appear to have varying proportions of three main ancestral breeds, 

Charolais, Senepol and Belmont Red with only a minor component of BRM. Moreover, a number 

of individuals seem to represent pure ancestral breeds, as they cluster together with the reference 

pure-breed clusters, these were seen with CHA, SEN and BEL clusters.  
Using a genomic relationship matrix in the hexa-variate analyses we estimated the heritabilities 

and genomic correlation between phenotypes (Table 2). Heritability estimates varied from 0.391 

(Temp) to 0.492 (Coat). It is worth noting that a known major gene variant affecting coat type that 

is derived from SEN cattle (Littlejohn et al., 2014) segregates in this population and greatly 

influences the coat type. For Tick, the heritability (0.466) agrees with previous analyses using the 

same and one other population (Harrison et al., 2012; Prayaga et al., 2009), but is higher than other 

reports (Porto Neto et al., 2011). For the other phenotypes, most estimates agreed with those 
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previously reported for another sample of Tropical Composite cattle, maybe with the exception of 

Temp (higher here), and WT (lower here) (Porto-Neto et al., 2014; Prayaga et al., 2009).  

 

 
Figure 1. Principal Components Analyses using SNP genome-wide distributed (n = 

33,620) including Charolais (CHA), Senepol (SEN), Belmont Red (BEL), Brahman 

(BRM) and Tropical Composite (TXX).  

 

The estimated genomic correlations, in general, were not strong. Nevertheless, we detected 

positive correlations varying from 0.402  to 0.612 between Cond, SC and WT, which are different 

from some previously reported negative genetic and phenotypic correlations between Cond and WT 
(Porto-Neto et al., 2014). The positive correlation between Tick and Coat (0.207) has the same 

direction of effect, but differs in magnitude from that previously reported (0.49) in a mixed breed 

analysis (Prayaga et al., 2009). 

 

Table 2. Estimated heritabilities (diagonal), and genomic correlations (off-diagonal) derived 

from hexa-variate analyses for observed traits 

 

 Tick Coat Cond Temp SC WT 

Tick 0.466 0.207 -0.140 0.037 -0.143 -0.073 

Coat 0.207 0.492 -0.066 0.065 -0.052 -0.105 

Cond -0.140 -0.066 0.346 0.061 0.402 0.612 

Temp 0.037 0.065 0.061 0.391 -0.115 -0.014 

SC -0.143 -0.052 0.402 -0.115 0.395 0.516 

WT -0.073 -0.105 0.612 -0.014 0.516 0.429 

Transformed tick counts (Tick), Coat score (Coat), Condition score (Cond), Rectal temperature 

(Temp), Scrotal circumference (SC) and Weight (WT). 
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The average percentage of Bos indicus ancestry (Table 1) of the population was low (24.48, 

ranging from 5.02 to 60.45, with only 47 animals > 35.0), confirming the suggestive conclusion 

from the PCA analyses (Figure 1) of little influence of Brahman cattle within this herd. The effect 

of Indicus percentage was significant only for Tick (-0.053 ± 0.010; p-value < 0.0001) and Coat (-
0.024 ± 0.005; p-value < 0.0001). Both trait values were negatively affected by Indicus percentage, 

supporting the common knowledge that higher the Indicus content is, the lower is the tick load and 

the shorter the coat length. We confirm the effect on Coat, but could not detect the previously 

observed effect of Indicus on Temp, Cond and WT (Porto-Neto et al., 2014). This could perhaps be 

explained by the much lower Brahman influence within the tested herd, and the additional 

complexity in dealing with different breed compositions and levels of crossbreeding. An alternative 

model where the Indicus covariate was nested within breed type resulted in the main effect of breed 

becoming non-significant except for WT (p-value < 0.05). In addition to the already observed 

significant effect of Indicus for Tick and Coat, this alternative model estimated significant Indicus 

effect for some breeds in SC and WT. 

The moderate to high heritabilities of all six traits measured in this herd clearly advocate for a 

genetic approach to tropical beef productivity. The need for Bos Indicus-derived adaptation genes 
is particularly evident for the tick count and coat length traits, confirming the rationale for using 

Brahman cattle for their tick resistance and heat tolerance traits in Australian beef breeding. More 

detailed genomics studies may be able to identify the exact alleles which confer the Bos indicus-

derived tick resistance and heat tolerance traits in breeding programs. This will enable the 

maintenance of tropically adapted Bos taurus beef breeds with minimal Brahman influence. 
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SUMMARY 

Significant phenotypic relationships between lifetime lamb survival and lifetime net 

reproduction rate (NRR) with neck and body wrinkle score were identified in 2 of 3 Merino 

resource flocks. For both traits, the relationships favoured plainer ewes. Commercial producers 

culling their wrinkliest ewes to reduce the risk of flystrike are unlikely to negatively impact the 

lifetime reproductive performance of their flocks.  
 

INTRODUCTION 

The lifetime productivity of Merino ewes in terms of their wool production, fleece 

characteristics, parasite resistance and reproduction is becoming increasingly important to Merino 

producers. This has been driven by the changing relative value of wool to meat production and 
continued decline in the terms of trade for agricultural commodities. An ever-increasing range of 

technologies and data management systems now allow either cohorts of animals within a flock to 

be selected and managed according to the average performance of the group; or individual animals 

selected and managed according to their performance relative to other individuals in the flock 

(Atkins et al. 2006). Lee et al. (2009a) identified potential gains to be made in lifetime NRR by 

retaining high performing ewes beyond the normal culling age and removing ewes with low 

reproduction from the breeding flock. Retaining the top 25% or 50% of older ewes for an 

additional 1-2 lambing opportunities based on pregnancy scanning information combined with 

udder examination at marking, together with removing poor performers (twice dry ewes) early in 

life, can improve production and profit in a Merino flock (Lee et al. 2014). 

Increased public awareness of the animal welfare aspects of surgical mulesing (Greeff et al. 

2014) has resulted in Merino producers reducing the degree of wrinkling, particularly since 1999 
(Brown et al. 2010), through selection for plainer bodied animals. In addition, various within flock 

selection strategies such as selecting replacement breeding ewes with low wrinkle scores, culling 

individuals with high wrinkle scores and mate allocation (i.e. mating plain ewes with the plainest 

Merino rams) are now being advocated as a means for commercial producers to both reduce the 

incidence of flystrike and reliance on mulesing in their flocks (Richards and Atkins 2010). The 

impact of such phenotypic selection of ewes on their reproductive performance is unknown. 

Significant phenotypic variation exists for wrinkle scores (Hatcher and Preston 2015) as well as 

both annual (Safari et al. 2007) and lifetime reproduction traits (Lee et al. 2009b). While previous 

studies have reported phenotypic relationships between wrinkle score and annual reproduction 

events (Crook 1992; Turner and Young 1969), no studies have examined the relationship between 

wrinkle score and lifetime reproduction traits in Merino sheep. This study reports on the 
phenotypic relationship between neck and body wrinkle with lifetime NRR and its components.  

 

MATERIALS AND METHODS 

Lifetime reproduction data (from 2 - 6 years of age) were collated from three Merino genetic 

resource flocks (D-Flock, C-Flock and QPLU$) run at the Trangie Agricultural Research Centre. 

Lambing and weaning performance of the ewes in each of these flocks were routinely recorded. 

An outline of each flock and its management is provided by Lee et al.(2009a). Data were available 
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for 3,300 D-flock ewes (born 1975 - 1983), 1,411 C-flock ewes (born 1984 - 1993) and 5,393 

QPLU$ ewes (born 1992 - 2002). Neck and body wrinkle scores were assessed at weaning time in 

the three flocks using either a 1 - 9 scoring system (D- and C-Flocks, with 1 being low wrinkle 

score) or a 1 to 5 score (AWI Ltd and MLA Ltd 2013, QPLU$ flock). The 1 - 9 scoring system 

aligns with the 1-5 system with scores 1, 3, 5, 7, and 9 corresponding to scores 1 to 5 respectively 
and 2, 4, 6, & 8 the ½ scores in between. 

This preliminary study was based on phenotypic information of the number of times each ewe 

was joined, the number of parities (lambing events), the total number of lambs born and the 

number of lambs weaned from 2 to 6 years of age. From these data lifetime fertility (no. times 

lambed/no. times joined), fecundity (no. lambs born/no. times joined), lamb survival (no. lambs 

weaned/no. lambs born) and NRR (no. lambs weaned/no. times joined) were calculated for each 

ewe as was the average pre-joining liveweight (kg). ASReml (Gilmour et al. 2009) was used to fit 

the effects of genotype (bloodline within the D-Flock, animals having the same proportion of 

genes derived from each of the bloodlines within the C-flock, and selection line within-strain 

within the QPLU$ flock), year of birth and wrinkle score (neck and body wrinkle scores were 

analysed for each lifetime reproduction trait in separate models). The significance of differences 

between the ASReml predicted means for neck and body wrinkle score was determined using T-
tests. These were based on the least significant difference calculated from the standard error of the 

difference for each lifetime reproduction trait within each flock and the degrees of freedom.  
 

RESULTS AND DISCUSSION 

For the D- and C-Flocks the distribution of wrinkle scores was skewed towards plainer animals 

(Figure 1), the average wrinkle score for each flock being 2.2 and 2.3 for neck wrinkle and 1.9 and 

2.0 for body wrinkle. For these two flocks ewes with score 5 for neck and body wrinkle 

represented less than 0.4% of the flock. The distribution of wrinkle scores for the QPLU$ flock 

was less skewed with average wrinkle scores of 3.1 and 2.4 for neck and body wrinkle. In the 

QPLU$ flock score 5 animals represented 6% and 1.4% of all ewes for neck and body wrinkle 

respectively.  

Figure 1. Distribution of neck and body wrinkle scores in three Merino resource flocks 

Wrinkle score, neck or body, was not a significant source of variation in either lifetime fertility or 

fecundity in any of the three Merino resource flocks (Table 1a and 1b). However, while wrinkle score 

(neck or body) was not a significant source of variation in lifetime lamb survival for the D- or C-

Flocks, a significant relationship was evident in the QPLU$ flock (P<0.001). For each wrinkle trait, 

lifetime lamb survival was highest for the plainer bodied ewes (i.e. those with wrinkle scores 1, 2 or 

3) compared with the wrinklier ewes (i.e. score 4 or 5) (Table 1a and 1b). For body wrinkle, the 

relationship was more distinct with score 1 ewes having the highest lifetime lamb survival and 

lifetime lamb survival significantly decreasing with each increase in wrinkle score (Table 1b).  
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Table 1. Lifetime NRR, its components (fertility, fecundity and lamb survival) adjusted for 

genotype and year of birth effects and average pre-joining liveweight from 2-6 years of age, 

for a) neck and b) body wrinkle score of Merino ewes of three different Merino resource 

flocks, together with the standard error of the difference (s.e.d.) 
a) 

Flock Flock Neck Wrinkle Score  
 mean 1 2 3 4 5 s.e.d. 

Fertility (no. of times lambing/no. of times joined) 
D-Flock 0.70 0.693 0.672 0.672 0.673 0.771 0.049 
C-Flock 0.82 0.844 0.807 0.798 0.849 0.767 0.093 
QPLU$ 1.30 1.267 1.281 1.285 1.300 1.292 0.031 

Fecundity (no. of lambs born/ no. of times joined) 
D-Flock 1.30 1.308 1.265 1.251 1.251 1.386 0.086 
C-Flock 1.35 1.355 1.331 1.323 1.340 1.172 0.149 
QPLU$ 1.39 1.398 1.372 1.380 1.390 1.373 0.038 

Lamb survival (no. of lambs weaned/no. lambs born) 
D-Flock 0.68 0.679 0.664 0.650 0.650 0.700 0.058 
C-Flock 0.74 0.793 0.740 0.739 0.741 0.791 0.107 
QPLU$ 0.68 0.670a 0.692b 0.685b 0.644c 0.606d 0.028 

Net reproduction rate (no. of lambs weaned/ no. of times joined) 
D-Flock 0.71 0.700 0.668 0.658 0.623 0.699 0.074 
C-Flock 0.89 0.970 0.869 0.860 0.920 0.805 0.164 
QPLU$ 0.97 0.958a 0.973a 0.968a 0.906b 0.834c 0.044 

Average pre-joining liveweight (2-6 years) (kg) 
D-Flock 45.8 45.3a 45.6a 46.5b 46.0c 47.7d 0.86 
C-Flock 45.6 47.7 48.8 48.7 49.7 51.3 1.97 
QPLU$ 55.0 54.1a 55.0b 55.2c 55.1d 56.0e 0.22 

 
b) 

Flock Flock  Body Wrinkle Score  
 mean 1 2 3 4 5 s.e.d. 

Fertility (no. of times lambing/no. times joined) 
D-Flock 0.70 0.694 0.671 0.659 0.686 0.596 0.056 

C-Flock 0.82 0.811 0.816 0.800 0.820 0.974 0.093 
QPLU$ 1.30 1.259 1.285 1.300 1.286 1.344 0.035 

Fecundity (no. of lambs born/ no. of times joined) 
D-Flock 1.30 1.300 1.247 1.256 1.291 1.340 0.097 
C-Flock 1.35 1.321 1.343 1.346 1.325 1.216 0.150 
QPLU$ 1.39 1.357 1.377 1.397 1.366 1.455 0.043 

Lamb survival (no. of lambs weaned/no. lambs born) 
D-Flock 0.68 0.677 0.656 0.638 0.687 0.663 0.065 
C-Flock 0.74 0.749 0.739 0.738 0.722 0.744 0.107 

QPLU$ 0.68 0.704a 0.687b 0.665c 0.611d 0.553e 0.031 
Net reproduction rate (no. of lambs weaned/ no. of times joined) 

D-Flock 0.71 0.699a 0.654b 0.632b 0.672ab 0.502c 0.084 
C-Flock 0.89 0.880 0.868 0.878 0.841 0.943 0.164 
QPLU$ 0.97 0.966ab 0.971a 0.946b 0.851c 0.812c 0.049 

Average pre-joining liveweight (2-6 years) (kg) 
D-Flock 45.8 45.4 45.8 46.3 46.3 45.2 0.97 
C-Flock 49.1 48.4 48.9 49.3 49.8 52.3 1.99 

QPLU$ 55.0 55.3 55.2 55.2 55.1 57.3 0.63 

Within each flock, values followed by different letters are significantly different at P = 0.05. 

There was no significant relationship between neck wrinkle score and lifetime NRR for either 
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the D- or C-Flocks, however this was significant for the QPLU$ flock (P<0.001). For that flock, 

the lifetime NRR was highest for those ewes with less neck wrinkle (Table 1a). For body wrinkle 

there was a significant relationship with lifetime NRR in both the D-Flock (P=0.038) and the 

QPLU$ flock (P<0.001) but not the C-Flock (Table 1b). Previous research based on annual 

reproduction events found high wrinkle scores were related to poorer reproductive outcomes 
(Turner and Young 1969), with more wrinklier ewes weaning half as many lambs during their 

lifetime compared to plainer bodied ewes (Dun 1964).  

These significant differences in lifetime lamb survival and lifetime NRR appear to be unrelated 

to the average pre-joining liveweight over the lifetime of the ewes. While both neck and body 

wrinkle score were significant sources of variation in pre-joining liveweight for the D-Flock 

(P=0.005 and P=0.044 respectively) and neck wrinkle a significant source of variation in the 

QPLU$ flock (P=0.022), the wrinklier animals tended to have the highest liveweight (Table 1 a 

and b). Lee et al. (2009a) found that pre-joining liveweight was generally poorly correlated with 

lifetime NRR and that those ewes with the highest lifetime NRR tended to have slightly lower 

liveweight immediately before joining.  

This preliminary study has identified a phenotypic relationship between wrinkle score and 

lifetime NRR rate and its lifetime lamb survival component. Commercial producers who choose to 
cull the most wrinkly ewes (i.e. score 4 or 5) and retain those ewes with lower wrinkle scores to 

reduce flystrike risk are unlikely to have any detrimental impact on the lifetime NRR of their 

flock. Further work is required to estimate phenotypic and genetic correlations between wrinkle 

score and lifetime NRR (and its components) in order to determine whether implementing a 

selection program for fewer wrinkles will impact on the lifetime reproductive performance of the 

flock in future generations.  
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SUMMARY 

Reducing daily feed intake (DFI) via selection for lower daily methane production (DMP) has the 

potential to be more cost effective than direct selection for DFI. DMP has a high heritability and high 

genetic correlation to DFI. The optimal proportion of randomly selected young male and female cattle 

in which to measure DMP was determined by modelling the measurement costs and response to 

selection of Angus cattle using the Angus breeding index (ABI) augmented with DMP and DFI in a 

combined breeding objective (BO), but without DFI being measured. Assuming a 20 year planning 

horizon, it was not profitable to measure any candidates for DMP. The highest breakeven DMP test 

cost ($41.80/head) occurred when 38% of males and no females had DMP measures. The selection 
response for DFI only became negative when at least 52% of males had DMP estimates.  

 

INTRODUCTION 

Methane emissions from livestock are receiving increased attention (Cole et al., 2016). 

Reduction in daily methane production (DMP) can be achieved via direct or indirect selection, e.g. 

via daily feed intake (DFI), as DFI is a highly correlated trait (Cottle, 2011; Jones et al., 2011).  

DMP and DFI are both very difficult and expensive to measure in pasture based systems. 

Robinson and Oddy (2016) suggested that when it is not practical or cost effective to measure DFI, 

DMP can be used as a proxy for feed eaten. Even at the highest plausible cost of methane 

emissions they found that the economic benefits from improved feed efficiency when measuring 

DMP were greater than those from reducing methane emissions. 
Key questions to answer in a breeding program are: i) how much can beef producers afford to 

invest in DMP measurement?; ii) what is the breakeven price (BE) for individual test cost to obtain 

a positive net present value (NPV)?; iii) what proportions of candidate males or females in the 

herd should breeders measure?; and iv) what is the predicted impact on DFI of any optimal DMP 

measurement program? The main aim was therefore to determine the optimal proportions of male 

and female selection candidates to measure for DMP in a one stage selection program aimed at 

increasing overall index value. These proportions were determined by modelling the selection 

costs and responses of Angus cattle selected on the Angus Breeding Index (ABI) with DMP and 

DFI also included in the combined breeding objective (BO), but with DMP, not DFI, being 

measured in a random sample of the selection candidates. 

 

MATERIALS AND METHODS 
Selection index theory was used (Hazel, 1943).  A random proportion (M) of selection 

candidates were measured for DMP that had an enhanced index with a higher accuracy and a 

larger standard deviation (SD). Let the total number of selection candidates be N. Selection is 

across these two cohorts, with M.N and (1-M).N candidates per cohort. Assuming random 

measurement of DMP, both cohorts will have the same genetic mean, and the SD of the index 

values within cohort j is Ij = rIHj.H, where rIHj is the accuracy of index j, and H is the SD of 
the BO. Each of the three traits (Angus Breeding Index (ABI), DMP and DFI) is represented in the 

BO and selection on EBV was modelled as based on a single phenotype with heritability equal to 

the EBV reliability, with phenotypes available on the selection candidate for either trait 1 (ABI) or 
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for trait 1 and trait 2 (DMP). Key parameters used in the indexes are summarized in Table 1. The 

REVs of trait 2 and 3 are negative (DMP and DFI have a cost), reflecting a typical example of 

unfavourable correlations. Typically, traits 2 and 3 will be selected in the non-desired direction 

when only using the ABI, i.e. animals will produce more methane and eat more. 

Response to selection was predicted using the distributional properties of the mixture of 
distributions of animals; those with the ABI only, and those with the enhanced index that also 

includes DMP (Cottle and van der Werf, 2017). The proportion M of males or females randomly 

measured for DMP was varied by 1% increments to determine the genetic and economic responses 

for each value of M. A self-replacing herd of 300 breeding cows was assumed with a 90% calving 

percentage, annual 5% culling/death rate, with 5% of the male candidates and 42% of female 

candidates selected for replacement to maintain herd numbers.  

 

Table 1. The key parameter values assumed in the 3-trait model. Trait 2 (T2) and trait 3 (T3) 

relative economic values (REV) are calculated on a yearly basis to be on the same scale as the 

trait 1 (T1) genetic standard deviation (GenSD). 

 

Parameters 
Trait 1 

 (Angus Breeding Index: $) 
Trait 2  

(DMP: kgCO2e) 
Trait32  

(DFI: kg DM) 

Accuracy of EBV (h) 0.50 0.55 0.60 

REV ($/GenSD) 1.0 -3.65 -18.25 

GenSD 44.28 0.80 1.92 

Correlations Genetic Phenotypic Residual 

T1: T2 0.3 0.16 0.1 

T1: T3 0.5 0.22 0.1 

T2: T3 0.8 0.46 0.3 

Notes:   

T1: GenSD advised by Dr. Peter Parnell, Angus Australia CEO.  

T2: GenSD = phenotypic SD of 42% of 138 g methane/d (Cottle, 2016b) * 25 (greenhouse 
warming potential of methane) = 1.45 kgCO2e * accuracy = 0.80. EV = net price of $10/tonne 

CO2e (Cottle et al., 2016) = $0.01/ kgCO2e * 365 days = -$3.65/kg CO2e/year.  

T3: GenSD = phenotypic SD of 42% of 7.5kg DM/d (from Minson and McDonald, 1987 and 

Cottle, 2016b) * accuracy = 1.92. EV = 5c/kg DM * 365 days = -$18.25/kg DM/year, a small 

increase on feed cost assumed by Cottle et al. (2011) and Robinson and Oddy (2016).  

  

A discounted cost benefit analysis of strategies with and without DMP measurement was based 

on the increased benefit from the additional genetic gain versus the additional cost of measuring 

DMP over a time horizon of 20 years with DMP estimates only occurring in the first 10 years and 

the first genetic benefit from DMP estimates realised in year 2 (Cottle and van der Werf, 2017). 

Economic assessment was based on estimated combined BO gain, traits’ genetic gain, NPV of the 

cumulative BO ($) gain over 20 years and breakeven (BE) DMP test cost. 
   

RESULTS AND DISCUSSION 

An example comparison of the male and female population distributions with either ABI index 

alone or extended ABI/DMP index with an arbitrary 70% measured for DMP is given in Figure 1. 

The annual genetic responses of males or females in the combined BO (all 3 traits), ABI, DMP 
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and DFI with different proportions of males or females measured for DMP are shown in Figure 2. 

  

Figure 1. Proportion of candidates versus index value. The Angus Breeding Index (solid line) 

and extended index (dashed line) with 70% of animals measured for daily methane 

production (DMP). The proportion of kept males (left) with DMP measurements is higher 

than for females (right). 

The total combined BO value increased by 36% as the proportion of cattle with DMP estimates 

increased from 0 to 100%, while the responses for ABI, DMP and DFI all became lower, which is 

in the desired direction for DMP and DFI. It is therefore best to have DMP measurements for all 
candidates when the cost of measurement is disregarded. However the current estimated cost of 

measuring DMP was high ($54.64/head, R. Hegarty, pers. comm.), which resulted in it being 

unprofitable to measure any candidates for DMP.  

 

Figure 2. Annual response (per head per year) in males (left) and females (right) in combined 

breeding objective (BO: $, black, solid line), Angus Breeding Index (ABI: $, grey, solid), 

daily methane production (DMP: kg CO2e/d, black, dashed), and daily feed intake (DFI: 

kg/d, grey, dashed) versus the proportion of candidates measured for DMP. Average 

generation length (3.4 years) was used, so the total response is the average of the male and 

female responses.  

The highest BE ($41.80 per head) for the DMP test occurred when 38% of males and no 

females had DMP estimates (Figure 3). At $41.80 additional gains equal costs but DMP and DFI 

would be lower than when no candidates have DMP measures (Figure 2). Thus the economic 
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situation (NPV) would be no better at this BE with DMP measurement but the environment would 

be improved from lower methane emissions.  

A reduction of DMP from male selection only occurred when at least 23% of males had DMP 

measures or when 38% of females had DMP measures from female selection. A reduction of DFI 

from male selection only occurred when at least 52% of males had DMP measures or when 73% 
of females had DMP measures from female selection (Figure 2: trait intersection with zero line). 

 
 

Figure 3. Response in breakeven cost ($/head)  to variations in the proportions of males and 

females measured for daily methane production (DMP) when discounted gains over 20 years 

with 10 years of measurement were calculated. 
 

Robinson and Oddy (2016) also explored incorporating DMP measurements in BOs which 

included DFI for cattle, where slaughter weight rather than an industry index was modelled as the 

first trait. However, only the estimated genetic gains per head for a single round of selection with a 

selection intensity of 1 were calculated. They therefore didn’t study profit, only relative gain, so 

the optimum proportion of animals to measure for DMP, taking into account costs, was not 

calculated. They also found that the greatest benefit of including DMP in the BO was as a proxy 

for DFI. Two stage selection for DMP is difficult if animals choose themselves whether to visit the 

DMP measurement device and ABI values may not be known at the time of DMP measurement.  
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SUMMARY 

An analysis of the economic benefits and costs of incorporating selection to improve residual 

feed intake (RFI) in New Zealand’s sheep industry was performed.  The outcomes indicated that 

genomic selection for RFI, calibrated on either direct measurement of intake or measurement of 

greenhouse gases in Portable Accumulation Chambers (PAC) has a positive return when it is 

assumed that genotyping of candidates in ram breeding flocks is occurring for other traits.  A 

comparison with a hypothetical phenotypic indicator criteria correlated with RFI suggests that 

further R&D effort is best directed at improving the accuracy of genomic selection in preference to 

a search for practical indicator measurements. 

 

INTRODUCTION 
Feed costs represent a significant component of farm operating costs in New Zealand sheep 

farming. As such, any reduction in feed costs, while maintaining productivity, may provide an 

opportunity to increase sheep farming profitability. Genetic improvement is a long-term and 

sustainable approach to increasing the productivity and profitability of animals, and represents a 

tool that can be used to improve feed efficiency.  This report aims to evaluate the potential benefits 

from including Residual Feed Intake (RFI) as a criterion in New Zealand sheep breeding 

programs, and examines 3 alternatives for implementation, being: 

1. Genomic selection for RFI calibrated on direct measurement of RFI. 

2. Genomic selection for RFI calibrated on indirect measurement of RFI (greenhouse gas 

production in portable accumulation chambers (PAC)).   

3. Phenotype-based selection for RFI based on a hypothetical indicator trait. 

 

MATERIALS AND METHODS 

The analysis used standard selection index theory to predict response to selection.  A breeding 

objective was formulated based on models which describe a typical NZ maternal sheep operation.  

The objective traits included in a standard index include number of lambs born (NLB, Economic 

weight = 2231c), weaning weight (direct (WWT = 136c) and maternal (WWTM)), carcase weight 

(CWT = 374c), ewe weight (EWT = -119c), lamb fleece weight (LFW = 261c), hogget fleece 

weight (HFW = 113c), ewe fleece weight (EFW = 327c), lamb survival (direct (SUR = 8378c) and 

maternal (SURM)).  Three traits were added to this base index, being residual feed intake on 

growing lambs (RFIl = -112c), replacement hoggets (RFIh = -329), and ewes (RFIe = -495).  

Genetic correlations between RFI traits were 0.9 (RFIl, RFIh), 0.6 (RFIl,RFIe) and 0.65 
(RFIh,RFIe). 

A standard group of selection criteria traits formed the base model containing traits commonly 

used within the Sheep Improvement Ltd genetic evaluation system for NZ sheep industry.  These 

traits included number of lambs born, weaning weight (direct and maternal), carcase weight, 

hogget fleece weight, survival (direct and maternal), ewe weight, and liveweight at 8 months. 

Genomic selection was modeled by including a trait to represent each genomic prediction.  The 

heritability of each genomic trait was set as 0.95, and the accuracy of the prediction was 

incorporated as a genetic correlation between the genomic prediction and the corresponding profit 

trait.  Where other traits were correlated with the corresponding objective trait, the genomic trait 
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was also assumed to be correlated, with the correlation calculated as the accuracy multiplied by the 

relevant correlation between phenotype traits.  Genomic predictors for WWT, WWTM, LW8, 

LFW, FW12, EFW and NLB were modelled with accuracies of 0.60, 0.45, 0.57, 0.53, 0.32, 0.35, 

0.57 respectively.  These accuracies were based off the current NZ genomic prediction accuracies 

(M.Lee, pers. Comm.) weighted by breed representation with the NZ sheep industry. 
Accuracy of potential genomic predictions for RFI calibrated from direct measurement, and 

RFI and Methane Yield calibrated on PAC measurements were modelled based on the equation of 

Daetwyler et al. (2013). Calibrations were assumed to be against measurements on hoggets.  The 

number of records used in the equation were calculated based on an assumed number of animals 

measured per year (400 for RFI directly measured and 1400 for PAC measurements) multiplied by 

the generation interval (3 years) and 5 generations. Effective population size was set at 500 (J. 

McEwan, Pers Comm) and genome length was 30 Morgans, giving a Me value of 6,279. 

Sensitivity analysis of assumed accuracies were undertaken (results not shown).  Correlations 

between the calibrated traits and the objective trait RFIh are given in Table 3, and were multiplied 

by the accuracy of genomic prediction to give an overall correlation between the genomic 

prediction and RFIh.  Correlations were extended to RFIl and RFIe by multiplying by the relevant 

correlation with RFIh. The alternative phenotypic predictor trait for rfi was modelled with a 
heritability of 0.25 and correlations with RFI objective traits of 0.3.  These parameters were 

considered to be realistic, given that very few candidates for strong physiological indicators of RFI 

have been discovered in 20 years of significant research on this trait.  Table 2 summarises the 

scenarios modelled. 

 

Table 1. Accuracy of genomic predictions, calculated using equation of Daetwyler et al 

(2013).   

 RFI PAC_RFI PAC_CH4 

Genomic accuracy  0.47 0.50 0.62 

N records 6,000 21,000 21,000 

Heritability 0.30 0.10 0.19 

No. measured per 

year 400 1400 1400 

Generation interval 3 3 3 

No. Generations 5 5 5 

Correlation with 

RFIh 1.00 0.57 -0.25 

 

Table 2.  Scenarios with different information available.  All scenarios included the base 

phenotypic measurements included as described in the text. 

Scenario name Genomics information1 Description 

Base N/A 
Represents current recording and selection practices (no information available on 
RFI). 

Base+G growth, reproduction, wool 
Represents current recording and selection practices but in which genomic test 
results are available on selection candidates in industry breeder flocks for a suite 
of traits (growth, reproduction, and wool), excluding RFI. 

Base+G_R 
growth, reproduction, wool, 
RFI 

Genomic test results are available on selection candidates in industry breeder 
flocks for a young animal RFI trait – RFI genomic predictions are calibrated on 
individual feed intake measures. 

Base+G_P 
growth, reproduction, wool, 
PAC_RFI, PAC_CH4 

Genomic test results are available on selection candidates in industry breeder 
flocks for a young animal RFI/CH4 traits calibrated on individual PAC measures. 

Base+G_RP 
growth, reproduction, wool, 
RFIy, PAC_RFI, PAC_CH4 

Genomic test results are available on selection candidates in industry breeder 
flocks for a young animal RFI trait – RFI genomic predictions are calibrated on both 
individual feed intake measures and PAC measures. 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:409-412 

407 

Base+N N/A 
Represents current recording and selection practices but in which a new 
phenotypic selection criterion (predictor of feed intake) is available on selection 
candidates in industry breeder flocks. 

Base+NG growth, reproduction, wool 

Represents current recording and selection practices plus genomic test results 
available on selection candidates in industry breeder flocks for a suite of traits, 
excluding RFI, and a new selection criterion (predictor of feed intake) is measured 
on selection candidates in industry breeder flocks. 

 

Calculation of costs and benefits. 

Costs were calculated as marginal costs over the cost of recording base phenotypic traits in ram 

breeding flocks. The cost of genomic selection was calculated based on $30 per ram tested.  

Additional costs of including RFI (direct measurement) into the genomic selection was calculated 

as $120,000 per year ($300 per lamb tested), or PAC measurements were $70,000 per year ($50 

per lamb tested).  No additional costs for the implementation of genomic selection were included, 

as it was assumed that genomic testing was adopted based on the non-RFI traits.  The cost of 

generating industry reference flocks which RFI is measured on was also not included, as these 

flocks were assumed to be generated for other purposes (e.g. within the current industry progeny 

test flocks).  Cost of the phenotypic indicator trait was $10 per ram. 
Benefits were generated based on the response to selection (in cents per ewe per year). This 

was then used as an input to a model to portray the flow of rams from breeder flocks and therefore 

the flow of replacement daughters, genetically improved for RFI, into the national flock (i.e. the 

number of replacements sired by rams from flocks where RFI was integrated into selection 

decisions) over time based on a standard flock age structure. The analysis assumes that the first 

performance recorded offspring will be born with an estimated breeding value/ genomic breeding 

value for RFI in 2020, the first rams genetically improved for RFI will mate ewes in the 

commercial flock in 2022, and the first daughters arising from sires genetically improved for RFI 

will enter the commercial sheep flock as replacements in 2024. There is therefore a two-year lag 

from generation of genetically improved rams to use in the commercial flock, and a further two-

year lag until the daughters of those genetically improved rams enter the commercial flock as 
replacements. An adoption profile was also included, starting with 20% of rams sourced as being 

improved for RFI, and increasing by 5% every year to a maximum of 70%.  The economic value 

was calculated as the benefits arising from 10 years of selection, accumulated over 20 years. A 

discount rate of 7% was used. 

 

RESULTS AND DISCUSSION 

Total economic responses across all objective traits are shown in Table 3 along with their 

relativities to the base and base plus genomics scenarios.  Adding genomics to the base scenario 

led to a 12% increase in gain.  Including RFI into the genomic predictions gave an additional 2-6% 

economic response, depending on the calibration used.   Response in RFI traits was greatest in 

scenarios where genomic calibrations were based on direct measurement of RFI, as might be 

expected given the assumed correlations of calibration traits with the objective traits.  
Measurement of a phenotypic predictor of RFI in ram breeding flocks produced approximately 2% 

additional economic response. 

A comparison between costs and benefits shows that the case for inclusion of genomics 

(excluding RFI) in industry breeding programmes is compelling.  Given this, the additional cost of 

generating specific calibrations for RFI as a hard to measure trait is relatively small compared to 

the additional benefits gained, and so this analysis supports this model as an implementation 

pathway for inclusion of RFI into industry breeding programmes.  Cost:benefit ration might be 

improved by implementing two-stage selection and reducing costs by only testing the top 

proportion of rams.  Sensitivity results on the accuracy of the genomic predictions (not shown) 
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indicated that there is significant upside to more accurate genomic predictions for RFI.  Thus effort 

into increasing the accuracy is warranted, and under a scenario where one-step genomic evaluation 

is implemented this would mean: 1) maximising the genetic relatedness between the reference 

population and selection candidates; 2) increasing the number of animals in the reference 

population; 3) ensuring the calibration phenotype is the most accurate possible (ie. increasing the 
heritability of the phenotype eg via appropriate test duration); or a combination of these factors. 

The inclusion of a phenotypic indicator trait measured on all selection candidates was modelled 

on a reasonably optimistic scenario.  However, while inclusion of RFI into the breeding 

programme via this mechanism generated positive returns, the benefits were small relative to the 

genomic selection scenarios while the costs were significantly larger.  Thus to generate a better 

return than genomic selection, a phenotypic indicator would have to have a combination of 

parameters which here better than those used in this study.  Given the practical considerations 

around implementation, the requirement for an additional measure to be adopted (vs no additional 

measurement in ram breeding flocks once genotyping is adopted), the unknown correlated 

responses in other traits to selection (this analysis assumed no correlated traits), and the R&D risk 

around identifying such a predictor, the outcomes suggest that further R&D investment would be 

best directed to improving genomic selection rather than a search for phenotypic predictors. 
 

Table 3. Response to selection (cents/ewe/year), industry benefit and cost ($M over 

benefit/cost horizons) by RFI genetic improvement scenario. 

 

Scenario Base Base+G Base+G_R Base+G_P Base+G_RP Base+N Base+NG 

Total Response 
161.64 173.64 181.40 176.53 183.81 165.22 176.91 

Relative to Base 
 12.0 19.8 14.9 22.2 3.6 15.3 

Relative to Base + G 
  7.8 2.9 10.2 NA 3.3 

Total benefit 947.0 993.2 1023.1 1004.4 1032.4 960.8 1005.8 

Relative to Base  
 

46.2 76.2 57.4 85.5 13.8 58.9 

Relative to Base+G     29.9 11.2 39.2 NA 12.6 

Cost Relative to Base – 100% of 
rams tested 

 
13.3 14.2 13.8 14.7 4.4 17.8 

Cost attributable to RFI – 100% of 
rams tested1     0.9 0.5 1.4 4.4 4.4 

1 For Base+G_R, Base+G_P, and Base+G_RP scenarios, the costs attributable to RFI are independent of the percentage of 
rams tested, whereas for Base+N/G, the costs scale up proportionally; 100% of rams are assumed to be phenotyped for 
the new selection criteria in the Base+N/G scenarios. 

 

REFERENCES 

Daetwyler, H.D., CALUS, M.P.L., PONG-WONG, R., DE LOS CAMPOS, G., Hickey, J.M. 2013 

Genetics 193:347-365. 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:413-416 

413 

NONLINEAR ECONOMIC VALUE FOR NUMBER OF LAMBS BORN IN NEW 

ZEALAND SHEEP INDEXES 

 

C. Quinton1, T. Byrne1, P. Amer1 

 

1 AbacusBio Ltd., Dunedin, New Zealand 

 

SUMMARY 

A new non-linear economic value for number of lambs born (NLB) was developed for 

implementation in the New Zealand (NZ) SIL selection indexes. The function consists of a quadratic 

relationship between NLB EBV and dollar value at below-optimum commercial NLB levels, and a 

flat value above the optimum. This caps the reproduction dollar values of individuals with above-

optimum NLB EBV that may be over-valued with a linear economic value. When incorporated into 

the NZ Maternal Worth index, the non-linear reproduction economic value mitigates the risk of very 

prolific genetics driving individuals’ total index.  

 

INTRODUCTION 
A typical linear selection index used in genetic evaluation programs is calculated as

   iilinear bEBVI , where for each trait i in the index, individuals’ EBVi (trait unit) are multiplied 

by a constant weight bi. In this way, diverse traits including growth, reproduction, product yield and 

quality are incorporated to a single overall estimate of an individual’s total genetic merit. In the NZ 

national sheep genetic evaluation, the New Zealand Maternal Worth (NZMW) index includes traits 

for reproduction (DPR), survival (DPS), growth (DPG), adult size (DPA) and wool (DPW). Each of 

these traits are weighted in indexes by linear economic values of $/trait unit (Byrne et al., 2012) 

However, there is concern that the current linear economic valuation for reproduction, defined 

as number of lambs born (NLB), risks overweighting this trait within the NZMW for highly prolific 
commercial flocks. The current economic weight bNLB=2231 cents/lamb was derived from national 

population mean NLB of approximately 1.5 lambs. But due to the wide range of breeds and farm 

conditions across the country, many flocks experience much higher NLB. While increasing NLB in 

less prolific animals will increase revenue per ewe, at high NLB ewes may not be able to rear all 

lambs and feed and labour required to rear additional lambs reduces profit per lamb. Therefore, in 

practice profit per lamb per ewe decreases with increasing NLB and there is an optimum NLB above 

which production becomes unprofitable. This can be defined within the NZMW total merit index by 

replacing the current linear reproduction valuation DPR=(EBVNLB × bNLB) by a non-linear function 

that describes the relationship between EBVNLB and profit per ewe for a typical NZ commercial 

sheep farm. A previous investigation (Martin-Collado et al., 2016) determined that a non-linear then 

flat function is the most efficient approach to value NLB within the context of a multi-trait selection 
index. 

The objective of this study was to develop a non-linear then flat index weighting for NLB to be 

applied within NZMW indexes, and evaluate its effect on ram rankings for reproduction and total 

merit.  

 

MATERIALS AND METHODS 

 

Non-linear function for NLB value. First, the relationship between EBVNLB and commercial 

phenotype was defined. This is necessary because economic values must reflect what occurs at the 

commercial level, but breeder flocks are approximately two generations ahead of commercial flocks, 

and managed differently. Commercial phenotypes were predicted as yNLB=EBVNLB+1.43, based on 
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average difference in NLB phenotypes between breeders and commercial producers due to 

management, genetic lag between breeder and commercial flocks, and NLB genetic trend. 

The non-linear function was defined in two parts: a quadratic function 2
NLBNLBq cybyav   

describing the relationship between NLB and farm profit up to the optimum NLB phenotype, then 

a flat constant value at and above the optimum NLB. Coefficients b and c were defined from the 

existing model for deriving linear economic values for commercial NLB in the NZ sheep industry 

(Byrne et al. 2012). In the range of NLB values of 1.5 to 2.0, the relationship between NLB and 

marginal economic value (MEV, cents/lamb) can be described by a linear function 𝑀𝐸𝑉 =
−5899𝑁𝐿𝐵 + 10904 (Figure 1a). The optimal NLB occurs at MEV=0 where yNLB=1.848 lambs. 
This relationship reflects the first derivative of the quadratic function describing the relationship 

between NLB and farm profit per ewe.  

 

 
Figure 1. (a) Relationship of marginal economic value with population mean NLB. (b) 

Relationship of individual proven rams’ EBVNLB with profitability according to linear 

economic value bNLB=2231 cents/ewe/lamb (crosses), or non-linear quadratic then flat function 

(circles). 
 

Coefficients of the implicit quadratic function were calculated with simple algebraic integration 

of MEV, so that b=10904 and c=-5899/2=-2949.5. The constant a was calculated to make mean non-

linear values similar to the current mean linear values achieved with DPR=(EBVNLB × bNLB). If the 

current national mean EBVNLB=0.043 lambs, then the current mean value is (0.043×2231)=95.3 

cents. Setting the quadratic equation to obtain this value for a predicted commercial mean NLB 

phenotype yNLB=1.473 lambs, a=-9566.7. The optimum of this equation occurs at yNLB=1.848 where 

value=511 cents. The function was then modified to give flat pattern of response as predicted 

commercial NLB exceeds the optimum yNLB. The final non-linear reproduction value (DPRnl) 

function was therefore: 
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With this function, the economic weighting applied to NLB for an individual depends on its 

EBVNLB. Figure 1b illustrates the difference in individual reproduction profitability values 

calculated with linear DPR vs. the non-linear DPRnl.  

 

Comparison of linear and non-linear values. The effects of non-linear economic value of NLB 
were evaluated by comparing ram index values and rankings calculated with current linear DPR and 

NZMW with those calculated with DPRnl. National evaluations for rams born in 2010-2014 were 

extracted from the SIL database in September 2016. Individuals’ predicted commercial phenotype 

yNLB, reproduction index values DPR and DPRnl, and total merit values NZMW and NZMWnl were 

calculated. NZMW was the sum of DPR plus DPG, DPA, DPW, and DPS subindexes; NZMWnl 

was the sum of DPRnl, DPG, DPA, DPW and DPS. Comparisons were done within breed for young 

rams defined as those born in 2014, and proven rams defined as those with EBVNLB accuracy≥60. 

Values for DPR vs. DPRnl, and for NZMW vs. NZMWnl were compared with Pearson and 

Spearman rank correlations. 

 

RESULTS AND DISCUSSION 

Results presented here are for one breed only, but are representative of major breed groups tested. 
Proven rams’ DPR and DPRnl (Figure 1b) illustrate how for individuals with near-average EBVNLB, 

reproduction index values were similar, but above this values diverged. At the highest 

EBVNLB=0.58, reproduction value dropped from DPR=1291 cents/ewe to DPRnl=511 cents/ewe 

(the capped maximum value). The non-linear NLB economic value reduced young and proven rams’ 

average reproduction value by 88 and 109 cents/ewe, respectively; these reductions carried through 

in average total index values (Table 1).  

 

Table 1. Ram group mean values for NLB EBV and predicted commercial phenotype (yNLB), 

linear and non-linear reproduction values (DPR, DPRnl), growth (DPG), adult weight (DPA), 

survival (DPS), wool (DPW), and total merit with linear and non-linear reproduction values 

(NZMW, NZMWnl)   
Young 

(N=10921) 

Proven 

(N=381) 

Top Proven by 

NZMW (N=100) 

Top Proven by 

NZMWnl(N=100) 

EBVNLB (lambs) 0.18 0.17 0.26 0.21 
yNLB (lambs) 1.61 1.6 1.69 1.64 
DPR (cents/ewe) 401 378 585 478 
DPRnl (cents/ewe) 313 269 390 341 
DPG (cents/ewe) 1122 1244 1541 1556 
DPA (cents/ewe) -321 -352 -251 -221 

DPS (cents/ewe) 207 192 315 349 
DPW (cents/ewe) 173 167 245 246 
NZMW (cents/ewe) 1582 1629 2435 2408 
NZMWnl (cents/ewe) 1493 1520 2240 2271 
Corr. DPR-DPRnl 0.962 0.942 0.901 0.928 
Corr. NZMW-NZMWnl 0.988 0.979 0.886 0.886 
Rank corr. DPR-DPRnl 1 1 0.999 1 
Rank corr. NZMW-NZMWnl 0.984 0.975 0.862 0.862 

 

Pearson and Spearman correlations between DPR and DPRnl, and between NZMW and 
NZMWnl were very high (r>0.94; Table 1). However, these values are an incomplete view of 

ranking changes. The flat maximum value in the non-linear function reduced variance and skewed 

distribution of reproduction values (Figure 2a). For average rams, there is little change in value 

going from linear to non-linear economic value. However, as rams’ EBVNLB increases, there is 
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greater loss in index value (Figures 1b, 2b). Rams that were high-ranking with linear NZMW mainly 

due to extreme high EBVNLB dropped in rank. For the top 100 proven rams as ranked by linear 

NZMW, the correlations with non-linear values are weaker (Table 1). Effects on other index traits 

can be seen with means from the top 100 proven rams as ranked by NZMW or NZMWnl (Table 1). 

Top rams according to NZMWnl, had higher values for growth, adult weight and survival, compared 
to top rams according to the linear index (Table 1).   

 

 
Figure 2. (a) Distributions of linear DPR (dark grey) and nonlinear DPRnl (white) 

reproduction index values for proven rams group. (b) Relationship of individual proven rams’ 

total linear NZMW with NZMWnl that includes nonlinear NLB value. 

 

The results of this study show that there is a practical way to implement a non-linear function 

for NLB. The non-linear function tempers the risk of the more prolific genetics badly overshooting 
optimum NLB. Implementation of this non-linear index function is expected to reduce population-

wide selection response for NLB, but increase in response for growth traits and ewe weight. 
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SUMMARY 

In multi-tiered breeding schemes, the top tier is frequently maintained under different conditions 

to that of the commercial tier, which may lead to a genotype by environment interaction (GxE) that 

affects performance in target environments. Genomic selection might be useful for selection of 

candidates that perform well across environments in integrated breeding schemes. The results of this 

study demonstrate that there might be benefits from inclusion of phenotypic and genomic data from 

lower tiers into an integrated reference population, for situations when there is concern about GxE 

between the Nucleus tier and commercial populations. 

 

INTRODUCTION 

Integrated breeding schemes are frequently structured in multiple tiers. The nucleus tier pursues 

rapid rate of genetic gain and overall mean performance, and supplies grandparent stock to multiplier 

flocks or herds which provide the commercial tier with sound breeding animals as cheaply as 

possible (Bichard, 1977). Frequently, these tiers are maintained in different environmental 

conditions and for various reasons, it is common for the environment in the nucleus to be rather 

different from the conditions in which commercial animals are kept (James, 2009). 

Falconer (1952) considered the performance of improved genotypes might be different under a 

less favourable environment, leading to a genotype by environment interaction (GxE). To mitigate 

the potential detrimental effects of impaired environment and genetic merit, breeders should target 
selection of robust animals capable of performing well in challenging conditions. Integrated 

breeding schemes could be optimised to allow for the existence of GxE among tiers, consequently 

increasing productivity of the commercial livestock.  

DNA technologies, can contribute to better integration of multi-tier breeding schemes. A better 

estimation of GxE was observed with genomic selection (GS), when compared to conventional 

selection methods (Mulder, 2016; Silva et al. 2014). However, estimates of genomic breeding values 

based only in nucleus records might be sub-optimal predictors of direct response in the commercial 

environment. Genomic information and genomic relationships among individuals improve the 

accuracy of prediction of breeding values in an optimized reference population (Clark et al. 2012), 

and its design determines the selection response achieved in the target subpopulation. Integrated 

breeding schemes should source information from multiple tiers and environments (Nirea & 

Meuwissen, 2016).  
Our hypothesis is that phenotypes and genotypes recorded on specific multiplier and commercial 

individuals will increase genetic progress of integrated breeding schemes and minimize the 

potentially detrimental effects of GxE. The objective of this study was to compare selection 

strategies and their effectiveness under different levels of GxE, in Australian fine-wool commercial 

sheep operations that exploit multi-tier breeding structures. 

 

MATERIALS AND METHODS 

A selection index model was used to compare scenarios representing different genetic 

correlations between nucleus, multiplier and commercial environments and various amounts of 
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recording in the different levels. We compared selection differentials for rams and ewes from the 

different tiers and the percentage reduction in superiority with increased levels of GxE. 

Breeding scheme. The breeding scheme was based on an actual fine-wool commercial operation 

which maintains a multiplier flock that produces rams to mate commercial ewes, all in the same 

farm. The multiplier tier is composed of commercial ewes historically selected as better performers, 
based on a phenotypic index, and mated to elite outside nucleus rams by artificial insemination (AI). 

In this simulation, either pedigree or genomic selection were assumed in the multiplier tier.  

Selection index model. This study applied selection index theory to quantify responses to 

selection based on a pre-determined multiple-trait breeding objective. The definition of the 

aggregate breeding value of selection candidates, across tiers, was calculated as the sum of the 

products of economic weights (ewj) of the j traits composing the breeding objective and their 

respective breeding values (ebvj), computed by 𝐻 = ∑ (𝑒𝑤𝑗 ∙ 𝑒𝑏𝑣𝑗)
𝑛
1 , as described by Hazel et al. 

(1994). Response to selection was calculated for each of the component traits of the breeding 

objective, computed as the product of the response in index value and the respective regression 

coefficients of traits on the index, assuming information sources from appropriate selection 

candidates. Genetic parameters and trait economic weights required for the calculation of the 
regression coefficients were supplied by Sheep Genetics. Estimated breeding values were based on 

phenotypes recorded in the Nucleus or in the Multiplier/Commercial tiers, plus genomic predictions 

with estimates accounting for or not accounting for GxE.   

Selection intensities were determined for each pathway (Table 1), accounting for the dilution of 

intensities when selecting commercial and multiplier candidates due to having two-stage selection, 

and only a proportion of animals are recorded and/or genomically tested. We also account for 

differences in intensities when selecting nucleus rams for the multiplier, and multiplier rams used to 

follow up AI in the multiplier tier itself.  

Table 1. Selection intensity in two-stages in different categories and tiers. 
Born in Used at Sex Intensity 

Nucleus Nucleus Males 2.56 
Nucleus Multiplier Males 2.35 
Multiplier Multiplier Males 2.35 
Multiplier Commercial Males 0.80 
Multiplier Multiplier Females 1.09 

Genotype by environment interaction. We modelled GxE by defining a new set of breeding 

goal traits (indexed as j’) expressed in the multiplier and commercial tier environment, which are 
genetically different from but correlated with the equivalent traits expressed in the nucleus 

environment (j). The correlations (rGxE) represented the level of GxE, and ranged from 1.00 to 0. 50. 

The correlation for goal traits with other traits (i) was calculated as  𝑟𝑖,𝑗′ = 𝑟𝑗,𝑖 ∙ 𝑟𝐺𝑥𝐸  , where rj,i is the 

correlation between traits j and i within an environment. The calculations assumed equal phenotypic 

variances and heritability of traits expressed in the nucleus and in lower tiers. We also compared the 

potential effect of “unknown” GxE incidence by directly multiplying the direct response of each 

goal trait without GxE (i.e. rGXE=1), by the trait economic value and this product further multiplied 

by the respective correlation representing the levels of GxE. 

 

RESULTS AND DISCUSSION 
Selection differentials. As GxE increased, trait selection responses decreased. The superiority 

of nucleus candidates for goal traits was reduced most by the increasing levels of GxE, -$0.43 and -

$0.19 per 0.05 increase in GxE from the value of $10.59 and $4.53, for males and females 

respectively, in the absence of GxE (Figure 1a). Selection differentials were larger when GS was 
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used (Figure 1a), compared to pedigree selection (Figure 1b). This might be caused by the additional 

genomic information which makes GS more accurate. With genomic selection, the level of GxE had 

a small effect on selection differentials in multiplier tier males (Figure 2a) and females (-$0.04 and 

-$0.03 per 0.05 increase in GxE, respectively) and also in replacement commercial females (-$0.07). 

The loss of selection differential remained high however, with pedigree selection (Figure 2b). When 
GxE was present, but not accounted for in genetic evaluation and selection (i.e. GxE unknown), its 

detrimental effects were larger, -$0.48 per 0.05 increase in GxE for nucleus males. In this case 

(pedigree selection), selection differentials in all tiers were reduced by increased levels of GxE. 

(a)   (b)  

Figure 1- Superiority (in breeding objective terms) of nucleus born rams selected for use in 

the nucleus (Nuc) and multiplier (Mult) at different levels of known and unknown GxE, based 

on genomic (a) and pedigree selection (b). 

(a)  (b)   

Figure 2- Superiority of multiplier born rams used in the multiplier (Mult) and commercial 

tier (Comm) at different levels of known and unknown GxE, based on genomic (a) and 

pedigree selection (b). 

Reduction in selection differentials. The reduction in selection differentials when expressed as 

a percent reduction relative to the no GxE situation was linearly related to the increase in the value 

of rGxE (Table 2). Comparing across tiers the reduction was greatest for the nucleus, and was slightly 

bigger in pedigree selection when compared to GS, -5% versus -4% per 0.05 increase in GxE, 

respectively. Selection differentials with pedigree selection in the multiplier and commercial tiers 

were unaffected because information sources are recorded in the target environment. GS resulted in 

small reductions in selection differentials due to GxE in the nucleus. However, in the multiplier and 

commercial tiers the GxE reduces the value of genomic information relative to the performance 

records, which are measured in the target environment.  

 According to Nirea & Meuwissen (2016), a genetic correlation <1 between environments is the 
result of a combined action of multiple environment challenges. Estimating genomic breeding values 

from a reference population that includes records from multiple environments might be an 
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alternative way to address GxE in a breeding program, and this should be explored. The results of 

this study (Table 2) demonstrate that there would be more value from inclusion of phenotypic and 

genomic data from lower tiers into an integrated reference population as the genetic correlation 

between the Nucleus tier and commercial populations increases. In Australia, commercial farmers 

often source rams from nearby environments, similar to their own. While this should minimise 
problems of GxE, it limits the pool of selection candidates. Environment specific reference 

populations boosted in size and commercial relevance by training data, i.e. phenotypes and 

genotypes, from multiple tiers could allow more accurate and appropriate sourcing of high merit 

rams from other production regions and environments. In this case, genomic selection could be used 

to provide wider scope for identifying elite individuals from other regions and reduce the detrimental 

impacts of GxE on realised genetic progress.  

Table 2. Percent reduction in selection superiority for both rams and ewes across different 

tiers at different levels of known GxE, based on genomic (GS) and pedigree selection. 

GXE Level 
Nucleus   Multiplier   Commercial 

GS Pedigree   GS Pedigree   GS Pedigree 

1.00 - -  - -  - - 
0.90 -8.23 -10.05  -2.18 0.00  -2.18 0.00 
0.80 -16.95 -20.11  -4.12 0.00  -4.12 0.00 
0.70 -25.91 -29.89  -5.81 0.00  -5.81 0.00 
0.60 -35.35 -39.95  -7.26 0.00  -7.26 0.00 
0.50 -45.04 -50.00  -8.47 0.00  -8.47 0.00 
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SUMMARY 

Recent studies have shown that the bovine X chromosome contains more than a thousand genes, 

some of which may be economically important. However, since males are heterogametic for the X 

chromosome, it has, to date, largely been ignored for genomic prediction and its information content 

has not been fully explored. The genotyping quality of the X chromosome is the first question that 

must be addressed. In this study, we suggest a simple method to impute the X chromosome of the 

sire using a half-sib family in order to check genotyping accuracy. The results showed that the 

suggested method allows for a robust imputation of the X chromosome in ungenotyped sires and is 

useful for the routine quality control of the genomic data. 

INTRODUCTION 

Chromosome X contains more than a thousand genes and it is the second largest chromosome in 

the bovine genome (Su et al. 2014). In most genomic prediction applications, the X chromosome is 

ignored as it requires different algorithms and methods to become useful (Sargolzaei et al. 2014; Su 
et al. 2014). Recent studies have shown that there are some genes in the X chromosome that may be 

economically important (Richardson 2016).  The first step in genomic prediction is to evaluate the 

quality of genotyping. Therefore, it is important to check the genotyping quality of the X 

chromosome before any further analyses. Previous studies (Ferdosi et al. 2014a; Ferdosi et al. 

2014b) have shown that the sire imputation accuracy from half-sib family genotype data is very high 

and that the imputed sire can be used to measure genotyping quality. However, we require a different 

method of sire imputation for the X chromosome. 

The sex chromosomes in bovine males consist of an X and Y chromosome with a small region 

of homology at the telomere called the pseudo-autosomal region (Das et al. 2009). Thus, the sire X 

chromosome can be treated as a mostly haploid chromosome with a small diploid region. The 

haploid region should not have any heterozygosity and this fact can be used to identify the cut-off 

between the haploid and diploid regions. In addition, it can be used to identify the animals’ gender, 

i.e. the males should not have any heterozygosity in this region except for genotyping errors and is 

therefore another way of checking the quality of genotypes. Once the pseudo-autosomal region has 

been identified, the same method used to impute the autosomal regions of sires (Ferdosi et al. 2014a) 

can be used to impute their genotypes in the pseudo-autosomal region. In this study, we discuss a 
very simple method to impute the remaining haploid region and illustrate its use for evaluating the 

genotyping quality of the X chromosome. 

METHODS 

Genotype data. Female offspring receive the X chromosome from their sire and only half-sib 
families that included at least one female were used for the sire imputation. The dataset included 

8453 Angus (379 half-sib - HS), 4710 Brahman (323 HS), 53 Droughtmaster (9 HS), 1550 Hereford 

(37 HS), 527 Santa Gertrudis (131 HS), 1325 Wagyu (40HS) and 3411 Hanwoo. The Hanwoo half-

sibs were only males and not used for sire imputation. They were only used to identify genotyping 

errors (heterozygous SNPs) on the X chromosome. The number of female half-sibs in each family 
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was between 1 and 103. The genotyping density was varied (20k, 50k, 80k and 800k) but 150k SNP 

that covered the 20k, 50k and 80k panels was used as a consensus panel. 

 

Identification of the pseudo-autosomal region. 1218 male individuals with 800k markers were 

used to identify the pseudo-autosomal region. This was the only region in the X chromosome where, 
aside from genotyping errors, there can be heterozygous sites. Therefore, the region at the end of X 

chromosome with a clear heterozygous block was identified as the pseudo-autosomal region in the 

X chromosome. 
Sire imputation of the haploid and pseudo-autosomal regions. The haploid region of X 

chromosome was imputed by using the homozygous loci that were not in the pseudo-autosomal 

region in the female offspring. These homozygous loci can be used to infer the sire allele directly 

since it only had one X chromosome. This makes sire imputation very simple and errors in 

imputation were only due to genotyping errors. To resolve these genotyping inconsistencies, the 

rounded average of the homozygous regions in the female offspring were recorded as the sire’s 

allele; i.e. it was sufficient to simply identify the most common homozygous sites in the female 

offspring. This function is available in the new version of hsphase (Ferdosi et al. 2014b). A similar 

method to hsphase (Ferdosi et al. 2014b) but based on the log-likelihood was used to impute the 
pseudo-autosomal regions of the sires. Finally, the Sire imputation accuracy was calculated as the 

number of correctly imputed markers that must be common with genotyped X chromosome  divided 

by the total number of markers that were available for both imputed and real sire genotypes. 

 

RESULTS AND DISCUSSION 

The pseudo-autosomal region based on the appearance of heterozygous sites was located at the 

end of chromosome X around position 86.2 Mb in assembly Btau4.6.1. This position is in agreement 

with the region previously reported by (Das et al. 2009). When we aligned chromosome Y with 

chromosome X using BLAST, we failed to find the expected very large contiguous matching block 
between the two chromosomes. This could be due to the quality of the assembly of the X and Y 

chromosomes (Tellam et al. 2009). We noticed a lot of missing nucleotides in both of the 

chromosomes; however, the largest matching block (about 10 kb) on chromosome X was still found 

around the 86.3 MB region. 

Figure 1 shows the boxplot of proportion of heterozygous sites in the haploid region of X 

chromosome in males. The results showed that the majority of individuals had less than one percent 

genotyping errors.  

The sire imputation accuracy of the X chromosome (haploid region) for 6 cattle breeds is shown 

in figure 2. Generally, as the number of half-sibs in the families increased, the sire imputation 

accuracy increased but even small family sizes have high accuracy of imputation. The accuracy was 

not dependent on the SNP panel of the sire nor the breed. However, the number of SNPs that can be 

imputed varied according to breed and panel and the number of half-sibs in a family is more 

important (Figure 3). The 800k and 80k panels were suitable for genotyping the X chromosome in 

the Brahman and Santa Gertrudis breeds which have an indicine background (Figure 3). 

The sire imputation accuracy in the pseudo-autosomal region was 0.93±0.07. This accuracy was 

lower than for the autosomal chromosomes reported in (Ferdosi et al. 2016). In that report, sire 

imputation accuracy in the autosomal chromosomes was more than 94% for the half-sib families 

with more than 7 individuals. The small number of markers and mapping errors in the diploid region 

may be the reason for the lower accuracy of sire imputation. However, in the haploid region only 

genotyping errors can decrease the sire imputation accuracy as the order of markers is not relevant.  
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Figure 1. The proportion of number of heterozygous markers in the haploid region of the X 

chromosome in male animals 

 

 

Figure 2. Sire imputation accuracy for six breeds using different panels – haploid region (i: indicus, t: 
taurus)  
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Figure 3.  The proportion of SNP that can be imputed – haploid region (i: indicus, t: taurus)  

The simple method detailed in this work allows for robust imputation of the X chromosome in 

ungenotyped sires and is useful for routine checking of the quality of genotyping. We expect that 

future extensions to genomic prediction methodology will make better use of the information in the 

sex chromosomes and this work provides an easy framework for routine imputation of the X 

chromosome.    
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SUMMARY 

The power of true positive associations in GWAS for traits affected by many QTL is generally 
low. This and other unfavorable scenarios pose a problem for the detection of true QTLs, which may 

lead to false positive associations. The aim of this study was to evaluate if combining the results of 

different statistical methods may increase the power to detect QTL. We simulated a polygenic trait, 

with known QTL positions. GWAS was performed using the WssGBLUP and BayesC methods, in 

a total of 8 different analyses, varying the assumptions of the SNP effects and the phenotypic data 

used. The results showed that as the number of analyses that a window was detected as important 

increased, so did the probability of that window containing a true QTL. Windows identified in 7 or 

8 analyses were able to detect just some (60.5%) of the true QTL. Windows detected in at least 5 

analyses captured 96% of the true QTL, but included some false positives (10.8%). Further studies 

are recommended, simulating traits with different genetic architectures, under different population 

structures, to evaluate the reproducibility of the present results. 
 

INTRODUCTION 

QTL detection remains a challenge in animal breeding, especially for lowly heritable complex 

polygenic traits. Under this scenario, Genome Wide Association Studies (GWAS) may present low 

power or high number of false positives, depending on the significance threshold adopted. Many 

statistical methods to perform GWAS are available (Meuwissen et al. 2001; Habier et al. 2011; 

Wang et al. 2012, and others), however their efficiency will depend on several factors such as the 

genetic architecture of the trait and the modeling assumptions related to the markers effects. 

Furthermore, other factors such as the linkage disequilibrium and the amount of phenotypic and 

genotypic information available may also affect the ability of QTL detection (Melo et al. 2016).  

When a genome region is detected as important by many statistical methods, the evidence that 

this region harbours a true QTL is supposedly increased (Legarra et al. 2015). The aim of this study 
was to evaluate if the number of statistical methods for which a region is considered to be significant 

is associated with the power of QTL detection, for a simulated lowly heritable complex trait. 

 

MATERIAL AND METHODS 

Simulation. QMSim software (Sargolzae & Schenkel 2013) was used to simulate a trait with 

heritability and phenotypic variance equal to 0.14 and 1, respectively. A historical population, with 

constant size of 1,000 animals (500 males: 500 females), was simulated for 1,000 generations. The 

population size was then decreased until it reached 200 animals (100 females), over another 2,020 

historical generations, producing a bottleneck effect and, as a consequence, genetic drift and linkage 

disequilibrium. The 200 animals from the last generation of the historical population were selected 
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as the founders of an expansion population, simulated over 6 generations. In this expansion process, 

the number of females grew exponentially and each dam had five offspring in each generation, 

totaling 16,000 animals (8,000 females) at the end of the expansion process. A total of 240 males 

and 6,000 females from the last expansion population were randomly selected to be the founders of 

the selection population. The selection was performed over another 15 generations, using a 
replacement rate of 20% for males and females, based on estimated breeding values. Phenotypic 

information of the females (45,000) from all generations of the selection population and 2,000 
randomly selected genotypes from females of the last three generations were used to perform the 

GWAS. This small proportion of genotyped animals was chosen to mimic a common situation. The 

simulated genome had a length of 2,333 cM, 735,293 markers and 7,000 QTLs. The average number 

of markers and QTLs per chromosome was 16,782 and 158, respectively, randomly distributed over 

29 autosomes. It was assumed that QTLs explain 100 % of genetic variance. QTL allele effects were 

sampled from a gamma distribution with a shape parameter of 0.4, and the phenotypes were 

generated summing the effects of 1,000 randomly selected segregating QTLs to an error term 

sampled from a normal distribution with zero mean and variance of 0.86. Ten replicates of the 

simulation process were performed. More details about the simulation are available in Melo et al. 

(2016). 

 
Statistical methods. Two statistical methods were used to perform the GWAS, namely weighted 

single-step GBLUP (WssGBLUP; Wang et al. 2012) and BayesC (Habier et al. 2011). The model 

adopted for WssGBLUP was: y=1µ+Zaa+e, where y is the vector of phenotypes, µ is the overall 

mean, a is the vector of additive genetic effects, 1 is a vector of ones, Za is an incidence matrix 

relating the phenotypes to a, and e is the vector of residuals. The covariance between a and e was 

assumed to be zero and their variances were considered to be Hσa
2 and Iσe

2, respectively, where σa
2 

and σe
2 are the direct additive and residual variance, respectively, H is the matrix which combines 

pedigree and genomic information (Aguilar et al. 2010), and I is an identity matrix. The SNP effects 

(û) were calculated as in Stranden & Garrick (2009): û=DP’[PDP’]-1ag, where D is a diagonal 

matrix that contains the weights for the SNPs, P is a matrix relating genotypes of each locus (coded 

as 0, 1 or 2 according to the number of copies of allele B) and ag is a vector with the estimated 

breeding values of genotyped animals. D, â and û were iteratively recomputed over three iterations. 
In the first iteration (w1), the diagonal elements of D (di) were assumed to be 1 (i.e., the same weight 

for all markers). For the subsequent iterations (w2 and w3), di was calculated as: di=ûi2pi(1-pi), 

where ûi is the allele substitution effect of the ith marker, estimated from the previous iteration, and 

pi is the allele frequency of the second allele of the ith marker. The WssGBLUP was adopted using 

two sets of data, one considering all available phenotypic information (SI; n=45,000) and another 

considering phenotypes just from genotyped animals (SII; n=2,000). The three different weights for 

the SNPs (w1 to w3) and the two sets of data (SI and SII) resulted in six different solutions for the 

SNP effects obtained under the WssGBLUP method. BayesC was applied under the model: 

y=1µ+∑ g
i
bi

n
i=1 δi+e, where y, 1, µ and e are as previously described, gi is the vector with the 

genotype of the animals for the ith SNP, bi is the vector containing the allele substitution effect of 

the ith SNP and δi is an indicator variable (0, 1), with parameter π, where π is the fraction of SNPs 

not included in the model. Two π values were used, 0.99 or 0.999. The genotypes were coded as AA 

= 0, AB =1 and BB = 2. In summary, a total of 8 analyses were performed: WssGBLUP SI and SII 

(w1, w2 and w3), and BayesC (π=0.99 and π=0.999). The GWAS results were compared based on 

the proportion of variance explained by SNPs within consecutive 1Mb windows. For each analysis, 

the top 20 marker windows, which explained the greatest proportion of genetic variance, were 

identified and their locations were contrasted with the true QTL position. A true QTL was considered 

to be mapped when a top marker window was located no more than 1 Mb from a true QTL that 
explained at least 1% of the genetic additive variance. 
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RESULTS AND DISCUSSION 

The simulation process resulted on average in 16.7 (±2.8) QTLs explaining 1% or more of the 

genetic variance. Together, the true QTLs explained on average 29.7% (±4.9) of the genetic 

variance, with the most important QTL explaining on average 5.1% (±2.4). The different analyses 

presented poor ability to map the QTLs. Individually, they were able to identify between 5.4% 
(WssGBLUP; SII; w3) and 17.4% (WssGBLUP; SI; w2) of the true QTLs. The power of QTL 

mapping increased when a window was detected as significant by different analyses (Figure 1). The 

percentage of true associations increased along with the number of analyses, reaching a maximum 

of 100% (i.e. 0% of false positives) when a window was identified as important by 7 or 8 analyses. 

Although presenting just true associations, windows identified in 7 or 8 analyses were able to detect 

just part (60.5%) of the true QTL, since some QTL were not mapped by 7 or 8 analyses, however 

this percentage is still high compared with the worse scenario (1.7%) in which a window was 

detected just by 1 analysis. The maximum percentage of true QTLs identified was observed when a 

window was considered as important in 5 analyses, where 96% of the true QTL were identified. This 

scenario (5 analyses) presented, however, 10.8% of false positive associations (Figure 1).   

 

 
 

Figure 1. Percentage of true associations and of true QTL detected according to the number 

of analyses in which a marker window was identified as important 

 

Our results are in accordance with Legarra et al. (2015), who recommended using different 

methods to map QTL more efficiently, arguing that no method is markedly more powerful, being 

dependent on the genetic architecture of the trait. Van den Berg et al. (2013), assessed through 

simulation the power of BayesC and BayesCπ to detect QTL, and also observed poor ability to detect 

QTL for lowly heritable complex traits. Unfortunately, the authors did not test if the agreement 

between results of the different methods/analyses increased the power of QTL detection.  

Although our simulation study did not cover all factors affecting the QTL detection in real 

complex traits, the results provide evidence that the agreement among results from different 
statistical GWAS methods may be a feasible strategy to map QTL more precisely, especially for 

lowly heritable polygenic traits. Further studies may investigate the optimal number and 
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combination of statistical methods, under different scenarios of heritability, number of genotyped 

animals family structure, effective population size, genetic architecture and considering other 

definitions of true QTLs, which would result in improved power of QTL detection. 

In conclusion, our simulation approach demonstrated that agreement among GWAS results from 

different statistical methods can be used as a strategy to increase the power of QTL detection. This 
is a promising approach in the context that genomic selection can benefit from identification of true 

QTL (Pérez-Enciso et al. 2015). Our future proposition is to apply these methods to field data 

collected on beef cattle farms, targeting complex traits.   

 

REFERENCES 

Aguilar, I., Misztal, I., Johnson, D.L., Legarra, A., Tsuruta, S. and Lawlor, T.J. (2010)  J. Dairy Sci. 

93: 743. 

Habier D., Fernando R.L., Kizilkaya K., Garrick D.J. (2011) BMC Bioinformatics 12: 1. 

Legarra A., Croiseau P., Sanchez M.P., Teyssèdre S., Sallé G., Allais S., Fritz S., Moreno C.R., 

Ricard A., Elsen J-M. (2015) Genet Sel Evol. 47: 1. 

Meuwissen T.H.E., Hayes B.J., Goddard M.E. (2001) Genetics 157: 1819. 

Melo T.P., Takada L., Baldi F., Oliveira H.N., Dias M.M., Neves H.H.R., Schenkel F.S., 
Albuquerque L.G., Carvalheiro R. (2016) BMC Genetics 17: 1. 

Pérez-Enciso M., Rincón J.C., Legarra A. (2015) Genet Sel Evol. 47: 43. 

Sargolzaei, M. and Schenkel, F.S. (2013) QMSim: User’s Guide. p.77. 

Stranden I., Garrick D.J. (2009) J Dairy Sci. 92: 2971. 

Van den Berg I., Fritz S., Boichard D. (2013) Genet Sel Evol. 45: 1. 

Wang H., Misztal I., Aguilar I., Legarra A., Muir W.M. (2012) Genet Res. 94: 73. 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:429-432 

429 
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SUMMARY 

Computational requirements for single step genomic evaluation fitting a hybrid between 

breeding value and marker effects models are examined for a simulated example.  It is demonstrated 

that such a model can accommodate large numbers of genotyped animals – readily allowing 

exploitation of large in-core memory and parallel processing capabilities available with modern 

hardware – and that a principal component parameterization for multivariate analyses of numerous 

traits is advantageous. 

 

INTRODUCTION 
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SUMMARY 

Both production and quality play important roles in determining the wool income received by 

Australian sheep producers. Enabling accurate and early prediction of wool production and quality 

for individual and groups of sheep can provide useful information assisting on-farm management 

decision-making. Robustness and high performance of modern prediction methods, namely Machine 

Learning (ML) algorithms, make them suitable for this purpose. In this research, flock specific 

environmental data and phenotypic information of yearling lambs were combined to identify the 

most effective algorithm to predict adult Greasy Fleece weight (aGFW), adult Clean fleece Weight 

(aCFW), and adult Fibre Diameter (aFD). Those algorithms were evaluated in terms of prediction 

error and correlation between predicted and actual phenotype in a test dataset.  

Multiple linear regression (MLR), Multilayer perceptron (MLP), Model Tree (MT) and Bagging 

(BG) were used to carry out these predictions and their performance were compared. The MLP 
method had the poorest performance in all three traits versus, MLR, MT, and BG had very similar 

performance with BG being superior in all three traits and prediction criteria, with correlation 

coefficients of 0.93, 0.90, 0.95 and Relative Absolute Error (RAE) of 0.34, 0.41, 0.31 for predicting 

aGFW, aCFW, aFD respectively.  

 
INTRODUCTION 

Phenotypic prediction of wool production of adult sheep based on their early records as yearlings 

has great management value for sheep producers, allowing them to base their culling decision on an 

accurate future prediction of wool production for each individual sheep. It is clear that beside 

genetics, many environmental factors and management practices contribute directly or indirectly in 

quality and quantity of wool, and predictions need to account for these effects.   

Various authors have identified some of the more important factors that affect wool production.  For 

example, Masters et al., (1998) demonstrated that initial liveweight, liveweight change, and 

supplement choice all have effect on wool growth and staple strength in weaner sheep. Ferguson et 

al., (2011) reported that liveweight at joining, and liveweight change during pregnancy and lactation 

acted to regulate wool production of Merino ewes. They used linear prediction models based on a 

REML approach for predicting CFW, FD, and SS from their data.  The authors did not test the model 

on independent test data thus preventing a generalised understanding. To our knowledge prediction 
models for wool production of adult sheep based on their yearling records that combine genetic, 

environment and management effects do not exist. 

The objective of this study was to develop and compare the performance of different ML 

algorithms to predict adult wool production using weather, pasture, animal health and various 

measurements of related phenotypes, and some related traits. Finally, the best performing model 

would be selected for further fine tuning and development in the form of a decision support system 

for industry. 
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MATERIALS AND METHODS 
Data. Data collected over a period of more than 6 years as part of the Sheep CRC Information 

Nucleus Flocks were used in this study (van der Werf et al., 2010). After editing, the data set 
contained 7,501 records of animals that had yearling and at least one measurement of their adult 

GFW; 5,962 record for aCFW and 5,917 record for aFD. Data that were included as phenotypic 

measurements included, conformation characteristics of sheep that are related to wool production 

such as Body Wrinkle, health related features such as worm egg count (WEC), and pregnancy status 

of sheep at yearling. Weather information from each site where the flocks were managed was 

obtained from the Bureau of Meteorology (BOM). Addition of flock specific in the variable set can 

be considered as fixed effects in linear mixed model to capture the whole management and perhaps 

micro-climate effect that might exist in the flock. Also pasture data included predictions of pasture 

dry weight and digestibility of herbage mass obtained from a simulation model developed by 

Johnson et al. (2003) were used.  

Machine Learning Algorithms. In order to find the best prediction model for practical use, the 
standard approach is to try a short list of appropriate predictive methods on the data of interest and 

then pick the best performing method and fine-tune it for use as the predictor tool. In this paper we 

are comparing a tree based method (MT), a gradient based method (MLP) and an ensemble method 

(BG) and compare them with the most common statistical method of prediction, Multiple Linear 

Regression.  

  
a) Multilayer Perceptron: is a feedforward artificial neural network that takes a vector of 

real valued input and calculates a linear combination of these inputs into a set of appropriate 

outputs. It is well-suited for cases in which the instance space is noisy, complex and 
intercorrelated (Mitchell, 1997).  

  

b) Model Tree: is a type of decision tree developed for numeric prediction. A process similar 

to decision trees divide and conquer approach is used to partition the multidimensional 

prediction space of the problem and exploit the partitions (Quinlan, 1992). Values for test 

instances will be predicted by a linear model stored in each leaf. The MT has been used in 

prediction of retention pay-off in dairy cattle (Shahinfar et al., 2014). MT often provides 

accurate and transparent prediction of complex systems with nonlinear and intercorrelated 

variables. 

 

c) Bagging: which stands for bootstrap aggregation, (BG), is an ensemble method in which 

multiple versions of a predictor will be generated on bootstrap samples of training data to 
finally drive an aggregated predictor. When predicting numeric values, final prediction is 

an average over predicted values of all models (Breiman, 1994, and Breiman, 1996). In this 

study we used Bagging of MT. 

 

Variable Selection Method. In Machine learning practices, it is tempting to include as many 

variables as possible to the model. Although in theory, having more features should increase the 

discriminative power of any ML algorithm, nevertheless, in practice often adding irrelevant features 

can distract the learning algorithm and defect the prediction performance as well as increase the time 

needed for learning and prediction phase. Full model in this research were consist of 190, 189, and 

192 variable for predicting aGFW, aCFW, and aFD respectively.  

Greedy hill climbing search in forward manner was used to select a small effective subset of 
attributes for each trait of interest. Then the same training process was carried out with selected 

subset of attributes and results were compared (Table 1). The reduced models were as below: 
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aGFW= Sex + yYLD + yGFW + yBDWR + ytMin_6 + yDryWtAv_9 

aCFW = Sex + yCFW + yGFW + yBDWR + yPregScan + yrainAv_3 + ytMin_6 + yDryWtAv_12 

aFD = Sex + SireBreed + yOFDA_SpinFine + yOFDA_FDSD + yOFDA_FD + AgeDiff + yFACE 

+ yPregScan + yCS  + yDryWtAv3 + yDigA8 
 

where “a” in prefix indicates adult time and, “y” prefix indicates yearling time. BDWR = Body 

Wrinkle score. tMin_6 = average of minimum temperature in the 6 months prior to first shearing. 

DryWtAv_9= Dry weight average per hectare in the 9 months prior to first shearing. rainAv_3= 

Average of Rain fall in the 3 months prior to first shearing. DryWtAv_12= Dry weight average per 

hectare in the 12 months prior to first shearing. AgeDiff = number of days between first and second 

shearing. Face= Face Cover Score. CS= Body Condition Score. DryWtAv3 = Dry weight average 

per hectare in next 3 month after first shearing.  DigAv8= Average of Digestibility of pasture in the 

8th month after first shearing. 

 

Model Evaluation. To evaluate each Model’s performance in 10-fold cross validation framework, 

three accuracy measurements were considered, Correlation Coefficient between actual and predicted 
value, Root mean Squared Error (RMSE) and Relative Absolute Error (RAE). Correlation and 

RMSE are very well known and standard measurements for any prediction method. RAE was used 

in this research for two main reasons. First, it measures absolute error, which is not affected by 

outliers. Second, it considers the relative magnitude of the error compared with the predicted value.  

𝑅𝐴𝐸 =  ∑
| 𝑝𝑖 − 𝑎𝑖|

| 𝑎𝑖 −  𝑎̅ |

𝑛

𝑖=1

 

 

Where 𝑝𝑖 is predicted value; 𝑎𝑖 is actual value; and 𝑎̅ is the prediction by an arbitrary predictor, in 

this case the average of actual values (Witten and Frank, 2005). 

 

RESULTS AND DISCUSSION 

MT and BG always had the best performance in both cases of full (FM) and reduced model (RM) 

in all performance measurement criteria (Table 1). The superior accuracy of BG is due to ensemble 

power in which several predictor models will be aggregated to generate a high performance 
predictor. The superiority of BG over MT was not statistically significant and one could choose MT 

over BG for practical purposes, of which three are proposed herein. Firstly, the running time on MT 

is much less demanding than BG. Secondly, despite the black box nature of BG being ambiguous 

and hard to explain for users, MT is very transparent and intuitive. Thirdly, as a practical rule of 

thumb in ML, once a single model shows a high prediction performance, ensemble methods will not 

add much of accuracy. Surprisingly MLP had the poorest performance among all four methods. 

Perhaps in our case MLP needed much more investigation and fine tunning to deliver a reasonable 

performance. 

In order to assess accuracy and generality of  the machine learning of choice, a user should not 

rely on a simple comparison between two single run or even two 10-fold crossvalidation run. The 

problem would arise in cases that some algorithems have very close performance and some have 
certain advantages on others in practice. Repeated 10-fold cross validations were performed on the 

same partition of data for all four algorithems in use, and Tukey multiple comparison of means were 

performed on the mean of accuracy criteria. The results is shown in Table 1 using alphabedical 

superscripts. As multiple means comparison indicated, in most cases there was no significant 

difference between BG and MT while MLR and MLP were often associated with poorer 
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performance in comparison. As a conclusion our method of choice was MT for early prediction of 

adult wool traits. 

 

Table 1. Results of 10-fold cross validation for full and reduced models for aGFW, aCFW 

and aFD with multiple mean comparisons indicated in superscripts. 

  Correlation RMSE RAE 

Trait Method FM* RM* FM RM FM RM 

aGFW* 

MLRB** 0.91b 0.81b 0.73b 1.03b 0.38b 0.54b 

MLPC 0.87c 0.81b 1.03c 1.21c 0.58c 0.68c 

MTA 0.93a 0.92a 0.66a 0.70a 0.35a 0.37a 

BGA 0.93a 0.92a 0.64a 0.69a 0.34a 0.36a 

aCFW* 

MLRBC 0.88c 0.78c 0.59b 0.78c 0.46b 0.60b 

MLPCD 0.83d 0.78c 0.81c 0.90d 0.65c 0.72c 

MTAB 0.89b 0.87b 0.56a 0.61b 0.43a 0.46a 

BGA 0.90a 0.89a 0.53a 0.57a 0.41a 0.44a 

aFD* 

MLRB 0.93b 0.91c 1.31b 1.55b 0.32a 0.39b 

MLPC 0.88c 0.88d 2.00c 2.06c 0.54b 0.56c 

MTA 0.94a 0.93b 1.26ab 1.36a 0.31a 0.33a 

BGA 0.95a 0.94a 1.23a 1.29a 0.31a 0.32a 
aGFW= Adult Greasy Fleece weight, aCFW= Adult Clean Fleece Weight, aDF= adult Fibre Diameter, *FM= Full 

Model, RM= Reduced Model. Correlation= correlation between actual and predicted value in test set.  

** Alphabedic superscript in method column shows overall method’s mean comparison.  
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SUMMARY 

The selection of small numbers of SNPs to analyse population features is an important task in 

the livestock industry. Populations differ in their genetic architecture, which often requires the 

selection of population specific SNPs. Different tasks, such as breed proportion prediction or 

parentage testing, also require specific panels. We tested which selection methods are best for 

breed proportion estimation and parentage testing in a crossbred dairy population from East 
Africa. We selected SNPs from a 735k SNP panel (Illumina) based on several methods: a) high 

minor allele frequencies; b) high allele frequency differences between ancestral populations; c) at 

random; d) with a differential evolution algorithm. Estimates of breed proportions in the subsets 

were tested against true breed proportions based on all 770k SNP obtained from ADMIXTURE. 

Parentage assignments was based on opposing homozygotes. Panels selected for largest allele 

frequency differences in ancestral populations gave best results for breed proportion predictions 

and panels selected for highest minor allele frequency gave best parentage resolution. 

 

INTRODUCTION 

The selection of small numbers of SNPs to carry out a variety of genomic test is at the 

forefront of the livestock industry. Challenges for small SNP panels are the accurate prediction of 

breed proportions and the assignment of parentages. Knowledge about breed proportions is 
important to the livestock sector for quality trait marks (e.g. Wagyu) but also for breeding 

decisions, especially in crossbred population. Whilst pure breeds such as Holstein, Jersey, or 

Wagyu are mostly used in industrialised settings, crossbreds find their application in developing 

countries where one animal must fulfil multiple purposes (i.e. milk and meat). To improve 

crossbreds, their breed proportion must be determined to choose the best breed or animal for 

mating. Similarly, assigning parentages is important in the livestock industry, as the pedigree 

determines factors such as inbreeding, breeding value estimation, or a tracking of agricultural 

goods. Again, in industrialized settings, record keeping of pedigrees is common practice whilst in 

developing countries accurate pedigrees are often missing. 

Both breed proportion prediction and parentage assignment can be carried out on the basis of 

genomic information. In theory, however, to accurately predict breed proportions in a crossbred 
animal, a prior knowledge based on trading history and breeding preferences is required to 

determine the most likely ancestral breeds. The genomic information of these ancestral breeds is 

then traced within the crossbred animals. To distinguish the different genomic footprints of the 

ancestral breeds, it is favourable if the ancestral breeds are genomically different from each other. 

This should lead to a large allele frequency range of selected markers in the crossbred population. 

For parentage assignment, most tests rely on the likelihood that a parent-offspring pair shows 

the same genotype. Simpler tests only consider homozygous genotypes, especially if only one 

parent is known. Opposing homozygotes describe the occurrence of a parent displaying one 

homozygous genotype whilst the offspring displays the other homozygous genotype (Hayes 2011). 

The more opposing homozygotes are found between two animals, the less likely it is that they are 
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a parent-offspring pair. The highest likelihood, according to Hardy-Weinberg, to observe opposing 

homozygotes in a population is given for markers with high minor allele frequency. Thus, both 

breed proportion prediction and parentage assignment depend on different qualities of SNPs. 

In this study, we used different selection methods to choose small panels of SNPs (100 to 

1500 SNPs) from a 735k panel to determine breed proportions and parentages in a crossbred dairy 
population of East Africa. Based on the crossbreeding history in Kenya and Uganda (Rege and 

Tawan 1999; Hanotte et al. 2000), an African Bos taurus and a Bos indicus reference breed as well 

as 5 European dairy breeds were chosen to determine breed proportions. 

 

MATERIALS AND METHODS 

A total of 1,933 crossbred dairy cows from Kenya and Uganda and local indigenous breeds of 

Ankole (n=43), Nganda (n=17), and Small East African Zebu (Zebu; n=58) were sampled (Dairy 

Genetics East Africa, DGEA1, project). Additionally, genotypic datasets for N’Dama (as the 

reference African Bos taurus breed; n=20), Nelore (as the reference Bos indicus breed; n=20), 

Guernsey (n=20), Holstein (n=20), and Jersey (n=20) were sourced from the International Bovine 

HapMap consortium. Further, British Friesian (n=25) from the SRUC in Scotland and Canadian 

Ayrshire (n=20) from the Canadian Dairy Network (CDN) were used as reference breeds. 
All animals were genotyped with the 770k BovineHD Beadchip array (Illumina Inc., San 

Diego, CA, USA). Genotypes were filtered using SNPQC (Gondro et al. 2014) with a sample-wise 

call rate of 90%; a median GC score <0.6; and a GC score<0.6 in at least 10% of the samples. 

Only markers contained on the 29 autosomal chromosomes were included in the analysis. The 

cleaned population datasets were merged and included 735,293 SNPs. Markers that were excluded 

due to quality control criteria in one breed but not in another were set to NA in the breed for which 

they were excluded. 

True breed proportions of the crossbreds were estimated using the full quality controlled data 

in the ADMIXTURE 1.23 program (Alexander et al. 2009). The analysis was supervised with 

N’Dama, Nelore, Ayrshire, Friesians, Guernseys, Holstein, and Jerseys as assumed ancestral 

populations. 
The pedigree of the crossbreds was reconstructed based on presence or absence of opposing 

homozygotes (Hayes 2011) and contained 171 cows with 189 offspring, of which 15 cows had two 

and one cow had three offspring. Parentage testing was based on opposing homozygotes and panel 

resolution determined based on the separation value (Strucken et al. 2014). 

Subsets of SNPs ranging from 100 to 1,500 markers were selected based on a) highest minor 

allele frequency in the crossbreds, b) absolute allele frequency difference between the ancestral 

breeds (European dairy breeds vs. a combination of Nelore and N’Dama), at c) random (results 

were averaged across 10 random samples), and d) a differential evolution algorithm (Gondro et al. 

2013, Esquivelzeta et al. 2015). Accuracies of dairy proportion prediction were assessed with the 

coefficient of determination (r2) between the true proportions and the estimated proportions from 

the subsets. Parentage assignment was assessed with the separation value which is based on 

opposing homozygotes (Strucken et al. 2014, 2016). 
 

RESULTS AND DISCUSSION 

Allele frequencies showed relatively large interquartile ranges for all selection methods (0.35-

0.65) apart for highest MAF (Figure 1). Allele frequencies of SNP subsets were assumed to play a 

major role for their performance in breed proportion prediction and parentage assignment. Markers 

with largest allele frequency differences between ancestral breeds should be able to distinguish 

breed proportions in crossbred animals. Therefore, allele frequencies were expected to show a 

larger variation in the crossbreds. Markers with a high minor allele frequency, i.e. both alleles 

occur equally often, have the highest probability to show opposing homozygotes between two 
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unrelated individuals, therefore should work best for parentage assignment. 

 
Individual breed proportion estimates of the ancestral breeds proved to be highly variable 

depending on the number of assumed ancestral breeds. Therefore, we used the total proportion of 

European dairy breeds as a more reliable contrast to the African N’Dama and indicine Nelore. 

Dairy breed proportions of the crossbred animals were on average 0.7 (SD 0.21). 

The various panels predicted total dairy breed proportions with an r2 of 0.694-0.950 (SE 

0.005-0.013) for the smallest subsets of 100 markers (Figure 2a). The best results for all panel 

sizes was achieved with SNPs selected for largest absolute allele frequency difference between the 

ancestral breeds. 

Lowest numbers of opposing homozygotes were found for panels selected for high minor 

allele frequency (Figure 2b), thus should perform best for parentage assignments. With 100 
markers, however, none of the selection methods resulted in a panel that was able to assign all 

parentages correctly, as this requires a separation value >0. 

All panels that were selected based on the Kenyan and Ugandan crossbred animals were 

validated in independent crossbred populations of Ethiopia and Tanzania (N=545, N=462). The 

Figure 1. Allele frequencies in 

crossbred animals for 4 different 

selection methods. 
MAF: Minor Allele Frequency 

DE: Differential Evolution Algorithm 
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selection methods rank similarly in the validation populations with the panels selected for largest 

allele frequency differences between Nelore/N’Dama and the EU dairy breeds performing best for 

breed proportion prediction and the panels selected for highest minor allele frequency in the 

Kenyan and Ugandan crossbreds performing best for parentage assignment. 

 

 
Figure 2.a) Accuracy (r2) of dairy proportion prediction and b) parentage resolution 

(separation value) of SNP subsets from 4 different selection methods. 
MAF: Minor Allele Frequency; NelEU: Nelore vs EU; NDEU: N’Dama vs. EU; NelNdEU: combined Nelore 
and N’Dama vs EU; DE: Differential Evolution Algorithm 

 

A combination of panels performing best for breed proportion prediction and parentage 

assignment performed poorer than the individual panels with same number of SNPs. Further, it 

showed that breed proportion prediction mainly depends on allele frequencies, i.e. the difference 
between allele frequencies in ancestral breeds, and the ability to assign parentages is mainly 

limited by the number of markers (Strucken et al. 2016). 
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SUMMARY 

Breeding for shrimp lines that are resilient to sudden environmental stressors requires accurate 

definition and measurement of stress traits, along with the additive genetic control of the trait. In a 

breeding program for Penaeus monodon, families that exhibit increased tolerance to acute salinity 

and ammonia changes are targets for selection; however, there is currently no information on how 
to best challenge shrimp to induce differential survival and measurement of environmental stress 

tolerance. This study developed challenge testing methodologies for acute salinity and ammonia 

tolerance in postlarval P. monodon. Results showed differential survival among postlarvae at a range 

of dose levels. By applying the stress methods developed in a commercial scenario to differentiate 

between individual families, rankings and selection of more resilient lines could be incorporated in 

selective breeding programs. Further, the potential to apply these measures as a stress resistance 

marker in a commercial scenario will be evaluated following the determination of trait heritability 

and by correlating larval stress performance rankings with grow-out performance.  

 

INTRODUCTION 

Domestication and selective breeding programs have led to significant production gains in 
shrimp farming globally. Whilst selection programs have focused on growth and disease as primary 

traits to improve, cultured shrimp are also exposed to a range of environmental stressors throughout 

their production cycle that can affect productivity and survival, either though inducing mortality 

events, or by decreased growth. Therefore, the ability to identify family lines and select for increased 

tolerance to sudden environmental stress events may be a desirable trait for future breeding 

programs. Currently there is no data on how best to conduct challenge tests for environmental stress 

tolerance in shrimp and whether such traits exhibit significant additive genetic variance (i.e. is 

heritable). This study focused on developing methods of testing the resilience of postlarvae (PL) to 

acute salinity and ammonia stress in a way that can be quickly and easily applied in a commercial 

hatchery prior to stocking into ponds. Following the challenge of sufficient numbers of families, the 

genetic and genomic basis of this resilience could be determined and may allow heritability to be 

determined and a genetic marker for stress tolerance to be developed and incorporated into selective 
breeding programs. 

 

MATERIALS AND METHODS 

Penaeus monodon broodstock were sourced from Northern Territory coastal waters and progeny 

spawned in a commercial hatchery at Flying Fish Point, Queensland. Broodstock maturation and 

spawning followed routine commercial procedures, with multiple females spawned in communal 

spawning tanks and the progeny of multiple families reared in communal greenwater rearing tanks. 

At PL stage 15, 10,000 PL were transported via air freight to Bribie Island Research Centre (BIRC), 

Woorim, Queensland for experimental testing. At BIRC, PL were stocked at a density of 2500 PL 
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in 5 tonne fibreglass tanks, held indoors with a 12 h day/night photoperiod, receiving 4L/m-1 of 

filtered 29 ±0.5°C seawater and fed on a diet of commercial flake and pellet.  

A range of salinity and ammonia dose rates were tested at a range of PL ages from 15 to 42 

(Table 1). Salinity doses were achieved by mixing required volumes of freshwater with undiluted 

seawater, termed 100% seawater. A calibrated YSI probe was used to ensure 100% seawater salinity 
levels were consistent over time (38±0.2 ppt). The required volume of 30% ammonia solution AR, 

NH4OH (Chem-Supply) was added to the treatments to achieve the required dose, which was also 

confirmed with a titration kit (API).  

 

Table 1. Salinity and ammonia treatment dose levels at each PL age. 

PL age Salinity rate 
(% of raw seawater) 

 PL age Ammonia rate (mg-1) 

15 0, 5, 10, 15, 20, 100  15 11; 21; 53; 214 
25 0, 5, 10, 15, 100  22 32; 43; 53; 64 
28 0, 5, 10, 15, 100  27 21; 27; 32; 43; 53 
32 0, 5, 10, 15, 100  28 16; 21; 27 
   34 11; 16; 21; 27; 32 

 

Each treatment was performed in 9 L containers containing 2 L of water. The water temperature 
of both rearing tanks and experimental containers was 29 ±0.5°C. Treatment container temperature 

was maintained by placing the containers in a temperature controlled water bath. Treatment salinity 

or ammonia water parameters (Table 1) were set up prior to commencement of PL stress treatment 

in batches that were then distributed to each 2 L replicate to ensure consistency among replicates.  

Approximately 30 ±10 PL were added to each control and treatment container without prior 

counting, to reduce handling stress. The total number of animals per treatment was calculated at the 

subsequent hourly time points when data was collected on the number of live and dead animals. The 

zero time post treatment was as the animals entered the water, any animals identified as dead in the 

first 30 s were considered dead prior to entering the experiment, i.e. dead in the rearing tanks, and 

were removed from the container and excluded from any analyses. An assessment of whether 

animals were alive or dead was made at 30 min intervals for the first 2 h of treatment then at hour 

intervals for the remainder of the 5 h experiment. Motile versus non-motile animals were separated 
by gently swirling the water; motile, live animals would swim and non-motile animals would settle 

in the centre of the container. The mortality of non-motile animals was then confirmed by gently 

disturbing them with forceps, if no movement was observed they were considered dead and were 

subsequently counted and removed from the container. The three control treatments were treated in 

the same manner with the same level of physical disturbance.  

The length of dead PL were measured on 1 mm grid paper for each time point and then the 

survivors were measured at the end of the experiment. 

 

RESULTS AND DISCUSSION 

Suitable parameters for stress testing would be those that showed differential survival of 

postlarvae (PL), with the ultimate objective of differentiating families that are more or less tolerant 
to environmental stress. For the practical application of this test in a commercial environment, the 

ideal mortality curve would have a rate near 50% at 3 h, and a flattening out of mortality beyond. 

For example the salinity dose of 10% and 15% salinity at PL 32 (Figure 1A), was considered an 

optimal level (Table 2). While an ammonia rate between 21mg-1 and 27 mg-1 was recommended at 

PL 34 (Figure 1B & Table 2). While the range of dose rates and ages have not previously been 

tested, a dose rate of 20mg-1 on PL5 P. monodon has reportedly resulted in 53-55% mortality after 

72 h (Pan et al. 2003).  
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The results of this study identified initial ranges that achieved the objective of determining 

suitable stress testing parameters with both salinity stress and ammonia stress for various PL ages 

(Table 2).   

 

Table 2. Salinity and ammonia stress mortality at 3 h and recommendations on optimal 

parameters  

PL 
age 

Salinity 
dose level 

(%seawater) 

Mortality 
(%) at 3 

h 

Optimal 
parameter 

recommendation 

 PL 
age 

Ammonia 
dose level 

(mg-1) 

Mortality 
(%) at 3 

h 

Optimal 
parameter 

recommendation 

15 0 
5 
10 

15 
20 

100 
100 
100 

100 
84 

>20%  15 11 
21 
53 

214 
 

2 
3 

100 

100 

>21<53 

25 0 
5 
10 
15 

100 
98 
90 
75 

≥15%  22 32 
43 
53 
64 
 

49 
94 
100 
100 

<32 
 

28 5 

10 
15 

94 

62 
39 

10% or 15%  27 21 

27 
32 
43 
53 
 

43 

96 
100 
99 
100 

21 

32 5 
10 
15 

20 

94 
66 
53 

20 

10% or 15%  28 16 
21 
27 

1 
82 
97 

16>21 

 
45 

 
15 
20 

 
4 
0 

 

  34 11 
16 
21 
27 
32 

0 
0 
19 
85 
95 

21>27 

 
T-tests showed a significant difference in mortality between all salinity dose levels at 3 h post-

treatment (P<0.05), except for between 10% and 15% salinity dose levels (P>0.05). Significant 

differences in mortality was also observed between all ammonia dose levels at 3 h (P<0.05), except 

between 32 mg-1 and 16 mg-1 dose levels (P>0.05). This study determined that PL were more tolerant 

to lower salinity levels at later ages (Figure 2). T-tests revealed significant differences (P<0.005) 

between all ages at the 3 h time point, with the exception of PL 25 that did not differ significantly 

between PL 15 or PL 32 (P>0.5). At PL 15 a salinity ratio of 20% seawater: 80% freshwater resulted 

in 84% mortality at 3 h post-treatment, while at PL 32 the same salinity resulted in just 20% mortality 

at 3 h (Figure 3).  

Previous studies have found that larger postlarval shrimp have a greater tolerance to salinity 

stress, often linked with the development of gills (Chong-Roles et al. 2014); however, the current 
study found that mortality was strongly linked to age rather than size (Figures 3 & 4). 

This study found that there was no significant effect between PL size and mortality time for 

salinity or ammonia (ANOVA P>0.05); this was only tested at PL 25. The lack of relationship 

between mortality and size indicated that PL mortality was not simply removing fast or slow 

growing PL. Furthermore, environmental rearing effects among the PL were minimised as the batch 
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of PL tested underwent communal spawning and rearing where they were subjected to the same 

environmental conditions. Therefore, this study supports the hypothesis that there may be a 

significant genetic effect on resilience to environmental stress and subsequently further research 

should be directed into the genetic, genomic or physiological influences on resilience.  

The genetic basis for this resilience as well as heritably may be elucidated in future studies by 
applying the methods developed in this study to discriminate between resistant and susceptible 

families. Genomic markers may also be developed that could then be utilised in a selective breeding 

program to establish more resilient lines, thereby leading to improved survival and production yields 

in shrimp farming.  

Figure 1. Example of Penaeus monodon mortality curves for salinity (A) and ammonia (B) 

challenge at postlarval ages PL 32 (A) PL 34 (B) (SEM bars).  

 
Figure 2. Effect of postlarval age on survival to 15% salinity for Penaeus monodon (SEM 

bars).  

 
Figure 3. Length of dead postlarve following 16 mg-1 of ammonia at PL 25 (SEM bars). 
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SUMMARY 

Commercial pearl production involves two oysters, the seeded individual (host), and a sacrificed 

oyster (donor) from which a piece of tissue is utilised during the seeding process. During commercial 
seeding, it is often difficult to keep track of individual pairing information of host and donor oysters. 

Here we describe a method for reconstructing donor genotypes from host genotypes and allele 

frequencies generated from chimeric pearl sac tissue (a mixture of host and donor tissues) at pearl 

harvest. Using simulation of expected genotype frequencies and genotypes from true samples, we 

demonstrate that donor genotypes can be constructed with high accuracy. Best results were observed 

when the error rate of allele frequencies is low, SNPs have a high minor allelic frequency, and when 

the proportion of the donor tissue in the pearl sac tissue is greater than 20 percent. 

 

INTRODUCTION 

Commercial pearl production involves two oysters, the seeded individual (host), and a sacrificed 

oyster (donor) which produces a piece of tissue (also termed the ‘saibo’ tissue). This saibo tissue is 

implanted into the host during the seeding process (Figure 1). Both donor and host oyster tissues are 
known to be actively expressed during the production of a pearl (Arnaud-Haond et al., 2007), and 

the quality of pearls produced are influenced by the genomes of both the host and donor oysters 

(Jerry et al., 2012), (Tayale et al., 2012). Hence, for selective breeding and dissecting the 

contribution of host and donor oysters, and their interaction on various pearl quality traits, the 

identification and recording of both animals is critical.  In many commercial pearling farms, the 

tracking of donor oysters is not maintained routinely due to additional management complexity and 

expense (Jerry et al., 2012) (Jones et al., 2014). However, the identification and validation of donor 

oysters during pearl harvest at the end of a four year pearl production cycle is integral for conducting 

genetic studies and making breeding decisions. Under the assumption of the donor genome being 

present in the pearl sac tissue at harvest, it should be possible to differentiate reciprocal host and 

donor genomes (and reconstruct genotypes) by using either the known host or donor genotype and 
pearl-sac allele frequencies.  

Here we present a method for reconstructing donor genotypes from host genotypes and allele 

frequencies from pearl sac tissue (a mixture of host and donor tissues). Using simulations, we 

demonstrate the effect of genotyping error and variable proportions of host and donor tissue 

observed within pearl sac samples on the accuracy of reconstructing unknown donor genotypes.  
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Figure 1. Commercial pearl production via seeding. 

 

MATERIAL AND METHODS 

Method of reconstruction of donor genotypes from allele frequency of pearl sac tissue and 

genotype of host. Let H be a vector of genotypes of n SNPs from a host coded as 0 for one 

homozygotes (AA), 1 for heterozygotes (AB), and 2 for other homozygotes (BB), and P a vector 
between 0 and 1 representing allele frequency (frequency of B allele) of n SNPs of pearl sac tissue.  

Then reconstruction of the donor genotypes from the allele frequency of the pearl sac tissue and 

genotypes of the host was done in three steps. First the proportion of host tissue in the pearl sac 

tissue was estimated as the regression coefficient of host genotypes on allele frequencies of pearl 

sac tissue from a linear regression model i.e. 2P=bH+e, then allele frequencies of the donor was 

estimated by D = (2P-bH)/(1-b). Finally, the donor genotypes were reconstructed by classifying the 

frequency estimates D of the donor into the nearest genotypic class 0 (AA), 1 (BB) and 2 (BB). The 

classification error of donor genotypes was calculated from a confusion matrix between the 

estimated genotypes and the actual genotypes of the donor. A total 1,000 randomly selected pairs of 

animals were evaluated for each scenario.  

 
Simulation. The working and utility of the above procedure was tested by sampling and simulation. 

The genotypes of a host genome were generated on 935 SNPs by randomly sampling the genotypes 

of one animal from a real genotypic dataset on pearl oyster (Pinctada maxima) recently generated 

by genotyping 329 animals with a high-density DArTseq Diversity Arrays SNP panel (Kilian et al., 

2012). Similarly genotypes of one donor were generated by sampling another animal from the same 

dataset.  These 935 SNPs had a minimum of 0.3 minor allelic frequency (MAF) in the panel of 

genotyped animals. Lower thresholds for MAF were also explored. The pearl sac tissue was assumed 

as a mixture of host and donor tissues in various proportion. The allele frequency for the pearl sac 

tissue was generated by mixing the donor and the host genotypes in ten different proportions by 

assuming 5, 15, 25, 35, 45, 55, 65, 75, 85, 95% of host tissue and the remaining respective proportion 

of the donor tissue. In addition, to accommodate some laboratory error in estimating the allele 

frequencies, a continuous uniform distribution for error rate in an interval of -0.06 and 0.06 was 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:445-448 

447 

generated and added to the allele frequencies computed above (while keeping the resultant allele 

frequencies within a bound of 0 and 1). Other uniform distributions with higher error rates, and 

normal distributions N(0, σ2) with four different error distributions (σ  =  0.01, 0.02, 0.05, 0.10) 

were also evaluated.  

 

RESULTS AND DISCUSSION 

The accuracy of reconstructed donor genotypes from pearl sac tissue consisting of different 

proportion of host and donor tissue, each computed from 1,000 host and donor pairs, are presented 

in Table 1. These results are based on a uniform error distribution with an interval of -0.06 and 0.06. 

(Figure 1).  The estimated proportion of host genome was close to the actual proportion for most of 

the scenarios except the scenario 1 and 2 where proportion of the host tissue was small. Nevertheless, 

the median mis-classification rate for donor genotypes was zero except for the last two scenarios 

where the proportion of host tissue in the pearl sac was very high (> 85 %). Other laboratory error 

rates in the estimate of allele frequency and using SNPs with lower MAF were also explored. 

However, the higher error rates in the estimation of allele frequency resulted in higher 

misclassification rate of donor genotypes.  Similarly using SNPs with lower MAF thresholds also 

resulted in higher misclassification rate (results not shown).  

 

Table 1. Accuracy of reconstructed donor genotypes from Pearl sac consisted of different 

proportion of host and donor tissue.  

 

Proportion 
of host in 

pearl sac 

tissue 

Median 
estimated 

host 

proportion 

QR 
estimated 

host 

proportion 

Median 

correlation 

between  
estimated 

and actual 

genotype 

QR 

correlation 

between  
estimated 

and actual 

genotype 

Median mis-

classification 

rate (%) 

QR mis-

classification 

rate (%) 

0.05 0.10 0.02-0.20 1 0.98-1 0 0-0 

0.15 0.19 0.12-0.29 1 0.98-1 0 0-0 

0.25 0.29 0.22-0.38 1 0.98-1 0 0-0 

0.35 0.38 0.33-0.46 1 0.98-1 0 0-0 

0.45 0.48 0.43-0.54 1 0.98-1 0 0-0 

0.55 0.57 0.53-0.62 0.99 0.98-1 0 0-0 

0.65 0.66 0.63-0.70 0.99 0.98-0.99 0 0-0 

0.75 0.76 0.74-0.79 0.98 0.97-0.99 0 0-0 

0.85 0.85 0.84-0.87 0.96 0.95-0.96 0 0-2.8 

0.95 0.95 0.94-0.95 0.74 0.71-0.75 40.3 37.9-43.0 
QR is 0.1 and 0.9 quantile based on 1,000 host and donor pairs. 
 

The error rates in constructing the donor genotypes of SNPs with low MAF were higher, and 

hence we recommend the use of high MAF SNPs. Pedigree information can also be used to correct 

some of the incorrectly constructed genotypes and genotypes of low MAF SNPs of the donors. These 

corrected genotypes can then finally be used for GWAS and genomic selection. Genetic relationship 

between donor and host tissue, especially close relationship such as full-sibs, may also affect the 

accuracy of reconstruction of donor genotypes and warrants further investigations.  
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Overall these results suggested that donor genotypes can be constructed with a very high certainty 

if the error rate in the estimation of allele frequency is low, high MAF SNPs are used, and the 

proportion of the host tissue in the pearl sac tissue is not very high. 

To validate this method further we are now preparing synthetic pools by mixing DNA of pairs 

of animals in different proportions. In addition we will sample a number of trio samples consisting 
of host, donor and pearl sac tissues. The procedure of taking samples of pearl sac tissue may also 

affect the proportion of host and donor genome; a few different procedures of sampling such as 

slicing the interior pearl sac tissue with a scalpel and using a sterile dental swap to collect cells 

without an incision on the pearl sac will be evaluated to minimise the proportion of host tissue in 

pearl sac tissue. These samples will be genotyped with low-density DArTseq Diversity Arrays SNP 

panel (Kilian et al., 2012). The analysis of these samples will provide estimate of donor tissue in the 

pearl sac, estimation of laboratory error rate in the allelic frequency of pearl sac, and finally ability 

to reconstruct donor genotypes. 

 

CONCLUSION 

The method presented here provides a way to reconstruct the genotypes of the donor from allelic 

frequency data on pearl sac tissue and genotypes of the host. The results also suggested that some 
error in the estimation of allele frequency can be tolerated. However, when a very high proportion 

of the host tissue is present in the pearl sac tissue, it difficult to reconstruct donor genomes and 

introduced high error in the estimated genotypes of donor.  
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SUMMARY 

Using simulation, we compared the effect of different numbers of families and skewed 

distribution of family size on long-term genetic gain and inbreeding in aquaculture species. In 
particular we focused on P. monodon specific input parameters and communal rearing of families, 

and showed that large number of families in a communal breeding scheme are required for 

increased genetic gain and diversity in addition to mitigating the effect of unequal family 

contributions. We present a two-stage cost effective scenario implementing combining truncation 

selection and genomic selection, and showed that 1,000-2,000 animals in the first stage are 

required for long-term genetic improvement. 

 

INTRODUCTION  
The application of genetic markers and genomic selection (GS) in aquaculture is becoming 

attractive in particular for selection of ‘difficult to measure traits’ and traits which cannot be 

directly measured on candidates under selection, and to capture within- and between-family 
genetic variation. With decreasing cost of sequencing and genotyping the development of SNP 

panels and application of genomic resources can be rapidly deployed for almost any species, yet 

limited information is available on the results of practical implementation of GS and have mainly 

been restricted to the use of simulated data. Such studies demonstrated that GS in aquaculture 

breeding programmes can increase the accuracy of selection and genetic gains, both in production 

(continuous) and diseases (dichotomous) traits (Sonesson and Meuwissen, 2009; Nielsen et al., 

2011; Lillehammer et al., 2013). 

The number of families reared in aquaculture breeding programs is generally limited by the 

resources especially if the families are produced and reared separately, and this can have a 

profound impact on inbreeding and long-term genetic gains. More families can be managed if bred 

and reared communally.  However, because of mass spawning the contribution of different 

families is unequal (Harris et al., 2016), and this can distort selection efficiency and hence genetic 
gain and inbreeding.  

Using simulation, we explored the effect of number of families and unequal distribution of 

family size on the overall inbreeding and genetic gain on a growth-like trait and examined a cost 

effective scenario implementing a two-stage selection scheme by combining truncation selection 

and genomic selection. 

 

MATERIALS AND METHODS 

Simulated datasets were generated by QMSim simulation software (Sargolzaei & Schenkel, 

2009) by specifying the following input parameters. The initial founder generation was the last of 
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1,000 historic generations, containing 400 random mating individuals each, equal to the effective 

population size of wild P. monodon. From this founder population, 1, 5, 50,100 or 200 males and 

1, 5, 50, 100 or 200 females were used for breeding, with one male mated to one female, each 

mating producing 200 offspring in each generation. The genetic map of 40 chromosomes each 50 

cM long was specified. For each chromosome, 120 biallelic markers and 30 biallelic QTLs were 
simulated. Mutation rate for both markers and QTLs were set to 2.5E-5 per generation.  All the 

scenarios were simulated with heritability = 0.30 such that heritability due to QTLs = 0.2 and the 

remaining one third due to polygenic effects. The heritability used was comparable to that of body 

weight at harvest in shrimp (Sui et al., 2016).  The phenotypic variance was set to 1 with mean 

equal to 0 in the base population. Ten replications for each of the following scenarios were 

explored: 

Scenario A: Single family of 200 progeny produced from the mating of one male with one 

female in each generation. 

Scenarios B-E: Scenario B was generated with five families of 200 progeny each produced 

from the mating of one male with one female in each generation. Similarly, scenarios C, D and E 

were generated with 50, 100 and 200 families, respectively.  

Scenario F: 100 families with each family producing different numbers of progeny. The 
numbers of progeny per family were simulated with a discrete probability distribution of 0.3 (n = 

1) + 0.3 (n = 5) + 0.2 (n = 50) + 0.1 (n = 700) + 0.1 (n = 900) = 1, where n is the number of 

progeny.  In addition a two-stage selection scheme was implemented. In the first stage different 

numbers of animals (200, 300, 600, 1000, 2000 or all) were selected randomly from the top 25% 

of all the animals in the pond, tagged and genotyped. In the stage 2, 100 males and 100 females 

were selected from the tagged animals based on genomic EBV assuming a selection accuracy of 

0.6. For this scenario the phenotypic variance was set to 36 with a mean of 30 in the base 

population. 

Selection Method: The selection of parents to produce specific number of families for the next 

generation was based on the EBVs, which as noted above had an accuracy of 0.6. Rate of genetic 

progress was calculated as the change in mean breeding values across generations. Estimates of 
inbreeding coefficient and mean breeding values were computed for each generation using 

pedigree information, and compared across ten generations for the scenarios described above. 

 

RESULTS AND DISCUSSION 

A comparison of mean inbreeding coefficient and mean phenotypic value after ten generations 

of selection is presented in Figure 1 which shows that a smaller number of families under selection 

resulted in increased inbreeding, in particular for single family selection inbreeding was 

approaching 90% after 10 generations of selection. Inbreeding coefficients based on 50 or more 

families were generally low (< 10%), and the difference in inbreeding between scenarios with 100 

and 200 families was negligible. Rates of genetic gain were highest for using 100 families or more, 

whereas using single families or low number of families (< 5) resulted in the lowest rate of genetic 

gain. 
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Figure 1. The effect of number of families on mean phenotypic values (A) and inbreeding 

coefficient (B) after 10 generations of selection (pooled across 10 replicates). Each family 

contributed an equal number of progeny (n = 200). (Scenario A-E). 
 

Estimates of inbreeding coefficient and mean breeding values across ten generation and ten 

replicates for scenario D are presented in Figure 2. The replicates show a consistent increase in 

mean inbreeding and breeding value over generations. The differences between replicates were 

larger for scenarios with smaller numbers of families (results not shown). 

 

  
 

Figure 2. Mean breeding values (A) and inbreeding coefficient (B) over 10 generations of 

selection for scenario D. Ten replicates are shown by lines with different colours. 

 

Stage-wise selection: Scenario F presents a more practical situation where, due to mass spawning 

and differential survival, the contribution of different females (families) are unequal in communal 

breeding and rearing, with some families contributing a large proportion of the progeny (Harris et 
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al., 2016). In addition, to reduce the cost of genotyping, we implemented a two-stage selection by 

combining truncation selection based on phenotype (selecting randomly from the top 25%) in the 

first stage and selection based on EBV with moderate accuracy of 0.6 in the second stage. Figure 3 

shows that selecting 1000-2000 animals in stage one with truncation selection provides most of the 

genetic gain possible with genotyping all the animals. Inbreeding increased only slightly with 
larger number of animals selected in the stage 1. 

 

 

 
 

 

Figure 3.  The effect of different number of animals (x-axis) in the first stage of two-stage 

selection scheme (Scenario F).  “random” means selecting 200 randomly, “All_GS” selecting 

all in stage one. 

 

Compared to the scenarios with equal family contribution (presented in Figure 1), the effect of 

unequal family contribution was more pronounced when the smaller number of families were 

simulated (results not shown). There was a pronounced increase in inbreeding when the families’ 

contributions are unequal. This is largely due to loss or low representation of families in the 

subsequent generations. 
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SUMMARY 

Whole-genome sequencing (WGS) of pools of individuals (Pool-Seq) provides a cost-effective 

method for genome-wide association studies (GWAS), and offers an alternative to sequencing of 

individuals that remains cost prohibitive. Pool-Seq is being increasingly used in population genomic 

studies in both model and non-model organisms. In this paper, the ability of Pool-Seq to recover 

known GWAS signals was evaluated. Existing GWAS data for 2,112 animals with 729K SNPs were 
obtained and pooled to simulate data obtained from a pooled WGS approach. Traditional GWAS 

results was compared with the absolute allele frequency difference (dAF) metric suitable for use 

with Pool-Seq data. Specifically, we tested the ability of dAF scans to recover known GWAS signals 

for two different traits with large and moderate gene effects. Pools of different sizes (50, 100 and 

200 individuals per pool) were also compared. The results showed the ability of the absolute allele 

frequency difference (dAF) approach to recover known GWAS peaks obtained by traditional SNP 

association and recommended the use of a pool size of 100 individuals for DNA pooling. 

 

INTRODUCTION 

Recent advances in next generation sequencing (NGS) technologies have tremendously changed 

genetic research by increasing the number of known molecular markers in both model and non-

model organisms such as: single nucleotide polymorphisms (SNPs) (Ellegren 2014). Despite these 
technical advances, genotyping large numbers of individuals with thousands of SNPs remains costly 

for large genome-wide association studies (GWAS). In this context, determination of allele 

frequencies from whole genome sequencing of pooled DNA samples has been suggested as a cost-

effective alternative to individual genotyping (Sham et al. 2002). Many studies have successfully 

adopted this approach by comparing allele frequencies between cases and controls in both model 

and non-model organisms. For example, Abraham et al. (2008) performed a genome-wide (case-

control) association study to understand Alzheimer's disease in human through the use of DNA 

pooling and highly significant association with late-onset Alzheimer's disease (LOAD) was 

observed at the APOE locus. To test for loci selected during domestication in chicken, Rubin et al. 

(2010) compared domesticated species to a wild population and identified one domestication-

specific adaptation in the thyroid-stimulating hormone receptor (TSHR) gene. Pool genome-wide 
association study (Pool-GWAS) was also used to examine female abdominal pigmentation in 

Drosophila melanogaster. Candidate single-nucleotide polymorphisms (SNPs) near the 

pigmentation genes tan and bric-à-brac 1 were identified when the allele frequencies in pools of 

light and dark females were compared (Bastide et al. 2013). Moreover, in Atlantic salmon Pool-Seq 

was used to investigate age at maturation in both wild and domesticated salmon where Ayllon et al. 

(2015) performed a genome wide association study using a pool sequencing approach (20 

individuals per pool) of male salmon returning to rivers as sexually mature and revealed that 138 

SNPs were significantly associated with sea age at puberty, 74 (48%) of these significant SNPs were 

located in a region on chromosome 25. More recently, Pool-Seq approach has been successfully 

deployed to identify genes for the timing of reproduction in Atlantic herring (Martinez Barrio et al. 

2016). 
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In this paper, we used existing cattle SNP chip data obtained from individual animals and the 

associated GWAS results (Porto-Neto et al. 2014), to evaluate the power of the pool-seq approach. 

Using absolute allele frequency difference (dAF) , the ability to recover known GWAS signals was 

assessed after varying i) number of individuals per pool and ii) trait architecture.  Outcomes of this 

analysis will assist in the design of experiments that seek to use pool-Seq as an alternative to 
traditional GWAS methodologies.  

 

MATERIALS AND METHODS 

Porto-Neto et al. (2014) performed a genome-wide association study using 2,112 Brahman cattle 

with 729,068 SNP genotypes per individual and analysed ten traits related to tropical conditions. 

Data were retrieved and re-analysed for two different traits, Coat Colour (colour) and rectal 

temperature (temperature). The first of these was selected to represent traits with large gene effects 

(colour), while the second exhibits genes of moderate effects.   Plink software was used to make a 

subset of the data for 100 (top and bottom 50), 200 (top and bottom 100) and 400 (top and bottom 

200) individuals from the 2,112 animals (representing pool sizes of 50, 100 and 200, respectively) 

using the --make-bed and --keep functions. Those individuals were assigned into two phenotypes 

for the GWAS case/control test and two clusters for the delta allele frequency test.  
For traditional SNP association approach, an association (GWAS case/control scenario) test was 

implemented in Plink using the --assoc and --pheno functions. P values of all SNPs were obtained 

and –logP values were visualised as Manhattan plot generated in the R statistical computing 

environment.  

For absolute allele frequency difference (dAF) approach, allele frequencies were calculated in 

Plink using the --freq and --within functions. Differences in allele frequencies were calculated for 

each SNP in the 2 clusters. A Manhattan plot of the absolute values of dAF of all SNPs was generated 

in R. 

A significance threshold (-log P ≥ 5) was applied to filter the SNPs and the corresponding 

absolute values of delta AF of those significant SNPs were retrieved. This threshold was chosen in 

order to capture enough data for valid comparison and was used previously in GWAS analysis (for 
example) Cui et al. (2016). In order to compare the two approaches, -logP and delta AF values for 

1) all significant SNPs and 2) SNPs under peaks were plotted in genomic order. Also simple linear 

regression was applied and R2 values were obtained to test the correlation of the results obtained 

from both approaches for each trait in each pool size used.  

 

RESULTS AND CONCLUSION 

Traditional SNP association (GWAS case/control) identified SNPs significantly associated with 

the two traits under investigation for each of the pool sizes used. Strong GWAS signal(s) were 

identified in chromosomes 6, 7 and 13 for colour. On the other hand, multiple peaks in many 

chromosomes were identified for temperature (Figure 1).  These findings are consistent with the 

results in the Porto-Neto et al. study.  

Absolute allele frequency difference (dAF) results were obtained for the two traits and were 
compared with the GWAS results. The same GWAS signals were recovered using dAF in each of 

the two traits for each pool (Figure 1). For example, dAF values of the 32 significant SNPs of the 

major GWAS peak chromosome 13 in the trait colour showed the same trend as their corresponding 

–log P values (Figure 2).  

Linear regression was used to test the correlation of the results obtained from both approaches 

for each trait in each pool size. Pool size of 50 showed the least R2 values in each of the two traits, 

while there were very small increases in R2 values (0.02 and 0.01 in colour and temperature, 

respectively) from pool size 100 to 200  (Table 1).  For each trait, number of significant SNPs 

increased by increasing the pool size, with the pool size of 50 yielding the smallest number of 
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significant SNPs (Table 1).  

 
Table 1. A summary table of the results of comparing SNP association and delta allele frequency 
approaches for two traits in the Brahman cattle using 3 different pool sizes. 

Cattle trait Pool size  No. of sig. SNPs 

(-log P ≥ 5) 

R2 value  

Colour 50 95 0.04 

 100 638 0.7 

 200 4,349 0.72 

Temperature 50 147 0.00007 

 100 951 0.74 

 200 1,323 0.75 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 1. Comparison between GWAS SNP association and absolute allele frequency difference (dAF) 

approaches using a pool size of 100 (for example) revealed the ability of dAF to recover the same 

GWAS signals. A and B are Manhattan plots of –log P and absolute values of dAF values, respectively 

for colour while C and D are Manhattan plots of –log P and absolute values of dAF values, respectively 
for temperature.  
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Figure 2. Zoom-in on the 32 significant SNPs (-log P ≥ 5) on a GWAS peak (chromosome 13) for the 

trait colour showing absolute delta allele frequency values (red) following the same trend as the –log P 
values (blue). 

In conclusion, the absolute allele frequency difference (dAF) approach recovered the same GWAS 

signals obtained by traditional SNP association approach, for all the two traits under investigation. 

However, comparing the results from three different pool sizes suggested the use of pool size of 100 
individuals for DNA pooling. These results confirm that, for traits controlled by a small number of 

major genes, the pool-Seq approach is likely to have the power to identify associations using the 

dAF metric. This opens the possibility to collect samples from only the phenotypic extremes within 

a population, before searching for associated genomic regions using a simple analytical approach 

and a modest research budget. 
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PREPUTIAL EVERSION IN YOUNG, TROPICALLY ADAPTED BULLS IS A USEFUL 

GENETIC INDICATOR TRAIT FOR IMPROVING FEMALE REPRODUCTION 

 

M.L. Wolcott and D.J. Johnston 

 
Animal Genetics and Breeding Unit*, University of New England, Armidale, NSW 2351, Australia 

 

SUMMARY 

Beef CRC research showed that a measure of preputial eversion (PEV: an estimate of the 

length of preputial mucosa (mm) exposed while a bull stands freely) in tropically adapted bulls at 

18 months of age was heritable, and had significant genetic associations with female reproduction 

performance. The current study examined the sensitivity of genetic parameters for PEV to age by 

expanding the analysis to include measures at 12 and 24 months. For Brahman bulls, the incidence 

of non-zero PEV increased with age, from 45 to 59 to 71% at 12, 18 and 24 months respectively. 

For Tropical Composite bulls, the incidence of PEV was lower and less influenced by age (27 – 

31%). Heritabilities for PEV at 12 and 24 months were comparable to those previously reported at 

18 months (h2 = 0.23 to 0.34). These results confirm that if breeders of tropically adapted beef 
cattle wished to apply selection to improve PEV, this could be undertaken successfully. Genetic 

correlations of PEV with female age at puberty, lactation anoestrous and lifetime annual weaning 

rate showed that if PEV were to be exploited as a genetic indicator for female reproductive 

performance, measures at 18 and 24 months would be more useful than those collected at 12 

months of age. Compared to female reproduction traits, preputial eversion is easy to measure and 

this study suggests it would be a useful trait to add to the genetic evaluation for tropical breeds. 

 

INTRODUCTION 

Research reported by Corbet et al. (2013) showed that a trait scoring the ‘length (in mm) of 

exposed preputial mucosa’ in 18 month old bulls (PEV18) was heritable in both Brahman (BRAH) 

and Tropical Composite (TCOMP) (h2 = 0.30 and 0.23 respectively).  Johnston et al. (2014b) 
showed that lower PEV18 displayed significant genetic relationships with lower age at puberty, 

and higher lifetime annual weaning rates in BRAH (rg = 0.33 and -0.71 respectively). In TCOMP, 

lower PEV18 was genetically associated with lower lactation anoestrus interval, and higher 

lifetime annual weaning rates (rg = 0.52 and -0.88). As part of that research preputial eversion at 

12 (PEV12) and 24 (PEV24) months of age were also measured. Given the clear potential of 

PEV18 as an indirect genetic indicator of female reproductive performance, this study aimed to 

examine the genetics of preputial eversion at 12 and 24 months in BRAH and TCOMP bulls, to 

estimate the genetic relationships between repeated measures of the trait, and to determine their 

genetic relationships with key female reproduction traits. 

 

MATERIALS AND METHODS 

Bull management and trait definition. The bulls evaluated for this study were from the Beef 
CRC Northern Breeding Project, and comprised the Brahmans (BRAH) and Tropical Composites 

(TCOMP) described by Burns et al. (2013). That publication also provided a thorough description 

of the experimental design and animal management. Briefly, bulls bred on 5 co-operating 

properties in northern Australia from 2004 - 2010 (n = 2742) were transported to Brigalow 

Research Station (170km southwest of Rockhampton) at weaning for evaluation of male 

reproductive traits. A smaller cohort were born and raised at the Belmont Research station (n = 

1321) and remained there for the duration of the evaluation period (to 24 months of age).  

_____________________________  
* AGBU is a joint venture of NSW Department of Primary Industries and the University of New England 
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Burns et al. (2013), defined preputial eversion as ‘an estimate of the length (mm) of preputial 

mucosa everted while the bull stands freely’, and the trait was scored at 12, 18 and 24 months of 

age (PEV12, PEV18 and PEV24). For each genotype and age, the proportion of bulls with a non-

zero PEV result was calculated to describe the change in the expression of the trait with age. 

 
Female management and reproduction traits. Breeding and management of heifers up to their 

first annual mating was described by Barwick et al. (2009), and Johnston et al. (2009) described 

ultrasound scanning of females to identify age at first corpus luteum (CL), which defined age at 

puberty (AP). Females were first mated at an average age of 25 months, to calve as 3 year olds. At 

the start of the second annual mating period, ultrasound scanning to identify the presence of a CL 

commenced for lactating cows to detect the onset of cycling and allow the calculation of lactation 

anoestrous interval (LAI: the days from the start of the second annual mating period to the 

identification of a CL by ultrasound scanning) (Johnston et al. 2014a). Cows remained in the 

project until the weaning of calves from their sixth annual mating unless they failed to successfully 

wean a calf in consecutive years. For all females, lifetime annual weaning rate (LAWR) was 

calculated as the total number of calves weaned from the first, and up to the sixth mating, divided 

by the number of annual matings to which the animals were exposed (Johnston et al. 2014a). 
 

Fixed effect modelling and genetic parameter estimation. Fixed effect models for PEV12 and 

PEV24 were built as described by Corbet et al. (2013) for PEV18. Initial modelling for preputial 

eversion traits tested the fixed effects of year (2004–10), birth location (six herds), birth month 

(Sept. to Jan.), post-weaning location (Brigalow or Belmont), dam age (3–9 years), dam previous 

lactation status (wet or dry), dam management group and all first order interactions. In TCOMP, 

sire and dam group were fitted to account for the average additive differences between the 

composite groups and any heterotic effects among combinations of sire and dam groups. 

Modelling was carried out using the PROC MIXED in SAS (SAS Institute Inc., Cary, NC, USA), 

with sire fitted as random. Final models were determined by sequentially dropping non-significant 

terms (P > 0.05). Following the methods described by Corbet et al. (2013), variance components 
for PEV12 and PEV24 were estimated in ASReml (Gilmour et al. 2009), with animal fitted as 

random and relationships between animals described using a three generation pedigree. Genetic 

correlations between preputial eversion traits at different ages, and with female reproduction traits 

were estimated in bivariate analyses using ASReml. When estimating genetic correlations between 

male and female traits, the data was edited to remove bull records of dam-offspring pairs where the 

bull was the resultant progeny of the female trait analysed (Johnston et al. 2014b). 

 

RESULTS AND DISCUSSION 

Preputial eversion data and variance components. Table 1 presents summary statistics, 

variance components and heritabilities for PEV12 and PEV24 in BRAH and TCOMP bulls, with 

the already published results for PEV18 (Corbet et al. 2013). Results showed that preputial 

eversion in BRAH tended to increase with measurement age, while the trait was relatively constant 
from 12 to 24 months in TCOMP. Despite this, in both genotypes, additive genetic variance 

represented a reasonably constant proportion of the phenotypic, with heritabilities ranging from 

0.23 to 0.34. These results support the conclusion of Corbet et al. (2013) that preputial eversion 

could be improved by selection, and suggest that measurements collected in bulls at 24 months of 

age would be as effective a basis for selection as those collected earlier in life. Evaluating the trait 

at 24 months would be useful in BRAH, as the incidence of non-zero results increased from 45 to 

59 to 71 percent at 12, 18 and 24 months. For TCOMP, the proportion of non-zero preputial 

eversion scores showed less variation with age (30, 27 and 31% at 12, 18 or 24 months), 

suggesting that age at measurement would be less important for bulls of this genotype. 
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Table 1. Number of observations (N), mean, and standard deviation (s.d.), additive (σ2
a) and 

phenotypic (σ2
p) variance, heritabilities (h2), and its standard error (s.e.) for preputial 

eversion (mm) in Brahman and Tropical Composite bulls at 12 (PEV12), 18 (PEV18) and 24 

(PEV24) months of age. 

 

Genotype Trait (mm) N Mean s.d. σ2
a    σ2

p h2    s.e. 

Brahman      PEV12  1357 11 21   69 240 0.29 0.08 
    PEV18* 1438 18 16 126 419 0.30 0.08 

      PEV24 1430 26 25 182 627 0.29 0.07 

         

Tropical      PEV12 1939 11 22 128 480 0.27 0.07 

Composite    PEV18* 2104 10 21 100 429 0.23 0.06 

      PEV24 2081 12 25 211 623 0.34 0.06 

  * Results previously reported by Corbet et al. (2013).  

 

Genetic correlations between preputial eversion measured at 12, 18 and 24 months of age. 

Table 2 shows that genetic correlations between preputial eversion measured at 12, 18 and 24 

months of age in BRAH and TCOMP bulls were consistently high (rg > 0.8). The weakest genetic 

relationship was between preputial eversion at 12 and 24 months in BRAH (rg = 0.82) which is 

likely to reflect the changing incidence of non-zero results for the trait with age, and provides 
additional support for the trait being evaluated later for bulls of that genotype. As Brahman bulls 

tend to be marketed as 2 year olds, the opportunity will be there to evaluate preputial eversion in 

large contemporary groups, at 18 – 24 months of age, and prior to bull sales and their first mating. 

 

Table 2. Genetic correlations (rg), and their standard errors (s.e.) between preputial eversion 

measured at 12, 18 and 24 months of age in Brahman and Tropical Composite bulls. 

 

Preputial eversion (mm)  Brahman  Tropical Composite 

Trait 1 Trait 2  rg s.e.  rg s.e. 

PEV12 PEV18  0.96 0.07  0.98 0.03 

PEV12 PEV24  0.82 0.11  0.98 0.03 

PEV18 PEV24  0.95 0.07  0.92 0.04 

 

Genetic relationships of preputial eversion measured at 12, 18 and 24 months of age with key 

female reproduction traits. Table 3 presents the genetic correlations of preputial eversion 
measured at 12, 18 and 24 months in BRAH and TCOMP bulls, with key female reproduction 

traits. These suggest that lower preputial eversion was genetically associated with lower age at 

puberty and higher lifetime annual weaning rates for bulls of both genotypes. These results are 

consistent with those reported by Johnston et al. (2014b) for PEV18, (also presented in Table 3). 

For BRAH, genetic correlations of PEV12 with female traits were of lower magnitude than those 

at 18 and 24 months, suggesting that if the trait were to be exploited as a genetic indicator of 

female reproduction, measurements at 18 to 24 months would be more effective. Genetic 

relationships of preputial eversion with LAI were strongest at 18 months for TCOMP and at 24 

months for BRAH (rg = 0.52 and 0.44 respectively). For both genotypes, measurements of 

preputial eversion at 18 months of age (rg = -0.71 and -0.88 for BRAH and TCOMP) displayed the 

strongest genetic relationships with LAWR. Standard errors were sufficiently high for these 
however, (due to low heritability of the female trait) that these differences were not statistically 

significant to those observed for PEV24 (rg = -0.46 and -0.62 for BRAH and TCOMP).  
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Table 3. Genetic correlations (rg) and standard errors (s.e.) of preputial eversion at 12, 18 

and 24 months of age (PEV12, PEV18 and PEV24) in Brahman and Tropical Composite 

bulls with female age at puberty (AP), lactation anoestrous interval (LAI) and lifetime 

annual weaning rate (LAWR) (units of measurement in parenthesis). 

 

Preputial Eversion 
(mm) 

Female  
Reproduction 

Brahman  Tropical Composite 

rg s.e.  rg s.e. 

PEV12 AP (days)  0.15 0.15   0.23 0.16 
 LAI (days) -0.09 0.19   0.51 0.19 

 LAWR (%) -0.23 0.28  -0.61 0.26 

       

PEV18 AP (days)  0.33* 0.13  -0.05* 0.16 

 LAI (days)  0.13* 0.16    0.52* 0.25 

 LAWR (%) -0.71* 0.27  -0.88* 0.33 

       

PEV24 AP (days)  0.29 0.14   0.34 0.16 

 LAI (days)  0.44 0.18   0.26 0.19 

 LAWR (%) -0.46 0.27  -0.62 0.27 

* Results for PEV18 previously reported by Johnston et al. (2014b). 

 

CONCLUSIONS  
This study has shown that some level of preputial eversion was evident in 45% the BRAH 

bulls at 12 months of age, and that this increased to 71% by 24 months. If the condition is seen as 

unfavourable by breeders of Brahman cattle, these results show that opportunities exist to apply 

selection to improve the trait. This study has also confirmed the efficacy of preputial eversion 

measured in Brahman and Tropical Composite bulls as a genetic indicator for female age at 

puberty, lactation anoestrous interval and lifetime annual weaning rates. In Brahman, there was 

evidence that measurements of the trait at 12 months may be less effective as an indirect descriptor 

of female reproduction than those collected at 18 - 24 months. Compared to female reproduction 

traits, preputial eversion is easy to measure and these results suggests it would be a useful trait to 

add to the genetic evaluation for tropical breeds. 
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SUMMARY 

Feed intake represents a major cost to all animal production systems. Increasing the efficiency 

in which animals turn this feed into product can be a major goal in many animal breeding programs. 

Consequently, Australian beef producers have been measuring many traits associated with feed 

efficiency in an attempt to increase the accuracy of selection, precision of genetic parameters 

estimates and ultimately increase the amount of genetic gain achieved. The objective of this study 

was to estimate genetic and phenotypic parameters for traits associated with feed efficiency from 

records on 1614 Angus Steers from the Australian Beef Information Nucleus (BIN). Traits analysed 

included Average Daily Weight Gain (ADG), Metabolic Mid-Weight (MMWT), Daily Feed Intake 
(FI), Feed Conversion Ratio (FCR) and Residual (or Net) Feed Intake (RFI). Parameters were 

estimated using bivariate animal models in ASReml. Heritability estimates ranged from 0.12 ±0.06 

for FCR to 0.49 ±0.09 for FI. High genetic correlations were estimated between FI and RFI 

(0.83±0.05) and FI and ADG (0.81±0.08). Significant genetic correlation also existed between ADG 

and MMWT (0.65±0.12) and between MMWT and FI (0.68±0.08). Heritability estimates show that 

there would be a favourable response to selection for the efficiency traits in this population. The 

positive and unfavourable genetic correlation between ADG and RFI, suggest that improving RFI 

would result in lower ADG. Given this, further studies are required to investigate genetic 

associations between efficiency traits and other economically important traits, in addition to examine 

new ways of utilizing feed efficiency information in breeding programs.  

 

INTRODUCTION 
Feed intake represents a major input cost in almost all animal production systems (Archer 1999). 

The efficiency of converting this feed into useable animal products, commonly referred to as feed 

efficiency, is becoming a common breeding objective. In order to include feed efficiency traits in 

the breeding goal, genetic parameters are needed for accurate and unbiased prediction of breeding 

values, as well as to develop selection indices, and to predict selection responses (Hofer, 1998). 

Several authors have documented significant genetic variation for feed efficiency traits, however, 

genetic parameters can vary can vary depending on each population. 

The objective of the present study was to estimate genetic and phenotypic parameters for 

Average Daily Weight Gain (ADG), Metabolic Mid-Weight (MMWT), Daily Feed Intake (FI), Feed 

Conversion Ratio (FCR) and Residual Feed Intake (RFI) from data collected in the Australian Angus 

Beef Information Nucleus (BIN) (also known as the Angus Sire Benchmarking Program). 
 

MATERIALS AND METHODS 
The phenotypic data examined in this study included live weights, and FI measures from 1823 

Angus Steers collected from 2013 to 2016 at Tullimba Feedlot. On entry to the feedlot, the animals 

in this study ranged from 500-600 days of age and weighed approximately 450-500 kg. Initially 

animals were conditioned for 21 days and fed for an additional 70 days over which time all data was 

collected. All animals were weighed 6 times over the 70-day test period (fortnightly). ADG was 

calculated as the regression of weight on time (days), while MMWT was obtained as the mid-point 

raised to the 0.73 power (Arthur et al., 2001; Berry and Crowley, 2013). 
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The original information was edited to guarantee the quality of the data to be analysed. 

Duplicated records and incomplete information were eliminated. FCR was obtained as feed intake 

divided by the ADG, while RFI was estimated by regressing FI on ADG and MMWT (Arthur and 

Herd, 2008; Berry and Crowley, 2013).  

Fixed effects of mean and Contemporary group (CG) (obtained from BREEDPLAN, which 
included trial, property management group and feedlot pen) were fitted for all analyses. CG of less 

of 10 animals were removed from the analysis. In the present study, estimates of both maternal 

genetic and maternal permanent environmental components for RFI were 0 therefore not included 

in the model (data do not show). 

The final data file consisted of 1614 Angus steers with complete information for ADG, MMWT, 

FI, RFC and RFI. The pedigree file included an historical file with 21,439 animals with 3,908 sires 

and 11,610 dams. 

Data were analysed using AIREML methodology implemented in the software ASReml 

(Gilmour et al., 2009). Starting values for bivariate analysis were estimated using single trait animal 

models, and bivariate animal models were used to estimate genetic and phenotypic correlations.  

For each trait, the following bivariate animal model was used: 

 
[1] 𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒 

 

where y is the vector of the phenotypes for the traits; X is a matrix relating animals to fixed 

effects; b is vector of fixed effects for the traits analysed; Z is a matrix relating animal effects to the 

data; u is a vector which contains animal random effects; and e is a vector of residual effects for the 

analysed traits. Furthermore, expectations and variance matrices of random vectors are described as: 

 

𝐸 =  [
𝑦
𝑢
𝑒

] =  [
𝑋𝑏
0
0

] ;   𝑉 =  [
𝑢
𝑒

] =  [𝐴 ⊗ 𝐺0

0
 

0
𝐼 ⊗ 𝑅0

] 

 

Where 𝑮0, and 𝑹𝟎 denote 2x2 matrices containing additive genetic and residual covariance 

components, respectively; A is the numerator relationship matrix; I is the identity matrix; and ⊗ is 

the Kronecker product. 
 

RESULTS AND DISCUSSION 

Descriptive statistics for the studied traits are presented in Table 1. Heritability estimates, 

together with genetic and phenotypic correlations using bivariate animal models are presented in 

Table 2.  

 

 

 

 

 

 

Table 1. Descriptive statistics for Average Daily Gain (kg d), Metabolic Mid-Weight (kg), Feed 

Intake (kg), Feed Conversion Ratio (kg), and Residual Feed Intake (kg d). 
 

Trait Number Mean Min Max SD 

Average Daily Gain 1614 1.61 0.44 2.90 0.33 

Metabolic Mid-Weight  1614 104.31 85.62 135.18 7.35 
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Feed Intake 1614 14.89 6.78 22.63 2.11 

Feed Conversion Ratio 1614 9.55 4.09 32.55 2.09 

Residual Feed Intake 1614 0.01 -7.09 5.18 1.70 

 

Table 2. Heritabilities (on diagonal), genetic (above diagonal), and phenotypic correlations 

(below diagonal) for Average Daily Weight Gain (ADG), Metabolic Mid-Weight (MMWT), 

Feed Intake (FI), Feed Conversion Ratio (FCR) and Residual Feed Intake (RFI). 
  

ADG MMWT FI FCR RFI 

ADG 0.31 ± 0.07 0.65 ± 0.12 0.81 ± 0.08 -0.61 ± 0.15 0.42 ± 0.17 

MMWT 0.35 ± 0.02 0.46± 0.09 0.68 ± 0.08 -0.22 ± 0.23 0.21 ± 0.16 

FI 0.46 ± 0.02 0.56 ± 0.02 0.49 ± 0.09 -0.13 ± 0.23 0.83 ± 0.05 

FCR -0.76 ± 0.01 0.00 ± 0.03 0.11 ± 0.03 0.12± 0.06 0.24 ± 0.23 

RFI -0.09 ± 0.03 0.09 ± 0.03 0.78 ± 0.01 0.52 ± 0.02 0.30 ± 0.09 

 

Heritability estimates indicate, for ADG, MMWT, FI and RFI, that a moderate amount of 

additive genetic variation exists ranging from 0.30 to 0.49. The heritability estimates for ADG, FI 

and RFI were very close to the pooled heritably estimates published by Berry and Crowley (2013) 

using a meta-analysis on feed efficiency traits. In this meta-analysis up to 39 scientific publications 

were analysed, and they reported a polled heritably for ADG, FI and RFI as 0.31±0.014, 0.40±0.012, 

and 0.33±0.013, respectively. The lowest heritability was for FCR and was associated with a high 

standard error (0.12 ± 0.06), and although this estimate was lower than the pooled heritability 
estimate of 0.23±0.013, published by Berry and Crowley (2013), was within the range of the 

published values (0.09 to 0.46) for different beef cattle populations. In addition to this, FCR is a 

ratio trait and it has been documented several problems related to predict the genetic change in 

subsequent generations that can be avoided by using linear index traits such as RFI that increases 

selection responses (Gunsett, 1984; Arthur et al., 2001). The heritability estimate in this work for 

MMWT (of 0.46 ±0.09) was slightly higher compared to the estimated provided by Arthur et al. 

(2001) of 0.40±0.02 in Angus cattle of Australia. 

The genetic correlations between ADG and FI, between ADG and FCR, between FI and RFI, 

and between FCR and RFI, were in agreement with the average genetic correlations of 0.76±0.09, -

0.57±0.16, 0.82±0.05, and 0.35±0.22, respectively, using a meta-analysis of genetic parameters 

reported by several authors in beef cattle populations (Berry and Crowley, 2013). In a similar way, 
genetic correlations between MMWT and ADG, between MMWT and FI are in agreement with the 

estimated values, published by Arthur et al. (2001), of 0.53±0.07 and 0.65±0.03, respectively. 

Different to the genetic correlation, reported in this work, between FCR and FI (-0.13±0.23), the 

genetic correlation between RFI and FI was positive (0.83±0.05); in addition, only the genetic 

correlation of FCR was negative and favourable correlated with ADG, meaning that improving FCR 

was associated with greater ADG.  

The phenotypic correlations between ADG and MMWT, ADG and FI, MMWT and FI, FI and 

FCR, FI and RFI, and between FCR and RFI were positive. These results are in agreement with the 

phenotypic correlations reported by Arthur et al. (2001) of 0.26, 0.41, 0.63, 0.23, 0.72 and 0.53, 

respectively. Arthur et al. (2001) also reported high negative phenotypic correlation between ADG 

and FCR of -0.77, similar to the estimate obtained in the present work. Since RFI was obtained by 

regression, it is expected to be phenotypically independent of the ADG, and MMWT (Arthur et al., 
2001). However, in this study a non-zero phenotypic correlation between RFI and ADG and MMWT 
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was observed. A possible explanation for this is that RFI was estimated from many different trials. 

Once RFI was fitted in a full mixed model some of this variability is corrected for by contemporary 

group estimates and a non-zero correlation remains. All the phenotypic correlation involving ADG, 

FI, FCR and RFI were within range estimated by different authors in beef cattle populations (Berry 

and Crowley, 2013).  
In conclusion, all heritability estimates in the current work were within the range of estimates 

obtained in several beef cattle populations which in most cases involved small numbers of animals. 

A moderate heritability was found for FCR with high standard errors, suggesting that RFI will 

represent a better option for improving response to selection. The results from this study suggest 

that is some situations RFI is neither phenotypically or genetically independent of ADG or MMWT. 

Given this, additional research is required to investigate other ways to select for feed efficiency and, 

due to the lack of consistency across several studies and considering that the analysis of feed 

efficiency traits alone provides little information. Additional research is required to investigate 

genetic associations between efficiency traits and other economically important traits. 
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SUMMARY 

The problem of the missing heritability hinders our understanding of the relationship between 

genetic markers and complex quantitative traits, in turn limiting informed selection of mates for 

animal breeding purposes. To this end, we have developed epinetr, a software package for R 

designed to facilitate the investigation of the possible contribution of gene interaction networks to 

the missing heritability. 

 

INTRODUCTION 

Since the advent of the genome-wide association study (GWAS) in 2005 (Haines et al. 2005; 

Vissler et al. 2012), thousands of genetic variants have been identified which contribute to complex 

traits in either livestock (Tenghe et. al. 2016) or humans (Li et al. 2016), with an application for 

livestock being a genetically-informed artificial selection for desirable traits. However, a gap 

emerged between current heritability estimates for these traits and the contribution of the identified 

variants: the so-called “missing heritability” problem (Manolio et al. 2009; Zuk et al. 2014). Several 

explanations were put forth to explain this disparity (Manolio et al. 2009; Eichler et al. 2010); among 

these, the effect of epistasis (i.e. gene-gene interaction) on heritability estimates is an explanation 

that has attracted considerable attention (Huang 2012; Zuk et al. 2012; Bloom et al. 2013). 

Simulations are currently the most viable approach to test epistatic models and how they affect our 

estimates of additive genetic variance (Hoban et al. 2012). 
There is thus a need in animal breeding for flexible simulators that can accommodate a wide 

variety of randomly-generated and user-generated epistatic models while still providing parameters 

to control other factors. As an aid to further research on the genetic architecture of epistasis, a need 

also exists for a network-based approach to epistatic modelling in simulators. To this end, we have 

developed epinetr, a package for the statistical environment R, soon to be submitted to CRAN: 

epinetr is a forward-time simulator designed specifically for the study of high-order epistatic 

networks and how they impact estimates of genetic parameters and selection decisions of complex 

quantitative traits. 

This paper first gives an overview of the design decisions behind epinetr, it then discusses the 

epinetr simulator itself, the features and parameters within the simulator and its ability to handle 

complex epistatic networks. 
 

DESIGN CONSIDERATIONS 

The two broad categories of population genetics simulators form a simple dichotomy: simulators 

that work forwards-in-time and those that work backwards-in-time (Hoban et al. 2012). As can be 

inferred from the nomenclature, forwards-in-time (or forward-time) simulators start with a 

population and work forwards to track individuals and pedigrees via selection, recombination and 

mutation across generations; on the other hand, backwards-in-time (or coalescent) simulators work 

backwards to infer genetic histories. Forwards-in-time simulators demand more computational 

resources than backwards-in-time simulators simply due to the level of granularity required (i.e. per-

individual simulation); at present, forwards-in-time simulators include Easypop (Balloux 2001), 
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GenomePop (Carvajal-Rodríguez 2008) and FREGENE (Chadeau-Hyam 2008), none of which 

include mention of epistatic modelling capabilities in the associated literature. Both simuPOP (Peng 

and Kimmel 2005) and quantiNemo (Neuenschwander 2008) are forwards-in-time simulators that 

do allow for statistical epistatic modelling; the same is true for the more recent simulator SELAM 

(Corbett-Detig and Jones 2016). 
Backwards-in-time simulators such as SNPsim (Posada and Wiuf 2003), SIMCOAL2 (Laval and 

Excoffier 2004), GENOME (Liang et al. 2007) and MaCS (Chen et al. 2009) are typically more 

computationally efficient than forwards-in-time simulators, but there is a trade-off: they are not as 

suited to modelling complexity or natural or artificial selection (Hoban et al. 2012). This limits their 

application to the study of epistatic impact on selection for complex traits. 

Existing outside this dichotomy is EpiSIM (Shang 2013), which allows for the simulation of 

simple 2-way interactions. 

The choice was made to build a forward-time simulator, as this allowed for the use of complex 

selection scenarios. As a further consideration, there is evidence to suggest that epistatic networks 

exhibit a small world or scale-free structure (Tyler et al. 2009; Mackay 2014). While this appears to 

be a fruitful avenue to pursue, a more general point emerges: the actual network structure may be 

the key to understanding the underlying mechanics of epistasis, including the relationship between 
genes and phenotypes. For this reason, epinetr includes the ability to both automatically generate 

random and scale-free epistatic networks or alternatively input user-defined epistatic networks that 

can be generated by an external model based on previous knowledge (or a hypothesis) of the 

underlying architecture of a trait. 

In a nutshell, the epinetr package is designed as a tool to investigate potential epistatic sources 

of missing heritability using network models. 

 

PACKAGE FEATURES 

The epinetr package is written for the R statistical software environment, allowing for complex 

analysis to take place in the same environment as the actual simulation. It includes a set of classes 

that enable users to perform common operations both before and after the simulation with simple 
commands, as well as provisions for specifying a large set of population parameters. 

Typically, there are 5 broad steps in the workflow: 

1. Define population parameters and construct the initial population 

2. Attach additive effects to the population 

3. Attach an epistatic network to the population and visualise the network 

4. Run a forward-time simulation of the population and plot the simulation run 

Parameters are specified using a simple parameter file. Below we give an overview of the 

parameter options available. 

Population size, given at initialisation, is fixed throughout the simulation run. However, because 

litter size is specified by a user-defined probability mass function, some generations may be smaller 

than the fixed population size. For this reason, another pair of parameters controlling the maximum 

lifespans of sires and dams may be violated. 
Allele frequencies can be inferred from a haplotype file or specified directly, thus allowing for 

“sideways simulation” (by first using a coalescent simulator to arrive at the allele frequencies); 

alternatively, haplotypes can be used directly as the initial population. 

Both broad- and narrow-sense heritability can be specified, controlling the contributions of 

additive, epistatic and environmental effects to the overall variance of the trait being studied. 

Selection is performed either randomly or via linear ranking; the mutation rate is a single number 

while recombination probabilities can be optionally specified, thus allowing for the simulation of 

hotspots. Separate truncation rates for sires and dams can also be specified, as can an initial burn-in 

period of random selection. 
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A chromosomal map for the single nucleotide polymorphisms (SNP) is required, with the user 

determining which SNP are used for quantitative trait loci (QTL) in the epistatic network; 

alternatively, the user can specify the number of QTL which are then selected from the SNP at 

random. 

The number of times a sire can mate during a single generation can be specified. 
Once a population is generated using the above parameters, additive effects across all SNP can 

then be attached. Effect sizes (i.e. the absolute value of the coefficients) are determined by the 

restrictions of the population parameters; however, they can be sampled from any distribution 

specified by the user, including user-defined functions. 

Epistatic modelling. By specifying an incidence matrix (with each row representing a QTL and 

each column representing an interaction between QTL), the user can determine the structure of the 

epistatic network; alternatively, the system can generate a random or scale-free network for the 

population with a single command. In either case, the orders of interaction included in the network 

are specified by the user and limited only by the number of QTL in the population; in addition, scale-

free networks can be given a minimum number of interactions per QTL. 

 
Figure 1. Three unique scale-free epistatic networks generated automatically from within 

epinetr: a) a 20-QTL network comprised of 2-way interactions; b) a 20-QTL network 

comprised of 2-, 3- and 4-way interactions; and c) a 100-QTL network comprised of 2-, 3-, 4- 

and 5-way interactions. 

 
The network structure can be easily visualised using a simple plot command. Figure 1 depicts 

three potential epistatic scale-free networks generated automatically and visualised from within 

epinetr. 

The result of a simulation run is a set of files giving allele frequencies and pedigrees for each 

individual in each generation, as well as haplotypes for each individual in the final generation (or, 

optionally, each generation). Most importantly, the additive, epistatic and environmental 

contribution to each individual’s phenotype is given as an output. Finally, the mean, maximum and 

minimum phenotypic values within the population across generations can also be easily plotted 

using a single command. 

 

CONCLUSION 
epinetr is an R package designed to facilitate the modelling and analysis of epistatic networks 

and their effects on estimates of genetic parameters and selection decisions within populations, 

filling an important niche in population genetics simulation. It is hoped that it will be a valuable tool 

to better understand how different models of genetic architecture, particularly epistasis, relate to the 

problem of missing heritability. 
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SUMMARY 

 MicroRNAs (miRNAs) function as important genetic regulators during growth, development, 

and cellular processes. Circulating miRNAs, cell free or contained within exosomes, have been 

detected in all bodily fluids, including plasma. These excreted molecules are not well-understood 

and may reflect a physiological phenotype, or exert a regulatory function. To develop a means for 

examining the impact of circulating miRNA function on beef cattle phenotypes, we assessed 

parameters important for isolation of miRNAs from plasma and subsequent high-throughput 

expression analysis on a real-time quantitative RT-PCR microfluidics platform. . These methods 

will facilitate economical expression analysis of circulating microRNAs and their potential 
association with health status and carcass and meat quality traits in livestock. 

 

INTRODUCTION 

 MicroRNAs are small (~17-27nt) RNA molecules that function as molecular rheostats to 

regulate gene expression as part of many physiological processes. These molecules regulate the 

function of entire networks of genes, increasing the complexity of genetic mechanisms (Jeffries et 

al. 2010). Several miRNAs are known to regulate skeletal muscle phenotypes, and their 

differential expression within muscle may reflect response to exercise or even variation in activity 

(Dawes et al. 2015, Margolis et al. 2016). Recent studies show that circulating miRNAs may 

reflect health status or response to diet (Ioannidis and Donadeu 2016; Muroya et al. 2016). . Thus, 

we expect that circulating miRNAs can be applied to beef cattle production as informative 
diagnostic tools for interrogating mechanisms important for muscle growth and fat deposition. 

 Our overall objective is to develop genomic tools that are directly applicable for food animal 

research. Our specific interest is to accurately measure and evaluate miRNA expression in 

peripheral blood and apply this tool for improvement of meat quality. During plasma isolation, 

lysis of erythrocytes (Kirschner et al. 2011, 2013), leukocytes (Al-Soud and Radstrom 2001) or 

activated thrombocytes (Osman and Falker 2011) can release non-target miRNAs, or iron from 

hemoglobin or lactoferrin into the plasma, potentially altering expression profiles or inhibiting RT-

PCR. In this paper we address critical parameters for experimental handling and processing of 

plasma from steers on feed for isolation of intact cell-free miRNAs, free of contaminating RNA 

transcripts or agents inhibitory to downstream analysis. This approach is a necessary first step to 

enable quantitative analysis of these miRNAs, and their potential relationship to carcass traits.  

 

MATERIALS AND METHODS 

Animals, sample collection and processing. Animal handling and sample collection procedures 

were approved by the Texas A&M Animal Care and Use Committee (AUP #2008-234). . Blood 

was collected by venipuncture (Vacuette® 18 ga x 1.5 inch needles, Greiner Bio-One North 

America, Monroe, NC) into 10 ml BD Vacutainer® tubes containing K2-EDTA (PN 366643, BD 

Diagnostics, Franklin Lakes, NJ). To assess the effect of handling, an initial pilot study was 

conducted. Four tubes of blood were collected from a single jugular puncture of 4 Angus steers. . 

All tubes were gently inverted 10 times immediately after collection. One tube from each set was 

shaken vigorously to mimic improper handling. Tubes were held at 4°C until processed. Blood in 
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“control” tubes and shaken tubes were processed within 2h of collection. The remaining 2 tubes 

from each steer were held and processed at 30h and 52h post-collection, respectively.  

 In a second study, a single tube of blood was collected from each of 88 cross-bred steers every 

28d over a period of 7 months, beginning when the steers were approximately 12 months of age. 

Samples were kept cool and transported to the laboratory within 6 hours. Tubes of blood were 
centrifuged at 1300 x g for 10 min. Plasma was removed with care to avoid disturbing the buffy 

coat layer, transferred to clear, 1.5 ml tubes, and stored as 500 l aliquots at -80°C. 
Assessment and quantification of hemolysis. Hemolysis was assessed visually and quantified by 

spectrophotometry, according to the scale in Figure 1. This scale was adapted from a clinical 

laboratory protocol (http://bit.ly/2kcSm3H). Spectrophotometry was conducted as described by 

Kirschner et al. (2011, 2013), on a Bio-Rad 680 Microplate Reader (Hercules, CA).  
 

 
Figure 1. Representation of varying levels of hemolysis in bovine blood, ranked left to right as 

Clear, Slight hemolysis, Some hemolysis, Moderate hemolysis, or Severe hemolysis.  

 

MicroRNA isolation and qRT-PCR. Procedures were conducted according to manufacturer’s 

recommendations (Exiqon, Inc., Woburn, MA). MicroRNA was extracted from 500 l plasma 
with the miRCURY™ RNA Isolation Kit-Biofluids (Exiqon). Plasma miRNA was quantified by 

fluorometric analysis (Qubit® microRNA Assay Kit, Qubit® 2.0 fluorometer, ThermoFisher). 

Extracted miRNA was reverse-transcribed (RT) into cDNA with the Universal cDNA Synthesis 

Kit II (Exiqon). Quantitative RT-PCR reactions (10 µl) contained 1x ExiLENT SYBR® Green 

master mix (Exiqon), 1x ROX (Life Technologies, Carlsbad, CA,), 1 µl primer mix and 2 µl 

diluted template cDNA. Primers for hsa-miR23a-3p and hsa-miR-451A (PN 204772 and 204734) 

were used for initial assessment of hemolysis. Amplification was carried out in the ABI 7900HT 

thermal cycler in 9600-emulation mode (Applied Biosystems, Inc., Foster City, CA).  

 

Microfluidic qRT-PCR. A custom panel of 96 microRNA assays was created (Pick & Mix Panel 

for Fluidigm, PN 203899, Exiqon), to contain specific miRNAs expected to be present in plasma, 

or have relevance for muscle growth, fat deposition, and meat quality. Reverse transcription, 

specific target preamplification (STA) and microfluidic qPCR reactions were performed according 

to Exiqon’s Fluidigm-BioMark recommended protocol (http://bit.ly/2ke3TUF). Plasma RNA input 

for RT was increased to 8 µl. Samples from severely hemolyzed plasma were excluded from 

further processing. As a positive control, cDNA prepared from miRNA extracted from longissimus 

muscle was included on the array, with several negative control samples. Amplification was 

carried out in 96.96 Dynamic Array™ Integrated Fluidic Circuits (IFC) for Gene Expression (PN 

BMK-M-96.96, Fluidigm, San Francisco, CA) on a Biomark HD thermal cycler. Raw 

amplification data were analyzed with Sequence Detection System software (SDS v.2.2.2, Applied 
Biosystems) or Real-Time PCR Analysis software for Biomark (Fluidigm), as appropriate.  

 

RESULTS 

Blood collection and handling procedures influence risk of hemolysis. Visual assessment of the 

pilot study samples confirmed that hemolysis increased if samples were handled roughly or initial 

processing was delayed. Shaking produced slight and moderate hemolysis and increased holding 

time greatly increased hemolysis compared to the control samples. In the main study, few samples 
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were moderately to severely hemolyzed when processed within 6 hours of collection. In cases 

where blood flow into the collection tube was slow, or venipuncture required more than one 

attempt, moderate to severe hemolysis was likely (11 of 13 records).  

 

Effect of hemolysis on amplification of circulating microRNA. For 7 steers, plasma samples 
were collected over the course of the study that covered nearly the full range of hemolysis (slight 

to severe). Free hemoglobin was quantified by spectrophotometry in this subset of 28 samples 

(Figure 2A). Based on the spectrophotometric analysis, samples scored for hemolysis in the range 

from clear to moderate on our scale were expected to be acceptable for expression analysis. 

Blondal et al. (2013) reported that hemolysis could also be evaluated by qRT-PCR analysis of 

miRNAs miR-23a and miR-451. They found expression of miR-23a to be relatively stable in the 

cell-free fraction. Because miR-451 is enriched in erythrocytes, an increase in the ratio of miR-451 

to miR-23a concentration would indicate hemolysis. Expression of miR-451 and miR-23a in this 

set of samples was evaluated by quantitative RT-PCR. The difference in threshold cycle quantity 

(delta Ct) was calculated as described by Blondal et al. (2013) and expression measured by qRT-

PCR was reduced in the severely hemolyzed group (Figure 2B). Based on these results severely 

hemolyzed samples were omitted from the microfluidic qPCR experiment.  

 
 
 
 
 
 
 

Figure 2. (A) Free hemoglobin in plasma, measured by spectral absorbance at 414 nm and expressed as 

a ratio of absorbance compared to a clear reference sample. (B) ΔCt (miR-23a-3p – miR-451a). 

Severely hemolyzed samples exhibited a 1.8-fold increase in contaminating miRNA abundance 

compared to those scored as slight (p<0.05). 

 

Microfluidic qPCR. Amplification was visually assessed on heat maps for each IFC, and UniSP2 

and UniSp6 spike in controls were verified. Seventy-six miRNA assays amplified in at least 1 

sample type; 59 amplified cDNA from both plasma and skeletal muscle, 7 amplified only plasma, 

and 10 amplified only muscle. Poor signals or amplification failure was observed for 17 miRNA 
assays. MicroRNAs are not abundant in plasma and recovery can be somewhat variable (Brunet-

Vega et al., 2015). Modification of the protocol to increase the input volume resulted in 

amplification signal sufficient for quantification on the Fluidigm IFC platform. While expression 

was expected to vary across the 240 experimental samples extracted from plasma samples, 

amplification signal was detected for all 68 assays. Expression failed across all assays for only 2 

samples. In 17% of the samples, amplification signal was weak and expression was detected for 

less than a third of the assays. However, hemolysis status (clear to moderate) was not correlated 

with general amplification robustness.  

 

DISCUSSION 

Proper handling reduces likelihood of plasma hemolysis. Clinical recommendations for human 

blood collection suggest use of a 21 ga needle, filling the tube to proper capacity, gentle inversion, 
maintaining ambient temperature between collection and processing, and timely processing (within 

2-4 hours) to separate the plasma from the cells (Tuck et al. 2009). We found that use of 18 ga 

needles for cattle, with gentle handling of blood tubes and storage to protect from high heat was 
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sufficient for suitable plasma collection for microRNA isolation. Storage on ice was avoided to 

prevent activation of platelets, release of miRNA, and contamination of the cell-free fraction 

(Osman and Falker 2011). Our results indicate prompt processing may be the most important 

factor in handling, and that plasma should be processed within 6 hours of collection. . 

 
Severe hemolysis may impact data negatively. Several studies have reported methods of 

quantifying hemolysis and the effect of hemolysis on downstream analysis (Blondal et al. 2013; 

Kirschner et al. 2011, 2013). We found that severe hemolysis did alter RT-PCR amplification. By 

restricting sample quality to hemolysis scored no greater than “moderate,” we found that 

expression measurement via the Fluidigm platform was not inhibited by low level hemolysis.  

 

Significance. This is, to our knowledge, the first description of methodology for use of the 

Fludigm microfluidics platform expression analysis of circulating microRNAs in biofluids from 

cattle. Adaptation of a protocol for analysis of microRNA from plasma (Exiqon) resulted in 

sensitivity sufficient for this platform. This method provides an economical tool to enable PCR-

based high-throughput expression analysis of microRNAs. These results are a first step toward 

systematic evaluation of circulating microRNAs that may play important regulatory roles on 
growth and development. While not a discovery technique such as RNA-sequencing, this type of 

approach provides a relatively simple and more economical method for analysis of low-abundance 

targets over time. We anticipate that investigation of expression patterns of circulating miRNA in 

relation to carcass and meat quality traits may result in key insights for regulation of muscle 

growth and fat deposition. Importantly, we expect this approach will provide a new tool for 

improving meat quality and other desirable phenotypic traits. 

 

ACKNOWLEDGMENTS 
 We thank Maisie Llewellyn and Dustin Therrien for technical assistance, and Barbara R. Gould 

and Ken Taylor at Exiqon, Inc., for technical advice and enthusiastic support. Financial support 

was provided, in part, by the Beef Competitiveness Exceptional Item funding from the Texas 
legislature. 

 

REFERENCES 

Al-Soud W.A. and Radstrom P. (2001) J. Clin. Microbiol. 39: 485. 

Blondal T., Jensby Nielsen S., Baker A., Andreasen D., Mouritzen P., et al. (2013) Methods 59: 

S1. 

Brunet-Vega, A., Pericay C, Quilez M.E., Ramirez-Lazaro M.J., Calvet X., et al. (2015) Anal. 

Bioch. 488:28-35. 

Dawes M., Kochan K.J., Riggs P.K., and Lightfoot J.T. (2015) Physiol Res 3:e12469. 

Ioannidis J. and Donadeu F.X. (2016) BMC Genomics 17: 184. 

Jeffries C.D., Fried H.M., Perkins D.O. (2010) Int. J. .Biochem. Cell Biol. 42:1236. 

Kirschner M.B., Kao S.C., Edelman J.J., Armstrong NJ, Vallely M.P., et al. (2011) PLoS ONE 6: 
e24145. 

Kirschner M.B., Edelman J.J., Kao S.C., Vallely M.P., van Zandwijk N. et al. (2013) Front. 

Genet. 4: 94. 

Margolis L.M., Lessard S.J., Ezzyat Y., Fielding R.A., and Rivas D.A. (2016) J. Gerontol. A. Biol. 

Sci. Med. Sci. glw243. doi: 10.1093/gerona/glw243 

Muroya S., Shibata M., Hayashi M., Oe M. and Ojima K. (2016) PLoS ONE 11: e0162496. 

Osman A. and Falker K. (2011) Platelets 22: 433. 

Tuck M.K., Chan D.W., Chia D., Godwin A.K., Grizzle W.E., et al., (2009) J. Proteome Res. 8: 

113. 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:473-476 

473 

BREED VARIATION IN TONGUE COLOUR OF DAIRY AND BEEF-CROSS-DAIRY 
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SUMMARY 

Both Angus-cross and Holstein-Friesian-cross-Jersey cattle may have a completely black coat 

colour, making it difficult to identify breed of newborn calves when Angus bulls are used in New 

Zealand dairy herds. Holstein-Friesian cattle possess a white spotting gene causing non-

pigmentation in coat colour and a pink coloured tongue, whereas Angus cattle have black tongues. 

The objective of this experiment was to identify whether tongue colour could be a useful predictor 

of breed in Angus-cross-dairy and dairy-breed calves. Tongue colour of 476 calves soon after birth 

was classified as being pink, black or pink and black spotted. The conditional probability of a calf 

with a black tongue being Angus-cross was 0.95 and dairy breed 0.05. The conditional probability 
of a calf with a pink tongue being dairy breed was 0.85 and Angus-cross 0.15. Culling calves 

solely on having a black coloured tongue would correctly cull 73% of Angus-cross calves, and 

retain 90% of dairy-breed calves. Culling calves on possessing a black or pink and black tongue 

would correctly cull 96% of Angus-cross calves, but also cull 38% of dairy-breed calves. Breed 

identification on tongue colour alone is insufficient to correctly identify the breed of calves from a 

New Zealand dairy herd.  

 

INTRODUCTION 

If a dairy farmer uses a beef bull to increase value of surplus calves, it can be difficult for the 

farmer to identify the breed of calves born, so as to retain only dairy-breed calves as replacements. 

Of beef bulls used in the New Zealand dairy herd, the main breed is Hereford (DairyNZ 2016), in 
part because the resulting calf will have a white face, making the beef-cross calf easy to identify. 

When an Angus bull is used, the resulting calves are usually completely black, and they look 

similar to Holstein-Friesian-cross-Jersey and some Holstein-Friesian calves. Other phenotypic 

factors might be useful to identify these calves.  

The New Zealand dairy herd is comprised predominantly of Holstein-Friesian (33.5%), Jersey 

(10.1%) and Holstein-Friesian-Jersey crossbreed (47.2%) (DairyNZ 2016). In New Zealand, dairy 

cows, a straight-bred cow is defined as having ≥14/16 of any one breed’s genetics (DairyNZ 

2016).  Therefore, a cow classified as Holstein-Friesian may have up to 2/16 Jersey genetics.  

Previous authors have reported using colour of coat markings, ears and noses in cattle and 

sheep to identify different genotypes (Pitt 1920, Dry 1924, Ibsen 1933, Dry 1936, Bogart & Ibsen 

1937). Coat and tongue colour of straight-bred cattle have been previously investigated (Ibsen 

1933). Straight-bred Angus cattle have a completely black coat, with black skin and a black tongue 
(Ibsen 1933). Straight-bred Holstein-Friesian cattle have a black coat with white patches on the 

body, white legs below the knee and a pink tongue (Ibsen 1933). Ibsen (1933) proposed that the 

pink tongue was a result of the animal being homozygous for a recessive white-spotting gene. 

Straight-bred Jersey cattle are a diluted shade of red with blackened hairs, and black pigmentation 

on the skin, nose and tongue. The black pigmentation is the result of a dominant black spotting 

gene (Ibsen 1933). In the same paper, Ibsen proposed that some Jersey cattle also carry the 

Holstein-Friesian white-spotting gene. Based on Ibsen’s theories, an Angus-cross-Holstein-

Friesian or Angus-cross-Jersey animal would be expected to be completely black with a black 

tongue, and black pigmentation on the skin. A Holstein-Friesian-Jersey-cross animal could have a 
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coat colour ranging from the Holstein-Friesian type black with white patches, to a black coated 

animal with little to no white patches. The tongue colour of a Holstein-Friesian-Jersey-cross would 

be expected to be pink, pink with black spotting or completely black due to the black spotting 

gene. The objective of this study was to identify whether tongue colour could be used to identify 

the breed of calves born from a dairy herd mated to both Angus and dairy bulls, for the purpose of 
keeping the dairy calves, and culling the calves sired by an Angus bull.   

  

MATERIALS AND METHODS 

The experiment was conducted at Limestone Downs dairy farm in Port Waikato New Zealand, 

with approval from the Massey University Ethics Committee.  

Four hundred and seventy-five calves born on the farm during the calving period in 2016 were 

used in this experiment. Calves were born to cows in a predominantly Holstein-Friesian and 

Holstein-Friesian-cross-Jersey herd, and sired by an Angus, Jersey or a Holstein-Friesian bull. 

Calves were identified to dams by the farmer at the time of calf removal, within 24 hours of birth. 

Calves were identified as being an Angus-cross (n=347), Jersey-cross (n=80), or Holstein-

Friesian-cross (n=48) by visual assessment of the animal and through mating records for the 

probable dam. Visual assessment of the animal consisted of looking at coat colour, physical shape 
and checking if the calf was polled. The calves suspected of being Angus or Jersey-cross were 

sampled for DNA parentage analysis (Zoetis, Dunedin, New Zealand). Breed was DNA verified 

for the Angus-cross and Jersey-cross calves by assigning parentage to a bull of the respective 

breed. 

Tongue colour was recorded at the time of visual assessment. Colour was assessed by opening 

the mouth of the calf and looking at the top of the tongue. Colour was recorded as being either 

completely pink, completely black or having a combination of black and pink patches (spotted). 

No attempt was made to quantify the proportion of pink and black for calves with spotted tongues. 

The probability of a calf being a particular breed based on the colour of its tongue was 

calculated using conditional probability. For example, the probability of a calf being Angus-sired 

given it had a black tongue was calculated using the equation for conditional probability:  
 

𝑃(𝐴𝑛𝑔𝑢𝑠|𝑏𝑙𝑎𝑐𝑘 𝑡𝑜𝑛𝑔𝑢𝑒) =
𝑃(𝐴𝑛𝑔𝑢𝑠 ∩ 𝑏𝑙𝑎𝑐𝑘 𝑡𝑜𝑛𝑔𝑢𝑒)

𝑃(𝑏𝑙𝑎𝑐𝑘 𝑡𝑜𝑛𝑔𝑢𝑒)
 

 

where 𝑃(𝐴𝑛𝑔𝑢𝑠 ∩ 𝑏𝑙𝑎𝑐𝑘 𝑡𝑜𝑛𝑔𝑢𝑒) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑛𝑔𝑢𝑠 𝑐𝑎𝑙𝑣𝑒𝑠 𝑤𝑖𝑡ℎ 𝑏𝑙𝑎𝑐𝑘 𝑡𝑜𝑛𝑔𝑢𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑙𝑣𝑒𝑠
  

 

and 𝑃(𝑏𝑙𝑎𝑐𝑘 𝑡𝑜𝑛𝑔𝑢𝑒) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑙𝑣𝑒𝑠 𝑤𝑖𝑡ℎ 𝑏𝑙𝑎𝑐𝑘 𝑡𝑜𝑛𝑔𝑢𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑙𝑣𝑒𝑠
. 

 

RESULTS  

Seventy-three percent of Angus-cross calves possessed a black coloured tongue, while only 

10% of dairy calves had a black tongue. Holstein-Friesian-cross calves had a lower occurrence of 

black tongues than Jersey-cross calves (6% and 13% respectively, Table 1). A calf with a black 
tongue was highly likely (95%) to be Angus and only 1% or 4% likely to be Holstein-Friesian- or 

Jersey-cross respectively (Table 1).  
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Table 1: Proportion (%) of calves within each sire breed with each tongue colour, and the 

conditional probability of a calf possessing a specific coloured tongue being each breed. 

Dairy breed comprised of Jersey and Holstein-Friesian sired calves (individual breeds in 

italics) 

 

Sire Breed 

 Black Tongue (B) Spotted tongue (S) Pink Tongue (P) 

n 
Proportion 
of breed 

P (breed | 
B tongue) 

Proportion 
of breed 

P (breed | 
S tongue) 

Proportion 
of breed 

P (breed | 
P tongue) 

Angus 347 73 0.95 23 0.70 4 0.15 
Dairy 128 10 0.05 27 0.30 63 0.85 
Jersey 80 13 0.04 34 0.23 54 0.46 
Holstein-Friesian 48 6 0.01 17 0.07 77 0.39 

 

A pink coloured tongue was the most common colour for dairy calves (63%) with Holstein-
Friesian-cross calves having a 77% incidence and Jersey-cross having a 54% incidence of pink 

tongues (Table 1). Pink was the least common tongue colour in Angus-cross calves (4%, Table 1). 

A calf with a pink tongue was most likely to be Holstein-Friesian- (39%) or Jersey-cross (46%), 

but still had a 0.15 probability of being Angus-cross (Table 1).  

A spotted tongue was more common in Jersey-cross (34%) and Angus-cross (23%) calves than 

Holstein-Friesian-cross (17%) calves (Table 1). Calves with tongues showing pink and black 

spotting had a greater probability of being an Angus-cross (0.7) than a dairy-cross (0.3) breed 

(Table 1). The calves with a spotted tongue had a greater probability of being a Jersey-cross (0.23) 

than a Holstein-Friesian-cross (0.07) calf (Table 1).  

The number of calves with spotted tongues from all three breeds raises a question of whether 

spotted tongue calves should be culled or kept when imposing tongue colour as a culling criterion. 

If Holstein-Friesian-cross and Angus-cross calves were to be identified solely on tongue colour, 
and any calf with a black tongue was culled, this experiment indicates that 94% of Holstein-

Friesian-cross calves would be correctly retained, however, 27% of Angus-cross calves would also 

be retained as replacement dairy calves (Table 2). If tongue colour were to be used to identify 

calves as dairy (Holstein-Friesian- and Jersey-cross) or Angus-cross, culling all calves with a black 

tongue would unnecessarily cull 10% of dairy breed calves (Table 2).  

If calves were to be culled if they had a black, or a spotted tongue, this study suggests 96% of 

Angus-cross calves would be correctly identified, along with 23% of Holstein-Friesian-cross 

calves unnecessarily culled (Table 2). When identifying calves as Angus-cross or dairy, the 

percentage of dairy breed calves unnecessarily culled would be 38% (Table 2).  

 

Table 2: Comparison of the chance of keeping or culling a calf on tongue colour given the 

sire-breed. Sensitivity is the proportion of correctly kept Holstein-Friesian or dairy 

(Holstein-Friesian and Jersey) calves. Specificity is the proportion of correctly culled Angus 

calves 

 
 Culling on black tongue only Culling on black or spotted tongue 

Holstein-Friesian Angus Holstein-Friesian Angus 

Keep 0.94 0.27 0.77 0.04 
Cull 0.06 0.73 0.23 0.96 

 Dairy Breed Angus Dairy Breed Angus 

Keep 0.90 0.27 0.63 0.04 
Cull 0.10 0.73 0.38 0.96 
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DISCUSSION AND CONCLUSION 

Angus-cross calves are more likely to have black tongues and less likely to have pink tongues 

than dairy calves, however, the high incidence of calves in all breeds with a spotted tongue means 

that either keeping or culling those with a spotted tongue resulted in a large proportion of falsely 

identified calves.  
The cows in the dairy herd used to produce the calves varied in proportion of Holstein-Friesian 

and Jersey genetics. There are a small number of cows in the herd which have breeds other than 

Holstein-Friesian and Jersey in their pedigree, and not all cows have a fully recorded pedigree. 

Consequently, the full pedigree of each calf cannot be identified, and it is likely that differing 

proportions of Holstein-Friesian and Jersey genes contribute to the different tongue colours 

observed.  

In reference to Ibsen (1933), there is clearly a relationship to Angus having a black colouring 

gene and possessing a black tongue. However, 23% of Angus calves had a spotted tongue, which 

may indicate that tongue colour is more affected by the white-spotting gene from the Holstein-

Friesian genetics, than the coat colour is. There were 4% of Angus-cross calves possessing a pink 

tongue, which may be a result of extreme white-spotting, as the tongues were assessed in vivo it 

cannot be said with certainty that there were no black spots deep in the mouth.  
There was one Angus bull used in the experiment, of which 5 of its 10 progeny had a pink 

tongue, therefore, it is likely that this bull was bred up, and carrying a recessive gene for white 

spotting. Ibsen (1933) hypothesised that the black-spotting gene causing black tongues in Jersey 

cattle is dominant over the Holstein-Friesian white-spotting. While this may be true of the 5 white 

points (four feet and forehead) typical of a Holstein-Friesian being black pigmented in the 

crossbreed, the theory does not hold up with pigmentation of the tongue. The results from this 

study suggest that inheritance of tongue colour is more complicated than suggested by Ibsen 

(1933).  

The results of this study suggest that tongue colour may provide useful clues for breed 

identification because black tongue calves were highly likely to be Angus-cross and pink tongue 

likely to be dairy calves. It was not infallible however, and the occurrence of spotted tongues 
raised an issue of whether to keep or cull the calf, as spotted tongues were no more likely to be 

Angus-cross than dairy. Although it is not reliable as a sole indicator, tongue colour could be 

combined with other visual assessments to help inform cull/keep decisions.  
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SUMMARY 

Fertility is a major driver of productivity and profitability in many livestock production systems.  

This has inspired a search for mutations with large effects on fecundity.  In sheep, at least seven 

such mutations have been reported.  In cattle, mutations with large effects on these traits seem much 

rarer.  In this study, the hypothesis that there are mutations of large effect for fecundity (specifically 
twinning rate) segregating in a population of cattle with an unusually high frequency of twining was 

tested.  Sixty seven cows in the population, with two years of records of number of calves born per 

pregnancy, were genotyped with 632K genome wide SNP.  In a genome wide association study, no 

evidence was found for mutations of very large effect on twinning rate (the study had 50% power to 

detect a mutation explaining 30% of the variance explained at P<5x10-8).  However, the substantial 

increases in twinning rate over time as a result of selection achieved in the Ivanhoe herd 

demonstrates that improvement in this trait is possible, and this might be accelerated by genomic 

selection.                  

 

 

INTRODUCTION 

Fertility is a major driver of productivity and profitability in many livestock production systems.  
This has inspired investigation into the genetic architecture of fertility and it’s component traits – if 

mutations of large effect are found, and these mutations do not have other deleterious effects (such 

as on survival), these mutations might be increased in frequency to improve fertility of the 

population.  In sheep, at least seven mutations with large effects on fecundity (number of offspring 

per dam) have been reported (Davis 2004).  For example, the high fecundity of Booroola merino 

sheep, results from a mutation (FecB) in the bone morphogenetic protein receptor 1B (BMPR-1B) 

gene (Wilson et al., 2001; Souza et al., 2001, Mulsant et al., 2001) (Bb versus bb effect of +7 lambs, 

Bindon 1984).  The high fecundity of Inverdale Romney sheep is due to a mutation (FecXI ) in the 

bone morphogenetic protein 15 (BMP15) gene (Galloway et al., 2000) (iI versus ii effect of 0.6 

lambs).  In cattle, there is only a single report of a mutation with a large effect on ovulation rate, and 

on the rate of twins and triplets (Kirkpatrick and Morris 2015). Although some QTL regions with 
small effects were identified in Norwegian Red and Holstein cattle (Meuwissen et al. 2002, Bierman 

et al. 2010).  The paucity of studies reporting mutations of large effect might be a result of the very 

low frequency of twins in most cattle populations. This in turn may mean mutations of large effects 

are at very low frequency and therefore hard to identify.  For example, the mutation reported by 

Kirpatrick and Morris (2015) appears to occur only within a single sire family.         

In this study, the hypothesis that there are mutations of large effect for fecundity (specifically 

twinning rate) in a population of cattle with an unusually high frequency of twining was tested.    

  

MATERIALS AND METHODS 

The cattle population was located at “Ivanhoe”, Cavendish, Victoria.  The herd was established 

by importing US Meat Animal Research Center (USMARC) Nebraska, Twinner genetics in 2004.  
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The USMARC Twinner line has been selected for increased twinning rate for over 30 years and had 

a calving rate of 1.56 per parturition in 2004 (Echternkamp et al 2007). 

Sixty seven cows from the herd were selected for genotyping, with the criteria of at least two 

pregnancies in two years and a range of litter sizes from one in both years to twins in both years.  

The 67 cows were genotyped with the Bovine HD Array (Illumina, San Diego).  Quality control 
included use of the Illumina GenCall score, genotype calls with <0.6 were excluded, and SNP with 

multiple or missing map positions were excluded.  632003 SNP remained after quality control as 

described by (Erbe et al. 2012). 

Phenotypes were for each cow’s number of calves born alive (2014) and number of foetuses in 

late pregnancy (2015).  For each cow, the two numbers were averaged to get the phenotype that was 

analysed.  A previous study demonstrated a broadly similar trait had a repeatability across years of 

0.30 (Gregory et al. 1990).  The distribution of the phenotype is given in Table 1. 

Table 1.  Distribution of number of singles, twins and triplets for sixty seven genotyped 

cows across two years in the Ivanhoe herd.   

 

   *Only calved in 2015 

   
A genome wide association study was conducted fitting each SNP in turn, simultaneously with 

the genomic relationship matrix among the cows to control for population structure, using EMMAX 

(Kang et al. 2014), with the model 𝒚 = 𝜇 + 𝒙𝑏 + 𝒁𝒖, where y is a vector of the phenotypes, µ is the 

mean, x is vector of SNP genotypes, with genotypes coded as 0 (homozygote first allele), 1 

(heterozygote) or 2 (homozygote alternate allele), -2*p, where p is the frequency of the first allele, 

b is the effect of the SNP, Z is matrix allocating records to animals, and u is a vector of polygenic 

breeding values, where u~N(0,Gσg
2), with G the genomic relationship matrix among animals 

constructed as described by VanRaden (2008).  The heritability of the phenotype was estimated in 

the same analysis. 

 

RESULTS AND DISCUSSION 
The heritability of the fecundity phenotype was 0.12±0.24.  This study is too small to estimate 

heritability, as evidenced by the large standard error.  It is perhaps encouraging that the heritability 

is not zero, and our estimate was close to other estimates (eg 0.06, Gregory et al. 1990).   

There was no evidence for mutations of large effect, Figure 1.  No SNP had P-values lower than 

the significance threshold corrected for multiple testing (of 630K SNP), which was 5x10-8.   

The major limitation of this study is clearly the small number of cows genotyped.  This means 

the study only had the power to detect mutations of very large effect. The study had 50% power to 

detect a mutation explaining 30% of the variance at P<5x10-8.  There are actually some examples of 

mutations of large effect detected in even smaller cohorts, including a mutation resulting in 4 horns 

in sheep (Ockert et al. 2016), and mutations associated with ridge back phenotypes in dogs (Salmon 

Hillbertz NHC, et al. 2007).  Kirkpatrick and Morris (2015) detected a mutation with a large effect 
on bovine ovulation rate in only 131 animals.  It can only concluded, from these results, there is no 

evidence for mutations of really large effect on twinning segregating in the high twinning rate 

population studied here.  Mutations of more modest effect are not ruled out by this study, though it 

will require much larger numbers of genotyped and phenotyped cows to detect these.  

 

Calvings Number of cows Phenotype 

Singles both years 26 1 

Single one year and twins one year 27 1.5 

Twins both years 12 2 

Twins one year and triplets one year 1 2.5 

Triplets one year* 1 3 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:477-480 

 

479 

 
Figure 1. Genome wide association study for number of calves born per calving, with 632003 

SNP.  SNPs are grouped by chromosome, odd numbered in red and even in blue.    

 

 

There are at least two implications can be drawn from these results.  One is that increasing 

fecundity in cattle is unlikely to be as simple as introgressing a single mutation – the trait appears to 

be polygenic at least in this population - so improvement will require phenotypic selection, selection 

with EBVs for twinning rate or genomic selection.  Another interesting implication is that these 
findings do not point to any obvious targets for genome editing (for example with CRISPR/CAS9), 

if the aim of the editing was to improve fertility. 

The USMARC Twinner selection program, from which the population used in this study was 

derived, made remarkable progress in increasing ovulation rate and twinning rate, demonstrating the 

traits have a genetic component, and they are now a unique line of cattle. They have also been 

demonstrated to have suitable growth and carcass characteristics for beef production in American 

systems (Gregory et al 1996).  So the absence of a major effect mutation obviously does not preclude 

improvement for twinning rate, and outcrosses of USMARC Twinners with other cattle are likely to 

produce moderate increases in twinning rate, which could be further increased by suitable selection 

programs. It has been previously demonstrated that twinning could lead to large increases in 

production and should be manageable in the temperate climatic zones with smaller farms and better 

pastures (Cummins et al 1992 and Cummins et al 1994). The major issue is the requirement for a 
moderately increased supervision input at calving time, which can be assisted by ultrasound 

scanning of foetal numbers. At Ivanhoe, the USMARC Twinners have been managed on a 

commercial basis since 2004 and over the 10 years, the twinning rate is 24% per cow mated 

(Cummins et al 2015). The weaning weight (at about 8 months of age) of twin born calves is about 

80% of the weaning weight of single born calves. Within this herd, being born a twin did not reduce 

the pregnancy rate in 15 month old heifers (Cummins and Cummins 2016). 

In conclusion, given the polygenic nature of twining rate in this and most other cattle populations, 

genomic selection or EBV selection is the best strategy, if increased twinning rates are desired and 

the production system is suitable. 
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SUMMARY 

Genetic parameters associated with growth, carcass traits and primal cut yields of 1,098 Korean 

Hanwoo cattle were investigated using medium density (50k) SNP data. The growth and carcass 

traits considered in the present study included body weights at different ages (6, 12, 18 and 24 

months), cold carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT) and 

marbling score (MS). Primal-cut yield (percent of carcass weight; composed of both unique and 

composite meat cuts from the forequarters and hindquarters) included the yields of chuck (CHK), 
shoulder (SLD), brisket and flank (BAF), ribs (RIB), tenderloin (TLN), striploin (STLN), sirloin 

(SLN), top round (TRND), round (RND), fore- and hind-shins (FHS), total primal cut (TPC) and 

Meat %. Heritabilities for traits were all moderate to high, ranging from 0.24 for WT6m to 0.71 for 

RND. All of the genetic correlations were positive to varying degrees except those between EMA 

and BFT, and MS and BFT. Genetic correlations among the primal cuts ranged from 0.46±13 (CHK 

and RIB) to 0.98±13 (TRND and FHS). Except for RIB (-0.29±13), all the other primal cuts had 

moderate positive genetic correlations with meat yield percentage. 

 

INTRODUCTION 

Hanwoo is the most important cattle in Korea and its history traces back 5,000 years. In Korea, 

it is highly sought after by consumers at premium prices. Both quality and yield determine the 

carcass’ grade and, consequently, its price. Marbling is the major qualitative factor that determines 
the carcass’ grade and drives most of the profit in the Korean beef industry. However, other 

important traits have received less attention such as yearling weight which influences both meat 

quality and quantity, and the yields of the primal cuts that command premium prices. Differences in 

price exist between different primal cuts and large variation in yield of the primals within each grade 

has been reported (Moon et al. 2003). This variation affects the accuracy of the estimates of grading 

and consequently there is significant averaging in the payment system. Thus, grading based on 

carcass weights may not reflect the differences within the carcass primal cuts.   

Selection for weight of primal cuts requires genetic parameters for these traits as well as other 

traits that may be used as selection criteria. Few studies have reported genetic parameters for 

Hanwoo carcass traits and no report to date has used genomic data to estimate these parameters. In 

this study, we summarize estimates of genetic parameters for several traits including weight at 
different ages (6, 12, 18 and 24 months), back fat thickness, eye muscle area, marbling score, carcass 

weight and different primal-cut weights of Korean Hanwoo cattle using medium density SNP data. 

 

MATERIALS AND METHODS 

Animals and Traits. The present study analysed the records of 1,092 Hanwoo males raised under 

the Korean National Hanwoo Cattle Improvement System from 1997 to 2013. Summary data of 

different traits are shown in Table 1.  

Statistical Analysis. Heritability of each trait was estimated using a univariate model in MTG2 

software (Lee and van der Werf 2016). As multi-trait (3 x 3 and more) analyses failed to converge, 

a series of bivariate analyses using MTG2 were used to calculate the genetic correlations between 
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the traits. Relationship among the animals were accounted for using a genomic relationship matrix 

(GRM) obtained from SNP data and fitted as a random effect in the model. Phenotypic correlations 

were calculated as the Pearson correlations between the residuals of the phenotypes after removing 

the fixed effects using a liner model in R. 

 

RESULTS AND DISCUSSION 

Summary statistics for the traits are presented in Table 1. Heritabilities for traits were all 

moderate to high, ranging from 0.24 for WT6m to 0.71 

for RND. Standard errors for the heritabilities ranged 

between 0.07 and 0.08. Our estimates of heritability 

differ from the estimates reported by (Choi et al. 2015). 

This may be due to differences in the models used for 

analysis and sample size. In our analysis, heritabilities 

were estimated using genomic data (GRM as random 

effect) whereas Choi et al. used pedigree information to 

estimate the heritabilities. Our heritability estimate for 

WT12m (0.29±0.07) was slightly lower than literature 
values ranging from 0.33 to 0.55 (Koots et al. 1994; 

Kemp et al. 2002). Our calculated CWT and EMA 

heritabilities were higher than reported in other 

literature (Kemp et al. 2002; Choi et al. 2015). The BFT 

heritability (0.48±0.08) of the present study was 

moderate and consistent with the reported BFT by  

(Reverter et al. 2000; Choi et al. 2015). In American 

Shorthorn cattle, (Pariacote et al. 1998) reported a 

similar value (0.46) for carcass fat thickness. Our 

estimate of MS heritability (0.56±0.08) was slightly 

higher than those reported in earlier studies ranging 
from 0.48 to 0.54. 

Significant variation in heritabilities were observed for the different primal cuts. For example, 

CHK and FHS had low heritability (0.34 and 0.32), whereas TRND and RND had higher heritability 

(0.70 and 0.71). However, all three loin weights had very similar heritabilities ranging from 0.49 

(TLN) to 0.51(STLN). It is difficult to directly compare these heritability estimates with literature 

values since the definition of primal cuts differ between studies. Nevertheless, in Irish cattle, (Pabiou 

et al. 2009) reported higher heritability for CHK, BAF and SLN, and lower heritability for STLN 

and RND, and similar heritability for RIB. In terms of meat percentage yield in the present study, 

our result was in line with the figure (0.42 to 0.47) reported by (Koots et al. 1994; Gregory et al. 

1995). The estimates of heritability for the primal cuts indicate that direct selection may exert a 

notable influence on traits and that such selection may be accurate because the h2 estimates of primal 

cuts are favourable. Table 2 presents the genetic and phenotypic (residuals) correlation between 
different weight and carcass traits. All of the genetic correlations are positive to varying degrees 

except those between EMA and BFT; and MS and BFT, which were statistically not different from 

zero. This may indicate that the traits are independent and genetically distinct. The genetic 

correlation between weight at different ages and CWT are very high ranging between 0.6 and 0.97, 

indicating that these traits are probably controlled by similar genes and selection for increased 

weight is very likely to increase carcass weight. However, selection for carcass traits does not 

necessarily translate into high meat yield percentage as indicated by the nearly zero correlation (-

0.08±0.13) between CWT and Meat % traits. Genetic correlation between EMA and the weight traits 

are medium and with each of BFT and MS are low to medium.

Table 1. Phenotypic mean, standard 

deviation and heritability with SE 

Trait Mean SD h2 (±SE) 

WT6m 169.07 31.08 0.24±0.07 
WT12m 320.91 41.27 0.29±0.07 

WT18m 483.93 52.08 0.39±0.08 
WT24m 634.86 67.66 0.48±0.08 
CWT 362.33 41.14 0.56±0.08 
EMA 81.28 8.72 0.49±0.07 
BFT 8.48 3.3 0.48±0.08 
MS 3.38 1.56 0.56±0.08 
CHK 12.94 3.71 0.34±0.07 
SLD 22.84 2.84 0.62±0.07 

BAF 27.92 4.95 0.38±0.08 
RIB 55.68 7.59 0.41±0.08 
TLN 5.8 0.79 0.49±0.08 
STLN 34.8 4.55 0.51±0.08 
SLN 7.46 1.08 0.50±0.08 
TRND 19.52 2.31 0.70±0.07 
RND 31.87 3.75 0.71±0.07 
FHS 14.46 2.61 0.32±0.08 
TPC 233.28 26.15 0.58±0.08 

Meat % 64.46 2.72 0.43±0.07 
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Table 2. Genetic correlation (above diagonal) and phenotypic correlation (below diagonal) with SE between weight and carcass traits 
Trait WT6m WT12m WT18m WT24m CWT EMA BFT MS 

WT6m - 0.86±0.05 0.72±0.09 0.63±0.11 0.6±0.11 0.4±0.15 0.15±0.16 0.27±0.15 
WT12m 0.86 - 0.94±0.03 0.86±0.04 0.81±0.05 0.51±0.12 0.17±0.15 0.27±0.14 
WT18m 0.7 0.89 - 0.97±0.02 0.92±0.02 0.58±0.1 0.28±0.13 0.28±0.13 
WT24m 0.61 0.81 0.91 - 0.96±0.01 0.6±0.09 0.23±0.12 0.31±0.12 
CWT 0.57 0.77 0.88 0.95 - 0.64±0.08 0.27±0.11 0.26±0.11 
EMA 0.28 0.4 0.49 0.54 0.6 - -0.09±0.13 0.33±0.11 
BFT 0.3 0.3 0.28 0.28 0.31 0.05 - -0.11±0.13 

MS 0.14 0.13 0.09 0.08 0.12 0.18 0.1 - 
 

Table 3. Genetic correlations with SE between weight at different ages, carcass traits and primal-cut yields 
Trait WT6m WT12m WT18m WT24m CWT EMA BFT MS 

CHK 0.37±0.18 0.61±0.14 0.61±0.12 0.59±0.11 0.67±0.09 0.58±0.11 -0.16±0.15 0.05±0.14 
SLD 0.45±0.13 0.68±0.09 0.73±0.06 0.76±0.05 0.82±0.04 0.70±0.07 -0.04±0.12 0.10±0.11 
BAF 0.44±0.16 0.61±0.12 0.73±0.09 0.85±0.06 0.86±0.06 0.60±0.10 0.00±0.15 0.15±0.14 
RIB 0.5±0.13 0.71±0.08 0.85±0.05 0.94±0.03 0.96±0.02 0.57±0.10 0.22±0.13 0.44±0.12 
TLN 0.59±0.13 0.8±0.08 0.76±0.07 0.76±0.06 0.76±0.06 0.60±0.09 -0.04±0.13 0.18±0.12 
STLN 0.52±0.13 0.68±0.08 0.76±0.06 0.83±0.04 0.87±0.03 0.81±0.05 0.03±0.13 0.43±0.11 
SLN 0.45±0.14 0.73±0.09 0.77±0.07 0.77±0.06 0.80±0.05 0.85±0.05 0.07±0.13 0.33±0.11 

TRND 0.4±0.13 0.62±0.09 0.75±0.06 0.81±0.05 0.86±0.04 0.77±0.06 -0.01±0.11 0.11±0.11 
RND 0.45±0.12 0.67±0.08 0.76±0.06 0.8±0.05 0.85±0.03 0.70±0.06 -0.05±0.11 0.20±0.11 
FHS 0.4±0.18 0.7±0.12 0.74±0.1 0.78±0.08 0.89±0.06 0.83±0.10 0.16±0.15 0.29±0.14 
TPC 0.51±0.12 0.75±0.07 0.85±0.04 0.91±0.02 0.96±0.01 0.76±0.06 0.05±0.12 0.28±0.11 
Meat% -0.21±0.16 -0.12±0.16 -0.15±0.14 -0.1±0.13 -0.08±0.13 0.47±0.12 -0.72±0.08 0.07±0.13 

 

Table 4. Phenotypic correlations between weight at different ages, carcass traits and primal-cut yields 
Trait CHK SLD BAF RIB TLN STLN SLN TRND RND FHS TPC Meat % 

WT6m 0.23 0.35 0.34 0.52 0.39 0.47 0.41 0.36 0.4 0.26 0.49 -0.22 
WT12m 0.35 0.57 0.49 0.68 0.55 0.65 0.57 0.55 0.6 0.44 0.7 -0.19 
WT18m 0.44 0.68 0.56 0.75 0.61 0.76 0.65 0.65 0.7 0.54 0.81 -0.17 

WT24m 0.47 0.74 0.63 0.82 0.65 0.82 0.69 0.71 0.76 0.58 0.89 -0.16 
CWT 0.53 0.8 0.65 0.86 0.69 0.88 0.74 0.76 0.81 0.61 0.94 -0.15 
EMA 0.47 0.58 0.43 0.46 0.54 0.69 0.68 0.61 0.6 0.42 0.66 0.2 
BFT -0.02 0.01 0.06 0.36 0.05 0.11 0.1 0.01 0.04 0.06 0.15 -0.48 
MS -0.05 -0.04 -0.12 0.23 0.09 0.2 0.13 -0.05 0.01 0 0.07 -0.13 
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In fact, BFT has very low correlation with the rest of the traits. The low correlations between CWT 

and each of BFT and MS were also reported in (Choi et al. 2015) 0.12 and 0.25 respectively, and in 

(Kemp et al. 2002) 0.17 and 0.27 respectively. Phenotypic correlations are also following very 

similar trend of genetic correlations but generally lower compared to the genetic correlations. 

Genetic and phenotypic correlations between weight and carcass traits with different primal cuts 
are given in Table 3 and Table 4 respectively. There is a clear trend of increase in genetic and 

phenotypic correlations between weights and different primal cuts as the cattle became older. The 

WT12m exhibited relatively stronger correlation with TLN and the CWT exhibited stronger 

correlation with STLN compared to other loin cuts. Choi et al. (2015) reported that CWT was more 

associated with the forequarters and WT12m was more associated with the hindquarters. However, 

in the present study we did not find any significant differences in association between forequarter 

and hindquarter cuts with either of the CWT and WT12m traits. BFT has very little or no genetic 

and phenotypic correlations with the primal cuts. EMA has moderate to high genetic and phenotypic 

correlations with the primal cuts. MS has low to moderate genetic correlations despite showing very 

low or no phenotypic correlations.  

The correlations among the primal cuts are positive to varying degree (data not shown). Genetic 

correlations among the primal cuts ranged from 0.46±13 (CHK and RIB) to 0.98±13 (TRND and 
FHS). Except RIB (-0.29±13), all other primal cuts had moderate positive genetic correlation with 

Meat %. This indicates that, selection for RIB yield may have a small decreasing effect on total meat 

yield. Phenotypic correlations ranged from 0.19 (CHK and BAF) to 0.91(TRND and FHS). 

The objective of this study was to estimate genetic parameters for different weight, carcass and 

primal cut weights in Korean Hanwoo cattle and to determine their correlations using medium-

density SNP data. Our present study was limited by the small amount of available carcass data. 

Together with the recently obtained estimates, further analysis of a larger carcass data set should 

allow better prediction of outcomes and enhance ongoing genomic evaluation of Korean Hanwoo 

cattle. We believe that our results will aid in decision making when carcass traits are to be selected 

to optimize primal-cut yields. 
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SUMMARY 

The prediction of breeding values for beef carcase traits using traditional genetic methods 

requires that the slaughtered cattle have a full pedigree, linking them back to the stud sector of their 

respective breed, additionally to accurate contemporary group structure and no selective harvesting . 

Due to these requirements, progress towards EBV for meat quality and other carcase traits in the 

beef industry has been slow, especially in Northern Australia. Here, an example of how genomic  

information can be used to cost-effectively feed information from the meat processing sector back 

to the breeding sector, using pooled DNA genotyping and placing the genotypes of pooled 

commercial animals and selection candidates at the stud in a hybrid genomic relationship matrix for 

estimating breeding values . This approach could be used to quickly and cost-effectively build 

reference populations for commercial performance traits in many livestock breeding applications. 

 

INTRODUCTION 

The use of data from commercial cattle to inform genetic improvement is very limited, mainly  

because the genetic links between the commercial herds and their stud ancestral herds  are poorly 

known. Additionally, the cost of building large genotyped reference populations for the 

implementation of modern genomic technologies is still prohibitive in most cases.   

An alternative approach has been proposed to draw on performance measures that are routinely 

acquired in commercial populations, and to cost-effectively use DNA information to link these 

measures to the animals available for selection in the breeding sector (Bell et al. 2017; Reverter et 

al. 2016).  

Large volumes of carcase data are routinely recorded in the Australian beef industry, b ut do not 

usually contribute to the evaluation of genetic merit in the corresponding stud herds. This study 

exemplifies a cost-effective method for linking carcase data from un-pedigreed commercial animals  

to the stud sector. 

 

MATERIALS AND METHODS 

Animals and measurements. Tail hair samples were collected from 620 commercial Tropical 

Composite heifers, across two cohorts of similar size. They were feedlot finished (days on feed ~ 

249 or 114) and slaughtered under the Meat Standard Australia recording system, which returned 

more than ten carcase attributes , including weight, MSA marbling score, pH, and hump height . Here 

we focused on Hump height (Hump) and MSA Index (MSA), which is an index that combines 

several factors recorded at the processing plant, weighted by its estimated effect, mainly, on meat 

eating quality (https://www.mla.com.au/marketing-beef-and-lamb/meat-standards-australia/ ). 

Additionally, DNA samples from 100 stud sires were included in the analysis. These sires were part 

of the herd selection program that could directly benefit from the information of the commercial 

cattle. Under this selection program, these sires will be grandfathers of future commercial cattle.   

Pooling DNA and genotyping. Within each cohort, hair samples from each heifer were pooled 

in groups of five or four individuals according to their carcase phenotype, either MSA or Hump 

observations. We assembled 101 pools according to MSA, and 40 pools according to Hump (only 
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pools from the extreme values). Each hair pool then had DNA-extracted and genotyped as a single 

sample using the single nucleotide polymorphism (SNP) genotyping platform GGPHD 150K for 

beef (Neogen Genomics, Lincoln, USA; http://genomics.neogen.com/pdf/AG151_GGP_TS.pdf ). 

The individual stud sires were genotyped for ~ 50,000 SNP (Zoetis, Kalamazoo, USA). The pooled 

genotypic data was translated into allele calls using the B-Allele Frequency metric output from 

GenomeStudio software (Illumina Inc, San Diego, USA). After standard quality control on 

genotypes, SNP that were in common to both platforms (n = 43,807) were kept for further analyses. 

Statistical analyses. Descriptive statistics, phenotypic correlations, and linear models were run 

in SAS (SAS Inst., Cary, NC). The combined pooled and individual genotypes were used to build a 

hybrid genomic relationship matrix (hybrid-GRM, Reverter  et al. (2016)). The hybrid-GRM was 

then used in an additive genomic model to derive genomic Best Linear Unbiased Prediction  

(gBLUP) values using Qxpak v5 (Perez-Enciso and Misztal 2011). The statistical model included 

only heifer cohort as a fixed effect, since season of birth, on-farm management group, time on feed, 

killing day and killing facility were all confounded within cohort. 

 

RESULTS 

Using data from 620 carcases we were able to recover the expected MSA Index effect sizes  

(http://www.redpoll.org.au/documents/June15_BreedingforMSAComplianceandIndex-1.pdf)  for 

the main attributes known to significantly impact MSA Index, which were carcase weight (0.015 ± 

0.002, p < 0.0001), Hump (-0.048 ± 0.002, p < 0.0001), ossification (-0.069 ± 0.002, p < 0.0001), 

and MSA marbling score (0.016 ± 0.000, p < 0.0001). The recovery of known effects gives 

confidence that this is a representative sample for this Tropical Composite breed and its MSA Index 

does not deviate from the expectation. 

 To make the DNA pooling approach more effective, smaller management groups were removed  

from the sample, so data from 501 carcases remained for further analyses. We focused on two traits, 

MSA and Hump, both traits have distinct, overlapping distributions for each cohort (Figure 1). The 

strong effect of cohort in this sample was mainly attributed to different age at slaughter and feed 

length. 

 

 
Figure 1. Density plot for observed pooled phenotypes of two cohorts. 

 

For MSA we used data from all carcases (n = 501) as a reference population, split into 101 pooled 

genotypes, but for Hump we collected only genotypes for pools with extremes values (40 pools, 10 
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pools of high and low value, within each of the two cohorts of animals). The hybrid-GRM depicted 

a low relationship between stud sires and all pools. This is not surprising due to the distant 

relationship between the stud and this generation if the commercial herds. Nevertheless, a variable 

degree of relationship was detected and can be explored to derive phenotype estimates.  

The distribution of gEBV of MSA and Hump for the 100 stud sires  is shown in Figure 2A. The 

MSA gEBV approximates a normal distribution, while the Hump distribution is broader and heavy-

tailed. This quite possibly reflects the fact that only the extremes of the phenotypic distribution 

formed the reference population for Hump, and for MSA the whole distribution of the phenotype 

was sampled. The negative correlation between Hump and MSA observed in the carcase data, 

remained present at the level of sire gEBV (Figure 2B). This approach was effective in identifying 

the potential top and bottom performing sires from the stud herd based on commercial herd 

performance data. 

 

 
Figure 2. Stud sires (n = 100) evaluation. A) Density plot of gEBV for Hump and MSA and B) 

scatter plot showing the relationship between gEBV for Hump and MSA.  

 

DISCUSSION 

In this study we explored the potential utility of approaches based on DNA pooling to feed 

performance information from commercial cattle back to stud herds. This approach builds reference 

populations of commercial cattle, via the generation of genotypic data from animals that per se do 

not have enough value (records and/or pedigree) to justify the investment in individual genotyping, 

but as a group have valuable performance indicators. Then, the genomic predictions based on this 

reference population can be used to generate gEBV for animals being selected to enter these herds. 

In demonstrating the feasibility of this approach, we have provided further evidence for the 

flexibility of DNA pooling methodology in dealing with different types of commercial phenotypes. 

The approach has now been exemplified for evaluation of reproductive performance in cattle 

(Reverter et al. 2016), as well as dag scores in sheep (Bell et al. 2017), and carcase data. One 

limitation of the DNA pooling approach is that genotyped pools are specifically assembled for a 

given phenotype, so if there are two phenotypes of interest, the pooling process will have to be done 

twice. If multiple traits of interest have been measured in the reference population and/or genotyping 

becomes more affordable due to technology developments, the cost savings offered by DNA pooling 

will be less significant, and individual genotypes may be the better option. In the case of commercial 

cattle, often no more than one or two key phenotypes are acquired during routine management or 

monitoring, which means that these approaches are still relevant. 
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Similar to other methods that estimate breeding values, DNA pooling approaches would also 

benefit from large reference populations. The larger the reference population is, and the genetically 

closer to the animals to be tested they are, in general, the more accurate the estimates will be 

(VanRaden et al. 2009). If an equivalent procedure is used to continue collection of commercial 

phenotypes across different years, the reference population could grow over time, potentially 

improving the estimates based on it.  
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SUMMARY 

Genomic selection of embryos can boost genetic progress of beef cattle breeding programs by 

allowing the intensity of selection to increase and the generation interval to be reduced. This 

strategy depends on a protocol for the biopsy of embryos and DNA amplification, ensuring enough 

DNA for genotyping, without compromising the embryo’s viability. In the present study, the 

quality of the genotypes of Nellore biopsied embryos was assessed based on genotyping call rate, 

Mendelian inconsistencies  and allele dropouts. The results showed that the genotypes were of a 

good quality, suggesting feasibility of obtaining genomic prediction of Nellore embryos.  

 

INTRODUCTION 

Embryo transfer provides an outstanding opportunity for intensifying the production of 

genetically superior animals, given that donors and sires are properly selected. The technique of 

producing embryos of cattle through in vitro fertilization (IVF) has been evolving substantially 

and is becoming more reliable and accessible. For instance, according to the Brazilian Society of 

Embryo Technology, Brazil has been producing more than half a million embryos per year, 

through IVF. 

Investments in IVF could be optimized if the genetic merit of the embryos could be predicted 

more accurately. Even if the donors and sires are properly selected, the embryo’s  genetic merit 

may substantially deviate from what is expected based on parent average, because Mendelian 

sampling is responsible for the genetic difference among full-sibs, and accounts for half of the 

additive genetic variability (Falconer and Mackay 1996). Genomic selection (Meuwissen et al. 

2001) allows predicting more accurately the genetic merit of embryos, given that they are 

genotyped for a reasonable number of markers and that a good prediction equation is available. To 

genotype the embryos, a proper protocol to extract DNA must be developed, without 

compromising embryo’s viability.  

Pre-amplification of the DNA extracted from the embryos is required to provide enough DNA 

for the currently available genotyping platforms . The amplification process usually leads to 

reduced genome coverage which in turn results in some genotyping errors as, for example, allele 

dropout at heterozygous loci (Lauri et al. 2013). These errors could ultimately compromise the 

genomic prediction and the feasibility of performing genomic selection on embryos . An alternative 

to correct part of the genotyping errors is to also genotype the parents of the embryos  and use this 

information to fix inconsistencies , followed by imputation to predict missing genotypes  (Saadi et 

al. 2014).  

In the present study, the feasibility of obtaining genomic prediction of Nellore biopsied 

embryos by evaluating the quality of their observed and imputed genotypes is assessed. Genomic 

predictions and their corresponding accuracies were also computed to envisage the potential 

benefit of applying genomic selection in Nellore embryos. 
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MATERIALS AND METHODS 

Nellore embryos were produced from ovum pick-up from 28 donors and IVF using semen of 

two sires. These donors and sires are from a single beef cattle farm (Agropecuária Jacarezinho) 

which participates in the DeltaGen breeding program (www.deltagen.com.br). A total of 93 

embryos were biopsied and genotyped. The biopsy of embryos and DNA extraction were 

performed according to a protocol developed by In Vitro Brasil S/A  (www.invitrobrasil.com.br). 

The extracted DNA was amplified using commercial kits based on multiple displacement 

amplification (REPLI-g, Qiagen, Mississauga, ON, Canada). The Illumina Bovine 50K v2 chip 

(Illumina, San Diego, CA, USA) was used to genotype the embryos, donors and sires. The 

biopsied embryos were implanted into Nellore recipient cows and presented a pregnancy rate 

(31%) similar to the rate presented by a control group (24%), suggesting that the DNA extraction 

did not reduce the embryo’s viability. 

The software FImpute v2.2 (Sargolzaei et al. 2014) was used as in Saadi et al. (2014) to check 

for Mendelian inconsistencies, to fix some genotyping errors and to impute missing genotypes . As 

the parents of the embryos were also genotyped, family information was initially used by FImpute 

as the main source of information for fixing the inconsistencies. Afterwards, the fixed 50K 

genotypes were imputed to HD genotypes (Illumina Bovine HD chip), using family and population 

information. Finally, the embryos had their direct genomic values (DGV) calculated based on the ir 

imputed genotypes and on the prediction equation of DeltaGen breeding program. The reference 

population for imputation and genomic prediction used in this study has approximately eight 

thousand animals. The DGVs and their accuracies were calculated using the software GEBV 

(Sargolzaei et al. 2013). The analyses were performed using 34,900 SNPs from the 50K chip and 

615,397 SNPs from the HD chip, comprising those SNPs which passed quality control of routine 

genomic evaluation. 

The quality of the genotypes of embryos  was mainly assessed by the comparison between 

observed and imputed genotypes. A better assessment will be performed after the resultant calves 

are born and genotyped, so the comparison will be made among the embryo -calf pairs. 

 

RESULTS AND DISCUSSION 

The average call rate of the embryos’ 50K genotypes was equal to 0.93, ranging from 0.75 to 

0.98. Seventy four embryos (80%) seemed to present a reasonably good quality of their genotypes 

(call rate≥0.90). Embryos' genotypes with lower call rates also presented lower levels of 

heterozygosity (Figure 1), suggesting low quality of the inferred genotypes and the occurrence of 

allele dropouts at heterozygous loci. Seventeen embryos, most of which with low call rate, showed 

parentage conflicts based on the original 50K genotype, showing more than 319 Mendelian 

inconsistencies when their genotypes were contrasted with those from their parents . The poor 

genotype quality (call rate<0.90) of some embryos were likely caused by the low amount of 

extracted DNA and the amplification process.  

All the parentage conflicts were no longer observed using the imputed (“fixed”) genotypes. 

The FImpute software corrected the Mendelian inconsistencies and imputed all missing genotypes, 

i.e. the call rate of the imputed genotypes was equal to 1, for both chips (50K and HD). 

Considering just the SNPs from the 50K chip (for a proper comparison) the level of heterozygosity 

of the imputed genotypes was , generally, greater than those of the observed genotypes , especially 

for the embryos originally presenting low call rates. This result indicates that FImpute was able to 

correct at least part of the allele dropouts. However, even after imputation, there was evidence of 

underestimation of heterozygosity for the embryos with original genotypes exhibiting low call 

rates (Figure 1). 

Besides fixing the allele dropouts, FImpute uses family and population information to also 

correct some homozygote SNPs which were miscalled as heterozygotes or as the opposite 
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homozygote. Figure 2 shows that embryos with lower original call rates presented a higher 

percentage of genotypes corrected due to dropouts and total error rate. In general, the dropouts 

were responsible for the greatest proportion of changes. The maximum percentage per sample of 

homozygote SNPs miscalled as heterozygotes or as the opposite homozygote was equal to 0.4% 

and 0.5%, respectively, whereas it was equal to 1.9% for the dropout. The maximum total change 

per sample was equal to 2.6% (Figure 2). 

 

 
Figure 1. Call rate of original genotypes (% ) and heterozygosity (% ) of original and imputed 

50K genotypes. 
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Figure 2. Call rate (% ) and error rate (% ) of embryos’ genotypes. 

 

It is important to emphasize that having good DNA extraction and amplification protocols 

remains very important. Even if imputation may improve genotype quality, it can also cause some 

errors and bias the genomic predictions . Pimentel et al. (2015) provided empirical evidence that 

top animals may have their genomic predictions underestimated when imputed genotypes are used, 

mainly due to miscalling low frequent haplotypes that could not be determined unambiguously by 

the imputation algorithm. As mentioned previously, the quality of the genotypes of embryos  will 

be better assessed after the resultant calves are born and genotyped, so the comparison will be 

made among the embryo-calf pairs. 

 The genomic prediction of the embryos obtained after fixing and imputing their genotypes 

presented an average accuracy of 0.56 (ranging from 0.46 to 0.60), for the selection index used by 

the breeding program. This accuracy is equivalent to those for young bulls selected (without 

genomic information) for progeny testing, highlighting the potential benefit of applying genomic 

selection in Nellore embryos. The cost-effectiveness of this strategy is highly determined by the 

realized success rate of the transferred biopsied embryos.  
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SUMMARY 

Chromosomal regions that were associated (P < 0.01) with scrotal circumference (SC) and 

percentage of morphologically normal sperm (PNS) are reported according to genome-wide 

association studies in Tropical Composite cattle. Bulls were genotyped with Illumina SNP chips 

and association analyses were performed using animal models. Chromosome X had several SNP 

associated with SC, PNS or both traits (7,859 SNP). Polymorphisms associated with SC and PNS 

can contribute to new methods of estimating breeding values , which may enhance the selection of 

bulls with improved reproductive performance. 

 

INTRODUCTION 

Sperm concentration and morphology are important semen parameters for bull fertility, both in 

field situations and for artificial insemination (AI). In multiple sire mating systems, sperm 

morphology was considered the best indicator for calf output (Holroyd et al., 2002). Sire bulls with 

enhanced fertility guarantee the efficiency of transmission of favourable alleles (for any trait of 

economical relevance. The consequences of fertile sires are improvement in fertility rates  for the 

herd and increase economic return. In AI centres, bulls producing high volumes of semen with 

appropriate sperm concentration and without significant fluctuations in semen quality are 

preferred. These bulls can help avoid unexpected decreases in the number of straws produced for 

AI, reduce economic losses and disturbances in the distribution and marketing of semen (Hering et 

al., 2014). Sperm concentration and morphology are typically examined as part of the Bull 

Breeding Soundness Evaluations (BBSE).  

Bull fertility is often an overlooked component of reproductive rate in genetic studies. Bull 

fertility influences not only fertilization but also the viability of the preimplantation embryos and 

the establishment of successful pregnancy (Saacke et al., 2000). Scrotal circumference (SC) and 

percent of morphologically normal sperm (PNS) are indicators of bull fertility that show high 

heritability in beef cattle (Corbet et al., 2013). Changes in favourable allele frequencies through 

selection can improve SC and PNS. A limitation in the use of SC and PNS as selection tools is that 

these reproductive traits cannot be measured before bulls reach 12–24 months of age (Lyons et al., 

2014). Identifying SNP associated with these traits could be very useful for early recognition of 

young sires’ fertility. In this study we investigate the heritability and genetic correlations between 

SC and PNS measured in BBSE are investigated. Genome-wide association analyses (GWAS) 

were performed for SC and PNS.  

 

MATERIAL AND METHODS 

Animals, Traits and Genotypes. Blood for DNA extraction was obtained from 1,719 Tropical 

Composite (TC) bulls; bred by the Cooperative Research Centre for Beef Genetic Technologies . 

Details concerning the project design and traits measurements have been reported elsewhere 

(Burns et al., 2013; Corbet et al., 2013). In short, SC and PNS were measured at 24 months. 

BovineSNP50 chips (Matukumalli et al., 2009) were used to genotype all bulls and Bead Studio 
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software (Illumina Inc., San Diego, CA 2006) was used to call genotypes. SNP with call rates < 

80% or minor allele frequency < 0.01 were discarded. High-density (HD) genotyping of selected 

TC cattle was performed and genotypes were imputed using BEAGLE (Browning and Browning, 

2009). Quality control and imputation resulted in 729,069 SNP genotypes for 1,719 TC. 

Statistical Analyses. Allele substitution effects were estimated for each SNP separately, using 

an animal model. Solutions were estimated with Qxpak5 (Perez-Enciso and Misztal, 2011), using a 

likelihood ratio test to compare the model containing each SNP versus the model without each 

SNP. 

 

RESULTS AND DISCUSSION 

Descriptive statistics, genetic parameters and number of SNP associated with SC and PNS are 

reported (Table 1). Both traits had high heritability and so they can be used as selection tools to 

increase fertility. These results corroborate those reported by Corbet et al. (2013). Moreover, PNS 

and specially, SC are easily measured and the operating cost-benefit is agreeable since they are 

part of BBSE. These traits have been associated with the genetic improvement of fertility in both 

male and female cattle in scientific and technical studies (Silva et al., 2013). 

 

Table 1. Descriptive statistics and genome-wide association results for percentage of normal 

sperm (PNS) and scrotal circumference (SC). 

 

Traits* N Mean  SD h2 r P<106 
SNP in both 

traits (P<106) 

PNS 1,648 0.72 0.19 0.40 

0.11 

8,927 

7,859 

SC 1,719 31.42 2.80 0.56 14,635 

*Traits: Percentage of morphologically Normal Sperm (PNS) and Scrotal Circumference (SC). 

SD: standard deviation; h2 Heritability; r: genetic correlation; P: P-value from Genome-Wide 

Association Study. 

 

The genetic correlation between SC and PNS was low (Table 1) and so direct selection could 

be more efficient than indirect selection. However, the genetic correlation was positive indicating 

that the long-term increase of SC promoted by direct selection will result in  an increment in PNS 

and consequent improvement of semen quality in young bulls. In addition, the number of SNP that 

were associated with the genetic variation for both traits was high: 7,859; all mapped to 

chromosome X. Genetic correlations are determined by either pleotropic effects or gene linkage, 

which depends on selection intensity, polymorphism effects, allele frequency and strength of 

linkage (Sheridan and Barker, 1974); factors that might vary across generations or herds. It is 

relevant to highlight that fixation of alleles with pleotropic effects and in linkage may reduce the 

genetic correlation between traits across generations (Sheridan and Barker, 1974). This might 

explain in part the low genetic correlation estimated between SC and PNS; selection for fertility 

might have been applied in this herd over generations. 

The X chromosome harboured SNP that were significant for both traits, spread across millions 

of base pairs. Our results are evidence for polygenic regulation of these reproductive traits 

(Figure1). 
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Figure 1. Polymorphisms in the X chromosome associated with percentage of 

morphologically normal sperm (PNS) and scrotal circumference (SC) in Tropical Composite 

cattle. 

 

Associations that point to a QTL close to 32 Mb and another close to 110 Mb of chromosome 

X provide further evidence for results that were first reported in Holstein bulls (Blaschek et al., 

2011). Candidate genes underpinning these QTL on chromosome X were proposed in Brahman 

bulls (Fortes et al., 2012). For example, the androgen receptor gene (AR) at 88 Mb of the X 

chromosome is a positional candidate gene, which is relevant because of its physiological role 

(Quigley 1998). The androgen receptor is paramount for testosterone signalling and, therefore, 

transcriptional regulation of genes that are critical for development and maintenance of male 

reproductive function. 

 

CONCLUSION  

Reported SNP associated with SC and PNS may contribute to the selection of bulls with 

improved reproductive performance. Direct selection for each trait would be a more efficient route 

than indirect selection to improve bull fertility and semen quality. 
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SUMMARY 

Longevity in dairy cows affects their lifetime performance and lifetime efficiency. Limited 

research has been conducted in South Africa on the effect of age at first calving (AFC) on lifetime 

performance. In this paper, preliminary estimates of the productive life (PL, total number of days 

in milk), lifetime (LT, birth date to cull date) and productive lifetime efficiency (PLE) and lifetime 

efficiency (LTE) for Holstein cows in South Africa as affected by AFC are presented. Lifetime 

production records of 509 715 cows born between 1989 and 2008 which had calved down at least 

once, were included in the study. Cows calving down earlier than 18 months and later than 48 

months of age were removed from the data set. For each cow, the total milk, fat and protein yield, 

days in milk (PL) and LT of cows was determined. From this, the PLE and LTE of the milk yield 

for each cow was derived. Extending AFC increased LT, although decreasing PL, especially after 

29 months of age. Productive lifetime efficiency peaked at an AFC of 25 months and decreased 

thereafter. Further analyses to estimate genetic parameters for production and ratio traits are 

envisaged towards identifying individual cows and sires for possible genomic analyses.   

 

INTRODUCTION 

Longevity in dairy cows is an important trait affecting the genetic progress, LT performance, 

LFE, and financial sustainability of a dairy herd (Fricke 2004). An early AFC increases PL 

(Nilforooshan & Edriss 2004) while also reducing rearing costs  (Ettema & Santos 2004), being 

4.3% per month less when first calving is one month earlier (Tozer & Heinrichs 2003). However, 

calving problems may increase when AFC is too early (Ettema & Santos 2004). For this reason 

most farmers rear heifers to reach first calving at an older age although not necessarily at a higher 

live weight. This increases the overall rearing costs because of a longer feeding period. High 

growth rates and longer feeding period may result in over-conditioned heifers resulting in dystocia 

problems (Ettema & Santos 2004). Age at first calving is therefore a benchmark that should be 

properly managed to increase economic returns. Torshizi et al. (2016) found an average AFC of 

24.7±1.4 months for Iranian Holsteins  which was similar for Irish seasonal calving Holsteins at 

24.3 months (Berry & Cromie 2009). The heritability of AFC is generally low, ranging from 0.09 

to 0.11 (Weigel & Rekaya 2000 and Changhee et al. 2013) indicating a large environmental effect. 

Limited research has been done in South Africa on factors affecting the lifetime performance of 

dairy cows. Mostert et al. (2001) found, as expected, that milk yield increased with age at calving 

reaching a peak at about 4th lactation. Makgahlela et al. (2008) showed that actual AFC decreased 

by 0.2 months per year. Mean breeding value for AFC also decreased by 0.06 months per year. 

Local breed societies present lifetime awards to cows reaching specific production milestones . 

Cows reach such milestones at different ages, i.e. 6 and 10 lactations, indicating differences in 

production and possibly production efficiency. Cows ranked for total fat and protein yield are re-

ranked when lactation number is used to estimate an efficiency index (fat + protein yield/lactation 

number). Production efficiency should be estimated using PL or LT in days as lactations could 

vary being short or longer than standard lactation periods. The aim of this study is to determine the 

effect of AFC on the LT, PL, LF performance, PLE and LTE of Holstein cows. 
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MATERIALS AND METHODS 

Data. Milk production records of 509 715 Holstein cows that had calved down for the first time 

between 1989 and 2007 were extracted from the South African National Milk Recording Scheme 

data base of the Agricultural Research Council (ARC). Milk production and milk composition 

records were compiled using standard procedures, i.e. on 10 milk recording events during the year, 

starting from 5 days after calving, for at least 8 milk recording events (De Waal & Heydenrych 

2001). Each cow that had completed a first lactation of at least 240 days  was included in the study. 

The milk, fat and protein yield for all subsequent lactations were added up until the end of each 

cow’s last lactation period. Productive life was estimated for each cow totalling all the number of 

days-in-milk for all lactations. The LT of cows was derived from birth date to the end of the last 

lactation period which was regarded as the cow’s cull date as exact cull dates were not available. 

For each cow, PLE and LTE were estimated by dividing the total milk, fat and protein yield by PL 

and LT. Records from cows calving down for the first time before 18 months of age and after 48 

months of age were deleted from the data set. Herds with fewer than 30 records were also removed 

from the data set.  
Statistical analyses. Analysis of variance was performed, using cows as random replicates, using 

GLM Procedure of SAS software (Version 9.4; SAS Institute Inc, Cary, USA) to test the effect of 

age at first calving (in months) on the production parameters milk, fat and protein, productive life, 

lifetime and productive life efficiency (total milk yield/productive life in days, PLE) and lifetime 

efficiency (total milk yield/lifetime in days, LTE). Fisher’s least significant difference was 

calculated at the 5% level to compare month means (Ott 1998). A probability level of 5% was 

considered significant for all significance tests. The Shapiro-Wilk test was performed on the 

standardized residuals from the model to test for normality (Shapiro  & Wilk 1965).  

 

RESULTS AND DISCUSSION 

Table 1 shows mean±standard deviation, range of records and analysis of variance results for 

some production parameters . Except for fat and protein percentages, the coefficient of variation 

was high for all traits, exceeding 30%. Average AFC was 29.6±5.1 months which is higher than 

general recommendations (Tozer & Heinrichs 2003). However, AFC decreased from 30.0 in 1987 

to 25.3 months of age in 2006. In the present study AFC is skewed to the right with most (88%) of 

heifers calving down later than 24 months of age (Figure 1a). Almost 36% of heifers calved down 

after 30 months of age.  

Table 1.  The mean±standard deviation and data ranges for milk production, fat and protein 

percentages and lifetime parameters for Holstein cows. Least significant differences (LSD) 

for age at first calving intervals indicate significant differences between age at first calving 

intervals. (Significance **: P<0.01) 

 

Variables Mean Range LSD Significance 

Age at first calving (m) 29.6±5.1 17.8-48.0 - - 

First lactation milk yield (kg)  6217±1985 144-17329 118 ** 

First lactation fat (%) 3.57±0.41 0.55-7.67 0.03 ** 

First lactation protein (%) 3.17±0.21 0.50-5.33 0.01 ** 

Total lifetime milk yield (kg) 20300±14887 364-135538 813 ** 

Lifetime (days) 2004±720 785-4295 44 ** 

Productive life (days)  849±523 241-3239 31 ** 

Lifetime efficiency (kg/d)  9.24±4.44 0.22-43.9 0.23 ** 

Productive life efficiency (kg/d) 22.9±6.9 1.2-150.8 0.40 ** 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:497-500 

499 

  
(a)                                                                                 (b) 

Figure 1. The distribution (a) of age at first calving (AFC) records and (b) the effect of AFC 

on first lactation (□) and lifetime milk yield (■) for Holstein heifers. 

 

Torshizi et al. (2016) found that the proportion of Holsteins cows calving down before 20 and 

after 30 months were low. In an earlier survey, Muller et al. (2014) similarly found that while only 

12% of Holstein heifers calved down before 25 months of age, more than 35% of Holstein heifers 

calved down after 30 months of age.   First lactation and LT milk production increased from 21 

months of AFC (Figure 1b), peaking at 24 months of age after which production decreased 

indicating no advantage for a later AFC. Nilforooshan & Edriss (2004) also showed an initial 

increase in first lactation milk yield from 21 to 24 months of age after which production decreased. 

A slight negative phenotypic correlation (-0.089) was found between AFC and first lactation milk 

yield. In the present study, as expected, the LT of cows increased in a quadratic fashion (P<0.05) 

with an increasing AFC (Figure 2a). However, while the PL of cows increased (P<0.05) up to 29 

months of age, it decreased (P<0.05) after that.  

 

  
(a)                                                                      (b) 

Figure 2. Effect of age at first calving on (a) lifetime (□) and productive lifetime (■) and (b) 

milk production lifetime efficiency (□) and productive lifetime efficiency (■) of Holstein cows. 
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The phenotypic correlation between first lactation and lifetime milk yield levels followed a 

quadratic trend (P<0.05). Similarly, PLE and LTE peaked at about 24 to 25 months of age after 

which efficiencies decreased. Heinrichs & Vazquez-Anon (1993) found that AFC of Holstein 

heifers was 26.4 months. In that study, the distribution of AFC was also skewed towards older 

ages at first calving. Holstein cows calving down at more than 26 months of age produced similar 

amounts of milk as cows calving down at 24 months of age. Cooke et al. (2013) found that the 

total days-in-milk for heifers calving down before 23 months of age was higher (P<0.01) than for 

heifers calving down later than 30 months of age. Mostert et al. (2001) found that the average 305-

day milk yield of Holstein cows increased when AFC increased from <24 to >32 months of age. 

Changing AFC genetically would be slow as heritability  (h2) is low (<0.09) indicating that this 

trait is highly influenced by environmental factors  (Nilforooshan & Edriss 2004). However, 

Makgahlela et al. (2008) found a moderate h2 for AFC for South African Holsteins being 

0.26±0.02.The present study showed that, over time, AFC was reduce presumably because of 

management improvement.   

   

CONCLUSION 

The effect of AFC on the LT (longevity) and PL of South African Holstein cows was 

presented. While LT increased with a later age at first calving, PL decreased especially after 29 

months of age. An earlier AFC resulted in a higher LT production. Milk production PLE and LTE 

increased to 25 months of age after which both traits decreased. Genetic parameters should be 

estimated for AFC, LT, PL, LT production, PLE and LTE measures to determine relative emphasis 

of selection. Further analyses using alternative statistical methods , which include pedigree or 

genotype information, may offer additional parameters for selection in this breeding programme.  
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SUMMARY 

This study was conducted to map genomic regions associated with semen quality traits of 

boars. Volume, sperm concentration and total and progressive motilities of 2,392 in natura 

ejaculates of 113 Duroc males were evaluated. Genotyping process was performed by Illumina 

PorcineSNP60 BeadChip (68,516 SNPs, 119 animals). After quality control (MAF <3% and call 

rate <90%), 118 boars, corresponding to 250 animals in pedigree, and 42,240 SNPs remained to be 

analysed. Genome wide-association analyses were realized by BLUPf90 using weighted single-

step GBLUP method considering windows of 10 adjacent SNPs to estimate their effects . The 

animal model considered as fixed effect boar’s litter size (except for ejaculate volume), mean age 

at measurement (except for total motility) and sperm concentration (only for motility evaluations) 

as covariates and the animal and residual random effects. It was mapped 22, 14, 10 and 11 

genomic regions, distributed in 11, 9, 3 and 6 different chromosomes, explaining more than 1% of 

additive genetic variance of ejaculate volume, sperm concentration and total and progressive 

motilities, respectively. Genomic regions with a great influence on sperm quality traits ’ expression 

were identified and must be explored to understand their importance for the genetic control of 

these traits related to fertility. 

 

INTRODUCTION 

Artificial insemination has been extensively used in swine production and, over the years, it 

has promoted a considerable improvement in breeding results. However, to obtain and maintain a 

desirable reproduction performance it is necessary to use high quality semen originated from 

selected and approved boars.  

Macroscopic evaluations, as ejaculate volume measurement, and microscopic exams, as sperm 

concentration and motility, are the most common analysis realized in boar studs (BS) routine.  The 

objective of these evaluations is to process high quality doses of semen (Robaire and Chan 2010). 

Volume and sperm concentration are evaluated to determine the total number of cells in in natura 

semen and the number of possible doses to be produced per ejaculate once they are related to the 

number of cells per dose and the dilution rate of the doses  (Flowers 1996; Waberski et al. 2011). 

Sperm motility indicates the percentage of mobile cells and, when using computer assisted sperm 

analysis (CASA), it can be differentiated in total motility and progressive motilities, according 

with the trajectory of the cells. In general, motility are positive correlated with in vivo fertility 

(Broekhuijse et al. 2012; Flowers et al. 2016) and are considered an important indicator of boar 

fertility (Kummer et al. 2013).  

Despite the importance of boar semen quality traits, selection of boars to be used in BS almost 

does not take it into account and focuses mainly on growth and carcass characteristics (Flowers 

2008). The possibility of associate sperm and genetic merit in boar selection could be interesting to 

reduce the number of boars required to service sows and maintain the improvement of growth and 

carcass quality (Oh et al. 2006). Although, sperm quality traits can only be evaluated on boars 

after puberty, the identification of genomic regions influencing their expression and their inclusion 

in breeding programs are an alternative to select for them in pre-pubertal stage. In that way, the 

aim of the study was to map chromosomal regions that potentially have association with volume, 
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sperm concentration and total and progressive motilities in Duroc boars.  

 

MATERIALS AND METHODS 

Repeated observations of volume, concentration and total and progressive motilit ies of in 

natura ejaculates of 113 Duroc boars housed at the same boar stud were collected from February 

2015 until May 2016. Automated semen collection system (Collectis®, IMV) was used and each 

ejaculate was collected in a pre-warmed (36oC) plastic container. Gel fraction of each ejaculate 

was filtered and discarded. After that, the ejaculate was weighted and, to a better estimation of its 

real volume, it was assumed that one gram corresponds to one millilitre of semen. For microscopic 

evaluations, samples of ejaculates were prepared (90 µL of raw semen plus 810 µL of pre-warmed 

extender) and submitted to CASA system (Sperm Vision® Minitüb), which determined sperm 

concentration and total and progressive motilities. Sperm concentration was determined through 

counting the cells in eight fields  and establishing an average of them. Total motility corresponded 

to the percentage of mobile cells, independent of their trajectory, and progressive motility 

corresponded to progressive forward motility of the cells (>4.5 µm of distance sperm travels in 

straight line). It was evaluated 2,392 ejaculates and the number of ejaculates per boar was 21.17 ± 

12.63.  Mean values of boar’s age at measurement, volume, concentration and total and 

progressive motilities were considered in the analysis. 

Boars were genotyped with Illumina PorcineSNP60 BeadChip (Ramos et al. 2009), according 

to the manufacturer protocols  (119 animals for 68,516 SNPs). The quality control of markers was 

made excluding those with unknown genomic position, placed in sexual chromosomes, with MAF 

(minor allele frequency) lower than 3% and markers and animals that presented call rate lower 

than 90%. After quality control, 118 animals and 42,240 SNPs remained to be analysed. Genome 

wide-association analysis were realized by BLUPf90 (Misztal et al. 2002) using weighted single-

step GBLUP method (WssGBLUP, Zhang et al. 2014), considering windows of 10 adjacent SNPs 

to estimate their effects by postGSf90 (Aguilar et al. 2010; Wang et al. 2012). A total of three 

iterations of BLUPf90 and postGSf90 were used for the WssGBLUP. Each run of postGSf90 

updated weights for SNP, whereas each run of BLUPf90 used the updated weights to constructed 

G matrices (Zhang et al. 2016). The iterations increase the weights of SNPs with large effects and 

decrease those with small effects. 

The animal model considered as fixed effect boar’s litter size (except for ejaculate volume), 

besides, as covariates, mean age at measurement (except for total motility) and sperm 

concentration (only for motility evaluations) and, as random effects, animal and residual effects. 

Analyses were performed using a pedigree composed by 250 animals.  

The results of GWAS were reported as the percentage of the additive genetic variance 

explained by the windows of 10 adjacent SNPs presented in Manhattan plots drawn by R software. 

 

RESULTS AND DISCUSSION 

In Table 1 descriptive statistics for ejaculate volume, sperm concentrat ion, total and 

progressive motilities were presented. 

 

Table 1. Descriptive statistics for mean values of ejaculate volume, sperm 

concentration, total and progressive motilities of Duroc boars used for GWAS analysis  

Semen traits N Mean SD Range 

Volume (mL) 110 160.19 45.42 75.11 – 286.60 

Concentration (x106/mL) 110 0.57 0.18 0.20 – 1.11 

Total motility (%) 113 86.53 7.47 50.45 – 95.24 

Progressive motility (%) 110 76.52 9.99 38.21 – 91.32 

N – Number of animals evaluated; SD – Standard deviation 
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In Figures 1, 2, 3 and 4 were represented the genomic regions and the percentage of genetic 

variance explained by windows of 10 adjacent SNPs in each chromosome for ejaculate volume, 

sperm concentration, total and progressive motilities, respectively. 

 

  
Figure 1. Manhattan plot of genomic regions 

associated with ejaculate volume. 

 

Figure 2. Manhattan plot of genomic regions 

associated with sperm concentration. 

 

  
Figure 3. Manhattan plot of genomic regions 

associated with total motility. 

Figure 4. Manhattan plot of genomic regions 

associated with progressive motility. 

 

Genomic regions that explained more than 1% of additive genetic variance of ejaculate volume 

were distributed in chromosomes 1, 2, 3, 4, 7, 9, 10, 11, 12, 13 and 16. Of these, chromosome 11 

has two important regions explaining 8.81% (stating position 26634721 – final position 27221215) 

and 14.38% (starting position 49822501 – final position 50200669) of its additive genetic 

variance. Similarly to our results, Xing et al. (2009) also reported that chromosome 3 has 

significative quantitative trait loci (QTL) for semen volume.  

Chromosomes 1, 2, 3, 4, 7, 9, 10, 11 and 13 presented genomic regions that explained more 

than 1% of genetic variance of sperm concentration. Windows  of 10 adjacent SNPs located 

between 147860835-149305559 pb of chromosome 1, 8326917-8526138 pb and 8833246-

8980813 pb of chromosome 7 and 22293935-22666436 pb of chromosome 13 account for 7.94%, 

26.03%, 9.28% and 6.05% of its additive genetic variance, respectively. Other studies also 

reported significant genomic regions in chromosome 7 affecting sperm concentration, total sperm 

per ejaculate (Zhao et al. 2016) and testicular weight (Ren et al. 2009). 

For total motility, chromosomes 7, 8 and 9 presented windows that explained more than 1% of 

additive genetic variation. Windows placed between 58555-740616 pb and 1637113-1806683 pb 

of chromosome 7 and 138036642-138190631 pb and 140609271-141043305 pb of chromosome 8 

explained more than 15% of additive genetic variance (18.32%, 21.62%, 25.10% and 15.63%, in 

this order).  
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Regions that explain more than 1% of genetic variation for progressive motility were in 

chromosomes 1, 4, 7, 8, 9 and 17. Higher percentages of additive genetic variance (27.63%, 

18.24% and 10.33%) were observed in two windows located on chromosome 8 (133531944-

133969475 pb and 140609271-141043305 pb) and one on chromosome 9 (125924965-126346678 

pb). There is no reference about progressive motility in literature, but Xing et al. (2009) and Diniz 

et al. (2014) have reported significant genomic regions in chromosome 1 affecting total motility, 

which can also influence sperm motility and their trajectory. 

This study identified important genomic regions associated with sperm quality traits of Duroc 

boars. A total of 57 SNPs windows that explained more than 1% of genetic variance were 

identified for ejaculate volume, sperm concentration, total and progressive motilities. 

Those regions must be explored to understand their importance for the genetic control of these 

these traits related to fertility. In the future, the markers identified in this research may be useful to 

improve the selection of boars to be used in boar studs. 
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SUMMARY 

The longevity of dairy cows affects their lifetime performance and lifetime efficiency. In this 

paper the effect of first lactation milk yield on the lifetime (LT, in days), productive lifetime (PL, 

in days), total lifetime milk yield, productive lifetime milk yield efficiency (PLE) and lifetime 

milk yield efficiency (LTE) of South African Holstein cows are presented. Lifetime production 

records of 523 020 cows, born between 1989 and 2008, calving down at least once, were included 

in the study. For each cow, the total milk, fat and protein yield, all days in milk and lifetime of 

cows was determined. The PLE (total lifetime milk yield divided by PL) and LTE (total milk yield 

divided by LT) for milk yield were estimated for each cow. The LT and PL of Holstein cows 

increased up to first lactation milk yield of 6000 and 7000 kg, respectively. The milk yield LTE 

and PLE increased with higher milk yield levels in first lactation.  

 

INTRODUCTION 

Milk recording in South Africa has always focused on the lactation milk yield and milk 

composition of cows (Du Toit 2016). Local breed societies often reward lifetime performance of 

dairy cows by awarding special status to cows reaching milestone production levels. However, the 

efficiency of production has not been considered nor rewarded. A considerable re-ranking of cows 

occurs when lifetime production is divided by lifetime (using lactation number). Already in 1953, 

Leitch & Godden estimated the whole-life energy efficiency of cows at different milk production 

levels and different ages as indicated by lactation number. While energy efficiency increased with 

age, higher producing cows reached higher efficiency levels at an earlier age. Low yielding cows, 

regardless of a long productive life, were less efficient than higher producing cows even at a 

shorter productive life. As the repeatability of milk production in dairy cows is high (>0.55), it 

would be expected that first lactation milk yield give some indication of the future milk yield and, 

therefore, lifetime performance of cows. While it has been shown that lifetime milk yield and milk 

yield per day of productive life increases with increasing first lactation milk yield levels (Sawa & 

Krezel-Czopek 2009), local dairy farmers are reluctant to select for a higher production in first 

lactation probably because of unfavourable correlations between high milk yield levels and traits 

such as live weight, fertility and longevity. Little research has been done in South Africa on the 

lifetime performance and the efficiency of production of dairy cows. Muller & Botha (2003) 

showed that genetic progress in a dairy herd can be increased by selecting for higher milk yield 

levels in first lactation. The number of days in milk, number of completed lactations and milk 

yield level affects lifetime milk yield as well as economic efficiency (Heins et al. 2012 and 

Martens & Bange, 2013). The duration of each lactation is affected by calving interval which is 

influenced by traits like the number of days from calving to first service, first service conception 

rate, number of services per conception and number of days from calving to conception or days 

open (Muller et al. 2014). The aim of the study is to determine the effect of first lactation milk 

yield on the LT, PL, total lifetime milk yield, productive lifetime milk yield efficiency (PLE) and 

lifetime milk yield efficiency (LTE) of Holstein cows.  
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MATERIALS AND METHODS 

Data. Milk production records of about 523 020 Holstein cows that had calved down for the 

first time between 1989 and 2008 were extracted from the South African National Milk Recording 

Scheme data base of the Agricultural Research Council (ARC). Milk production records were 

compiled using standard procedures, i.e. on 10 milk recording events during the year, starting from 

5 days after calving, for at least 8 milk recording events per cow (De Waal & Heydenrych, 2001). 

All cows that had completed a first lactation of at least 240 days, were included in the study. The 

milk, fat and protein yield for all lactation periods were added up until the end of each cow’s last 

lactation period. Productive life (PL) was estimated for each cow adding all the days in milk per 

lactation. The lifetime (LT) of cows was derived from birth date to the end of the last lactation 

period which was regarded as the cows’ cull date as their actual cull dates were not recorded. 

Statistical analyses. Analysis of variance, considering cows as random replicates, was 

performed using GLM Procedure of SAS software (Version 9.4; SAS Institute Inc, Cary, USA) to 

test the effect of milk yield in first lactation categories on milk, fat and protein production, PL, LT 

and PLE (total milk yield/productive life in days) and LTE (total milk yield/lifetime in days). 

Fisher’s least significant difference was calculated at the 5% level to compare milk yield in first 

lactation category means (Ott, 1998). A probability level of 5% was considered significant for all 

significance tests. Shapiro-Wilk test was performed on the standardized residuals from the model 

to test for deviation from normality (Shapiro & Wilk, 1965).  

 

RESULTS AND DISCUSSION 

About 67% of first lactation milk production records were between 4 001 to 8 000 kg per 

lactation (Figure 1a). The trends for PL and LT of cows over production years remained constant 

until 2003 after which both traits followed a downward trend (Figure 1b). The reason for this is 

unclear although average age at first calving decreased from about 30.3 in 1989 to 26.9 months in 

2008.  It could also be related to fewer cows in milk recording or a genetic change in longevity.  

 
(a)      (b) 

Figure 1. The (a) distribution of first lactation milk yield (MY) records in production 

categories and (b) the effect of production year on the productive lifetime (□) and lifetime (■) 

in days for South African Holstein cows. 
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Increasing first lactation milk yield had small linear negative (P<0.05) effects on fat and 

protein percentages (Table 1). Lifetime milk yield showed a linear increase (P<0.05) with 

increasing first lactation milk yields. Although LT and PL initially increased reaching peaks at 

first lactation milky yield intervals of 5001-6000 and 6001-7000 kg per lactation, respectively, 

traits decreased (P<0.05) after peaking. However, the PL of cows changed little at milk yield 

levels beyond 7000 kg per lactation being 862 and 806 days for cows producing within production 

intervals of 8001-9000 and 10001-11000 kg milk, respectively. In contrast to decreasing LT and 

PL number of days, PLE and LTE increased for cows producing at a higher level in first lactation.   

Table 1.  The mean (standard deviation) and data ranges for milk production, fat and 

protein percentages and lifetime parameters for Holstein cows  in different first lactation 

milk yield classes. Least significant differences (LSD) for first lactation milk yield intervals 

indicate significant differences between first lactation milk yield classes. (PLE = Productive 

life efficiency; LTE = Lifetime efficiency). 

 

Variables 

First lactation milk yield classes (kg) 

  

4001-

5000 

5001-

6000 

6001-

7000 

7001-

8000 

8001-

9000 

Range 
(min-

max) 

 
 

LSD 

First lactation  
milk yield (kg) 

4537  
(286) 

5503  
(287) 

6474 
 (286) 

7465  
(287) 

8466  
(285) 

1005- 
17329 

62.6 

First lactation  

fat (%) 

3.63   

(0.38) 

3.59  

(0.38) 

3.57  

(0.39) 

3.57  

(0.40) 

3.59  

(0.40) 

2.10- 

6.01 

0.014 

First lactation 

protein (%) 

3.20   

(0.21) 

3.19  

(0.20) 

3.18  

(0.19) 

3.17  

(0.19) 

3.17  

(0.19) 

2.10- 

5.33 

0.007 

Total lifetime  

milk yield (kg) 

15874 

(11052) 

19310 

(12225) 

21795 

(12867) 

23478 

(13257) 

25316 

(13683) 

1006-

135538 

438.9 

Lifetime (days) 2004  
(721) 

2054  
(713) 

2041  
(689) 

1987  
(651) 

1940  
(621) 

785- 
4295 

24.1 

Productive  

life (d) 

835  

(500) 

888  

(497) 

892 

(474) 

862  

(440) 

840  

(412) 

241- 

3239 

16.5 

PLE (kg) 18.01 

(2.89) 

20.96 

(2.90) 

23.88 

(2.97) 

26.82 

(3.15) 

29.83 

(3.25) 

1.2- 

150.8 

0.22 

LTE (kg) 7.02  

(2.87) 

8.47  

(3.12) 

9.74  

(3.35) 

10.90 

(3.54) 

12.14 

(3.74) 

0.22- 

43.9 

0.13 

 
Sawa & Krezel-Czopek (2009) also showed that LT milk yield in Polish Holsteins increased 

with increasing first lactation milk yields, the correlation coefficient being 0.44 (P<0.01). 

However, lifespan and PL decreased when first lactation milk yield exceeded 7000 kg milk, 

correlation coefficients being positive, albeit low at 0.23. In the current study, the phenotypic 

correlation between first lactation milk yield and LT milk showed a curvilinear trend (P<0.05). 

Similarly PLE and LTE were affected positively (P<0.05) with increasing first lactation milk yield 

levels possibly indicating that the decreases in PL and LT had a limited effect on efficiency 

measures. To improve efficiency measures, two possible methods can be used, i.e. improving LF 

milk yield while maintaining PL and LT or maintain milk yield and increasing PL and LT. 

Heritability estimates for cow herd life and productive life are generally, below 10% while the 

heritability of milk yield is moderate at about 0.25.  
To improve the efficiency of production two possible methods can be used, i.e. direct selection 

for production traits or using ratio traits. The main advantage of most ratio traits is their ease of 
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calculation and interpretation, as well as the ability to easily compare efficiency statistics across 

populations. However, according to Gunsett (1984) direct selection on ratio traits is complicated 

by the disproportionate fashion by which selection pressure is exerted on the component traits. 

This makes expected responses to selection on ratio traits difficult to determine mainly because of 

the poor statistical properties of ratio traits due to the antagonism between the desirable response 

in the numerator (i.e., increased milk yield) and the denominator (i.e., increased productive life) 

and the unknown relative selection pressure on each (Gunsett, 1984).  

Heritability estimates for cow herd life and productive life are low. Buenger et al. (2001) 

reported heritability estimates for functional length of productive life to be 0.09 to 0.14. Increasing 

productive life should therefore focus on an improved environment. Although increased first 

lactation milk yields improves PLE and LTE, the PL and LT is decreased as sh own in the present 

study. Juszczak et al. (1994) showed that the optimum first lactation milk yield regarding 

efficiency of production varies according to management conditions and herd milk yield levels.  

 

CONCLUSION 

This study reported on the effect of first lactation milk yield on the milk yield, PL, FT, PLE 

and LTE of Holstein cows. Higher first lactation milk yields resulted in an increased lifetime milk 

yield, productive lifetime yield, as well as PLE and LTE. Cows producing high levels of milk 

yield in first lactation (>8000 kg) are expected to have shorter PL and LT although the reduction is 

small. This resulted in increasing PL and LT efficiencies, possibly indicating that first lactation 

milk yield could be used as a selection tool for increased production efficiencies. To improve 

production efficiencies PL (days in milk) should be increased by more calving down events rather 

than extending lactation periods. Further work includes the estimation of genetic parameters for 

PL, LT and efficiency measures towards estimating breeding values for lifetime production traits. 

Genomic analyses may be required to identify high and low genetic merit sires for PLE and LTE.   
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SUMMARY 

Fertility efficiency is associated with increased profit being an important objective of breeding 

programs. Cow fertility is complex and difficult to improve. In this study we use the genomic 

relationship matrix (G) and REML approaches to investigate the genetic parameters for number of 

calves (NC) and fertility indices in tropical beef cattle.  The fertility indices proposed were: I1 = 

NC/NO, I2 = (NC/NO)*NC and I3 = (NC/ALC)*NC, where: NO = Number of opportunity, ALC = 

Age at last calve. Heritability estimates of 22% to 24% were observed for the four phenotypes. The 

genetic and residual correlations were close to unity, except for those pairs that included I1 in this 

case, correlations were around 0.50. We conclude that NC is an efficient selection criteria for the 

improvement of fertility in Tropical Composite cattle. 

 

INTRODUCTION  

An important goal of tropical beef cattle breeding programs is to improve reproductive 

performance. However, cow fertility is complex and difficult to improve because of low heritability , 

delayed expression in females’ life and difficulties in the routine recording of phenotypes  such as 

pregnancy status, days open and days for first service, especially in extensive large-scale tropical 

beef operations. Cow longevity, an indicator of fertility, has been evaluated in some beef cattle 

breeding programs. However, selection for improved longevity is challenging because this trait is 

only available after the cow is culled or dead. Additionally, the observation results in censored data 

or binary distribution which requires complex statistical analyses. Alternatively, fertility indices that 

shows the abilities of the female to calve at a young age, to maintain the regularity of calving, and 

to wean heavy calves (Eler et al. 2008) might be advantageous because it permits the evaluation of 

genetic merit of females with only one or few calving events as well as the evaluation of young bulls 

(Santana et al. 2013). However, number of calves (NC, with cow age as a fixed effect in the 

statistical model) might be a simple and efficient predictor of cow’s fertility. Thus, we propose this 

measure of fertility, which was less demanding and also easy to understand and can be useful for 

improving the fertility of the breed. In this study we make use of the genomic relationship matrix 

(G) to estimate genetic parameters for number of calves and fertility indices in a commercial herd 

of Tropical Composite cows in Australia. 

 

MATERIAL AND METHODS 

Phenotypic and genotypic data. The data set used in the present study consisted of 1,166 

commercial Tropical Composite cows from North Australian Pastoral Company (NAPCO) with 

phenotype records including the number of calves (NC) and three alternatives fertility indices (Table 

1 and Figure 1). The fertility indices explored were as follows: I1 = NC/NO, I2 = (NC/NO)*NC and 

I3 = (NC/ALC)*NC, where: NO = Number of opportunity, ALC = Age at last calve. The I1 index is 

related to reproductive efficiency of females, the value 1 or 100% was attributed for females that 

calving in all breeding opportunities and the indices I2 and I3 benefit the females that remain in the 

herd for longer periods of time (longevity). Genotypes were generated based on a panel with 
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approximately 54,000 polymorphisms from the Illumina BovineSNP50. The following criteria were 

used for the exclusion of SNPs: minor allele frequency less than 2%, call rate less than 90% and/or 

duplicate samples. After quality control, 42,455 SNPs remained for analysis. 

 

Table 1. Descriptive statistics results for reproductive traits in Tropical composite cows  

  

Traits Number of observation Mean  sd Min Max 

Age of dam 1,166 6.17 3.16 3.00 19.00 

I1 = NC/NO 1,166 0.667 0.249 0.00 1.00 

I2 = (NC/NO)*NC 1,166 2.783 2.94 0.00 15.00 

I3 = (NC/ALC)*NC 1,166 2.26 2.62 0.00 13.24 

NC 1,166 3.48 3.12 0.00 15.00 

NP = Number of calves, NO = Number of opportunity, ALC = Age at last calve. 

 

  
Figure 1. Distribution for number of calves (A) and distributions for number of calves by age 

of cows (B) 

 

Statistical analysis.  A tetra-variate analysis was performed using the general mixed model in

ijij eZuXy   , where: yij represents the phenotypic observations from the i-th cows (i = 1 

to 1,116) at the j-th phenotype (j = 1 to 4), X is the incidence matrix relating fixed effects in β with 

observations in yij, Z is the incidence matrix relating random additive polygenic effects in u with 

observations in yij, and eij is the random residual effects. Fixed effects included in the model were 

contemporary group (i.e., cohort of cows born in the same year and raised together) and group of 

age of the dam. Solutions to the effects in the model as well as variance components were estimated 

using G according to Wang et al. (2014) in BLUPF90 programs (Misztal et al. 2009). 

 

RESULTS AND DISCUSSION 

Variance components, heritability and genetic and residual correlations are reported (Table 2). 

Moderate heritability estimates of ~ 22% were observed for the four phenotypes. The heritability  

estimate for number of calves was higher than those reported by  Martinez et al. (2004) and Zhang 

et al. (2013) for number of calves born in Hereford (h2 = 0.15), Brahman (0.15) and Tropical 

Composite cows (0.14). Martinez et al. (2004) and Zhang et al. (2013) evaluated the lifetime number 

of calves in predetermined age of cows and determined heritability estimates using G. These results 

demonstrate that G often explains more genetic variance than the pedigree-based estimates. In fact, 

heritability for number of calves at 6 years were 0.22 and 0.16 with G and 0.15 and 0.14 with 

pedigree-based matrix for Brahman and Tropical Composite cows, respectively (Zhang et al. 2013).  
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Table 2. Genetic parameters of reproductive traits in Tropical Composite cows, last 4 lines: 

heritability (diagonal), genetic correlation (above diagonal) and residual correlation (below 

diagonal) by single-step-genomic-BLUP methodology 

 I1 = NC/NO (%) I2 = (NC/NO)*NC I3 = (NC/ALC)*NC NC 

Genetic variance  0.008 0.241 0.490 0.265 

Residual variance 0.029 1.922 1.639 0.921 

I1 = NC/NO (%) 0.22 0.52 0.48 0.56 

I2 = (NC/NO)*NC 0.54 0.24 0.99 0.99 

I3 = (NC/ALC)*NC 0.49 0.99 0.23 0.99 

NC 0.57 0.99 0.99 0.22 

NC = Number of progeny, NO = Number of opportunity, ALC = Age at last calve. 

 

According to Chud et al. (2014) the low heritability estimate for fertility indices might be related 

to low heritability estimates for traits  such as NC and ALC that compound the index. Actually, the 

heritability for age at calving was low, ranging from 0.05 to 0.15 over 1 to 6 calving seasons, 

respectively (Martinez et al. 2004). Furthermore, the heritability for other reproductive traits were 

lower than the values obtained in this study, mean and standard errors (in brackets) of 0.12 (0.07), 

0.06 (0.06) and 0.11 (0.07) were obtained for conception, pregnancy and calving rates, respectively, 

in Tropical Composite cows (Johnston et al. 2013). Thus, it is possible to achieve higher genetic 

progress across generations through selection for NC or fertility indices evaluated here than others 

reproductive traits, since the heritability of NC or fertility indices were greatest. 

It is important to highlight that a positive correlation between ratio values, as a fertility indices 

proposed here, reduces the selection response of both traits, but mainly for the trait with the weaker 

ratio position (Essl, 1989). That is the numerator if selection is for higher ratios and the deno minator 

in the opposite case. Moreover, the difference between the relative selection responses for the single 

ratio traits becomes more diferent the closer their genetic correlation is to +1 (Essl, 1989). Thus, the 

ratio values can be used as a selection criteria in breeding programs however, the genetic correlation 

between traits included in the ratio should be strictly and routinely evaluated. Because genetic 

correlations change across generations, pleotropic genes may be fixed and linkage may be lost 

(Sheridan and Backer, 1974). However, traits can be combined in an index which included economic 

values (Hazel, 1947). 

The genetic and residual correlations were close to unity, except for those pairs that included I1, 

in this case correlation were around 0.50. Therefore, genetic progress for longevity (I2 or I3) can be 

achieved through selection for NC or fertility efficiency (I1), which might be measured in early 

female’s life. The length of productive life measured through 1 year after first calving in Hereford  

cows predicts productive life through 6 years with reasonable accuracy (Martinez et al. 2004). 

Selection for younger age at puberty leads to increase in lifetime reproductive performance of 

Brahmam (rg = –0.40 0.20) and Tropical Composite (rg = –0.33 0.28) cows (Johnston et al. 

2013).  

 

CONCLUSION 

Based on estimates of heritability and genetic correlations, the number of calves could be a 

simple and useful selection criterion for improving the fertility of Tropical Composite cows in 

commercial operations.  
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SUMMARY 

The influence of environmental (normalized difference vegetation index (NDVI), rainfall, 

minimum, maximum and average temperatures, altitude, relative humidity and temperature and 

humidity index) and socioeconomic (gross domestic product, number of inhabitants, municipal 

area and human development index) factors on the genetic distribution of Montana Tropical® beef 

composite cattle located in 41 counties . Expected progeny differences (EPD) of 455,175 animals 

for weights at weaning and at 14 months of age, post-weaning weight gain, scrotal circumference 

and muscle score were used to group the counties into five clusters by SAS® PROC FASTCLUS. 

Discriminant analysis identified significant differences between the clusters due to altitude, NDVI 

and maximum and minimum temperatures , by t-Student test. However, it was not possible to 

identify a clear relation between the cluster means for these factors and the genetic distribution of 

Montana® herd. Using environmental and socioeconomic information to classify the counties into 

the previously formed groups, the percentage of correct classifications was much lower than the 

classification based on EPD, which reinforces the weak influence of those factors on the genetic 

clustering proposed. 

 

INTRODUCTION 

The Montana Tropical® beef composite cattle, raised in Brazil since 1994, aims to exploit the 

benefits of heterosis and complementarity between breeds by crossing four biological groups. In 

this system, animal’s racial composition is not fixed, which allows the customization of herds 

according to the conditions of each region. Hermuche et al. (2012, 2013) and Costa et al. (2014) 

demonstrated that environmental and socioeconomic factors can influence the dynamics of animal 

production and the genetic structure of populations in sheep and Holstein cattle, respectively. 

Manel et al. (2003) proposed combine molecular data and environmental conditions information 

for a better understanding of how geographical and environmental factors can influence the genetic 

structure of populations, an approach called landscape genetics. Costa et al. (2014) highlighted 

that many of these studies were done using molecular information, while few were conducted 

based on the genetic value of animals. 

In view of racial diversity of Montana Tropical® herd and its diffusion throughout the Brazilian 

territory, the present study aimed to analyze the influence of environmental and socioeconomic 

conditions of counties in its genetic distribution. 

 

MATERIALS AND METHODS 

The analysed data consisted of 455,175 animals from 57 farms located in 41 cities placed in 

nine Brazilian federal states (Espírito Santo, Goiás, Minas Gerais, Mato Grosso do Sul, Mato 

Grosso, Pará, Rondônia, Rio Grande do Sul and São Paulo) located in Central-West, North, South 

and Southeast regions. Estimated progeny differences (EPD) for weights at weaning and 14 

months of age, post-weaning weight gain, scrotal circumference and muscle score, which are the 

traits considered in selection index of Montana® breeding program, were evaluated. 

These animals belong to the genetic breeding program of Montana Tropical® cattle managed 

mailto:nathalia.costa18@gmail.com
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by CFM-Leachman Pecuaria Ltda., whose genetic evaluations are conducted by the Animal 

Breeding and Biotechnology Group of the College of Animal Science and Food Engineering of 

University of Sao Paulo. 

Environmental and socioeconomic data were obtained from different sources: NASA (National 

Aeronautics and Space Administration), IBGE (Brazilian Institute of Geography and Statistics) 

and INMET (National Meteorological Institute).  

The environmental variables evaluated were: normalized difference vegetation index (NDVI), 

rainfall, minimum, maximum and average temperatures, altitude, relative humidity and 

temperature and humidity index. Additionally, the socioeconomic variables considered were: gross 

domestic product, number of inhabitants, municipal area and human development index. 

The 41 cities were grouped into five clusters by PROC FASTCLUS procedure of SAS® 

software, being the cluster 1 composed by the counties with highest mean EPD values for studied 

traits and cluster 5 by the lowest ones. The determination of environmental and socioeconomic 

factors that differ between the clusters was performed by PROC GLM procedure of SAS® 

software. Additionally, discriminant analyses were performed by PROC STEPDISC and PROC 

DISCRIM procedures of SAS® software. 

 

RESULTS AND DISCUSSION 

The 41 counties, where the evaluated Montana Tropical® herd is raised, were grouped into five 

clusters and the mean EPD for analyzed traits per cluster were presented in Table 1. The clusters 

differed on the mean EPD values for weaning (WW) and 14 months of age (W14) weights, post-

weaning weight gain (PWG), scrotal circumference (SC) and muscle score (MS). Cluster 1 was 

composed by the counties with highest mean EPD values and cluster 5 by the lowest ones. The 

number of counties (animals) per cluster was 3 (4,893), 4 (81,553), 16 (238,141), 12 (123,818) e 6 

(6,770), in this order.Analysing the differences between clusters due the environmental and 

socioeconomic factors, only NDVI (p=0.08) and altitude (p=0.05) were significant by test F. 

However, the comparison of the mean values between clusters for the same factors , under t-

Student test, revealed additional significant differences by maximum and minimum temperatures  

(Table 2). Although, the t-test is less rigorous than the F test, it was chosen to present these results 

in view of the pioneering nature of the present study in the search for environmental and 

socioeconomic variables that explain the genetic distribution of Montana Tropical® animals in the 

country. The analysis of the mean values for these four environmental factors by cluster (Table 2) 

didn’t allow a clear identification of their influence on the genetic distribution of Montana 

Tropical® beef cattle. 

Using all the environmental and socioeconomic information to classify the counties into the 

previously formed groups (Table 3), the percentage of correct classifications was much lower than 

the classification based on EPDs (Table 4), which reinforces the weak influence of those factors on 

the genetic clustering proposed. 
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Table 1. Descriptive statistics of EPD by cluster for weaning (WW) and 14 months of 

age (W14) weights, post-weaning weight gain (PWG), scrotal circumference (SC) 

and muscle score (MS). 

 
Cluster Trait Mean STD Minimum Maximum 

1 

WW (kg) 3.78 1.29 2.99 5.27 

W14 (kg) 6.02 1.36 4.58 7.29 

PWG (kg) 1.74 1.12 0.65 2.88 

SC (cm) 0.32 0.05 0.29 0.38 

MS (unit) 0.14 0.02 0.13 0.16 

2 

WW (kg) 2.63 0.65 1.93 3.45 

W14 (kg) 2.40 0.61 1.66 3.11 

PWG (kg) 0.31 0.16 0.13 0.51 

SC (cm) 0.15 0.05 0.08 0.20 

MS (unit) 0.06 0.01 0.04 0.07 

3 

WW (kg) 1.25 0.39 0.54 1.90 

W14 (kg) 1.06 0.33 0.53 1.62 

PWG (kg) 0.24 0.21 -0.22 0.56 

SC (cm) 0.06 0.03 0.02 0.12 

MS (unit) 0.03 0.01 0.01 0.05 

4 

WW (kg) -0.08 0.42 -0.63 0.54 

W14 (kg) -0.11 0.46 -0.89 0.47 

PWG (kg) -0.06 0.27 -0.48 0.42 

SC (cm) -0.01 0.04 -0.11 0.03 

MS (unit) 0.00 0.01 -0.03 0.01 

5 

WW (kg) -1.33 0.14 -1.53 -1.13 

W14 (kg) -1.01 0.40 -1.76 -0.69 

PWG (kg) -0.11 0.07 -0.18 0.02 

SC (cm) -0.06 0.02 -0.09 -0.04 

MS (unit) -0.02 0.00 -0.03 -0.02 

STD: standard deviation. 

 

 

 

Table 2. Mean values of environmental factors that presented significant effects 

between clusters. 

 

Cluster Altitude (m)  NDVI Tmin (˚C) Tmax (˚C) 

1 393.47 a,b 0.57 a,b 25.34 a,b 34.81 a,b 

2 458.91 b 0.53 a 23.43 a,b 32.09 a,b 

3 289.50 a 0.61 b 26.04 b 35.30 b 

4 399.09 b 0.58 a,b 25.11 a,b 34.01 a,b 

5 484.97 b 0.54 a 22.95 a 31.34 a 

NDVI: normalized difference vegetation index; Tmax: maximum temperature; Tmin: 

minimum temperature. 

Means followed by different letters in columns differ (P <0.05) by the t-Student test. 
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Table 3. Percentage of counties classified into each cluster using environmental and 

socioeconomic factors. 

 

Cluster 1 2 3 4 5 

1 33,33 0,00 33,33 0,00 33,33 

2 25,00 50,00 0,00 0,00 25,00 

3 6,25 6,25 75,00 0,00 12,50 

4 16,67 8,33 16,67 33,33 25,00 

5 0,00 16,67 0,00 0,00 83,33 

 

Table 4. Percentage of counties classified into each cluster using the expected 

progeny differences of evaluated traits. 

 

Cluster 1 2 3 4 5 

1 100,00 0,00 0,00 0,00 0,00 

2  75,00 25,00 0,00 0,00 

3   100,00 0,00 0,00 

4    100,00 0,00 

5     100,00 

 

These results can be explained by the fact that this breed is been raised in Brazil for only 22 

years, which could be too short for the environmental and socioeconomic factors exert any 

influence on the genetic distribution of the Montana Tropical® herd. Moreover, the use of 

reproductive biotechnologies, such as artificial insemination (around 80% of the cows), could be 

masking the environmental and socioeconomic effects, since it allows the transference of genetic 

material between regions. 

In conclusion, there were differences in the genetic merit of animals among the counties where 

Montana Tropical® beef composite cattle are raised. However, the only environmental factors were 

significantly different between clusters without a clear influence on the genetic distribution of 

these animals in Brazil. 
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SUMMARY 

Historically, microsatellites have been the most popular genetic feature for distinguishing cattle 

breeds for the purpose of determining parentage. More recently, SNP genotyping has emerged as a 

desirable alternative to microsatellite typing. SNPs offer several advantages over microsat ellites. 

Perhaps the most important advantage is that there is less ambiguity in distinguishing SNP alleles 

in order to confidently provide a genotype call. 

AgriSeq™ is a sequencing technology that can be used for targeted amplification and re -

sequencing of thousands of SNP targets in a single reaction. The Ion 540™ chip allows hundreds 

of samples to be genotyped at thousands of loci simultaneously. Ligating a unique barcode to each 

sample allows samples to be sequenced together in a single run on the Ion S5™ sequencing 

system. 

We developed a targeted sequencing panel based on 200 bovine SNP markers selected by the 

International Society of Animal Genetics (ISAG) for the purpose of determining parentage. We 

tested this panel on 96 bovine samples obtained from the USDA representing 19 different breeds. 

Each sample was tested in duplicate such that 192 libraries were pooled onto a single Ion 540 chip 

for sequencing. Variant calling was performed using the Torrent Variant Caller (TVC) plugin as 

part of the Torrent Suite™ software package. Mean call rate for this dataset was 98.5%, indicating 

that the vast majority of SNPs yielded data of sufficient quality to make a genotype call. 

 

INTRODUCTION 

SNPs are well-suited for use as genetic markers for several reasons. Some of the advantages of 

using SNPs relative to other types of genetic markers are that SNPs occur abundantly in the 

genome, are generally stable through evolution and have a low mutation rate (1).  

SNP genotyping has various applications in agriculture including genetic diagnostics, 

germplasm identification and genomic selection for breeding purposes (1). Next -generation 

sequencing allows for rapid and accurate SNP genotyping. This technology, coupled with the 

specificity of targeted amplification using AgriSeq, enables many samples to be genotyped 

simultaneously without compromising sensitivity. 

Here we apply SNP genotyping for assessment of bovine parentage. Using our targeted 

sequencing primer design pipeline, we designed primers for the amplification and subsequent 

sequencing of 200 SNPs related to bovine parentage. The resulting panel was tested on 96 bovine 

samples representing 19 different breeds of cattle in order to assess call rate and concordance with 

array-based genotyping methods. 

 

MATERIALS AND METHODS 

The bulk of the primers were designed using an automated process that optimizes a number of 

oligonucleotide properties (GC content, melting temperature, etc.) and amplicon properties (size, 

centering a SNP within its amplicon, etc.). Furthermore, primers were designed to avoid 
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overlapping nearby SNPs and are subjected to an in-silico quality assessment to ensure specificity 

within the genome and prevent the formation of undesired PCR products. 

Library prep was performed in duplicate for each of 96 samples obtained from the USDA 

MARC Beef Cattle Diversity Panel v2.9. All 192 libraries were pooled onto a single Ion 540 chip 

for template prep and sequencing on the Ion Chef™ and Ion S5 XL. 

 

RESULTS AND DISCUSSION 

Sequencing yielded over 71 million reads. Over 66 million reads were reliably assigned to one 

of 192 barcodes (an average of over 347,000 reads per barcode) with >99 percent of bases aligning 

to the bovine genome (Table 1.) 

 

Table 1.  Sequencing summary 

 

 
 

Marker coverage was highly consistent. Mean coverage was 368.6 with 97% of markers falling 

within one standard deviation of the mean (Figure 1.). 

 

 
 

Figure 1. Marker coverage 

 

Average call rate for these samples was 98.5%. Call rates are color-coded by breed and 

differences between breeds were not found to be statistically significant. Call rate was calculated 

for each sample as the number of markers for which data quality was h igh enough to make a 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:517-520 

519 

genotype call (homozygous reference/homozygous variant/heterozygous), divided by the total 

number of markers in the panel (200). Seven replicates that had less than 100x coverage were 

excluded from analysis (Figure 2.) 

 

 
 

Figure 2.  Sample call rates 

 

Average marker call rate was 98.5%. 192 of the 200 markers had call rates >95% and 49 

markers had 100% call rates. Only five markers had call rates <90% (Figure 3.). 

 

 
Figure 3.  Marker call rates 
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Further investigation of the five markers that had lower call rates (<90%) revealed that 

performance for those markers differed greatly depending on the breed  (Figure 4.). 

 

 
 

Figure 4.  Markers with lower call rates show breed-specific differences in performance 

 

Samples were hybridized to six Illumina arrays in order to obtain consensus genotype calls for 

the array data. Concordance was calculated as the number of times the genotype call matched 

between samples run on the two different technologies divided by the total number of calls. Seven 

replicates that had less than 100x coverage were excluded from analysis (Table 2.). 

 

Table 2. Concordance with array data 

 

 
 

CONCLUSIONS 

We developed a high-performing, high-throughput method for genotyping hundreds of bovine 

samples in a single sequencing run at hundreds of SNPs. Our method yields calls for the vast 

majority of markers (98.5% on average). These calls were highly concordant  with array data 

(97.3%). While we demonstrated the utility of Ion Torrent sequencing technology for genotyping 

parentage markers in cattle, our approach can also be applied to other SNP genotyping problems. 
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SUMMARY 

The aim of the research was to develop prediction tools to help farmers select and manage their 

cows using mid-infra-red (MIR) spectroscopy. The prediction performance is evaluated on a range 

of complex phenotypes of energy balance, methane emissions and milk fatty acids using data from 

120 Australian cows. Additionally, MIR prediction equations derived from the UK cows is also 

explored on the same Australia data. The accuracy (r2) of predicting energy balance using MIR 

from Australian cows was around 0.4, which is similar to the performance of applying the UK 

MIR prediction equations to Australian data of 0.39. The prediction accuracies of methane 

emissions and milk fatty acids were greater than 0.5. The next phase will focus on improving the 

accuracy and validating them against data from commercial populations. 

 

INTRODUCTION 

Mid-infrared spectral data are measures of the absorption of infrared rays at frequencies 

correlated to the vibration of specific chemical bonds within a molecule (Soyeurt et al., 2011). 

MIR prediction uses the absorbance of mid-infrared light through milk samples over a range of 

wavelengths to predict a given phenotype. To calculate a prediction equation that can be applied 

nationally, requires a reference population that has measurements of the phenotype of interest and 

MIR spectral data collected at the same time. The advantage of using MIR to predict these 

phenotypes is that the turnaround time back to farm can be fast and at little extra cost over 

standard milk tests , enabling reactive management decisions. To date, MIR prediction analysis has 

been applied to detailed milk fat and protein composition with promising prediction accuracies 

(Soyeurt et al., 2011). Furthermore, it has also been used to predict complex phenotypes, such as 

energy balance (McParland et al., 2011) and methane emissions (Dehareng et al., 2012). 

As cows mobilise body fat in early lactation to sustain lactation (when feed requirements 

exceed intake), it is likely that special signatures of fatty acid composition are also observed in 

milk. There are several milk fatty acids in milk and having a greater understanding of how these 

are associated with energy balance may help to improve MIR predictions and could be worth 

breeding for in their own right.  

The objective of this study was to predict a range of traits including several milk fatty acids, 

energy balance and methane emissions using MIR spectral data from a research herd in Victoria. 

In addition, a MIR prediction equation for energy balance developed using UK data and available 

commercially by National Milk Records (a UK milk recording organisation) was validated using 

this Australian data. 

 

MATERIALS  

Phenotypes and associated MIR spectral data were available from an experiment that ran from 

October to December 2015 consisting of 120 Australian Holstein lactating cows that calved in the 

spring at the research farm of the Department of Economic Development, Jobs, Transport, and 

Resources (DEDJTR) in Ellinbank, Victoria, Australia. The cows were divided into three batches 
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of 40 cows to match the availability of automated feed intake equipment. Batches were balanced 

for days in milk (DIM), number of lactations and body weight. Cows had access to feed and water 

ad libitum with the diet consisting of cubes that were approximately 74% alfalfa hay, 25% crushed 

barley grain, and 1% minerals. The experimental duration was 32 days and the following 

measurements were performed: feed intake (for every meal), body weight after morning milking, 

body condition score 2x per week, milk yield (2x daily), milk fat percent, milk protein percent, and 

milk lactose percent 3 days per week at both morning and afternoon milking. MIR spectral data for 

each milking were obtained using a Bentley FTS instrument. 

 

Traits. At 87-124 days in lactation, the records of 32 different types of fatty acids including 

saturated FA (C4:0 – C20:0), Saturated FA (10:1-18:1), Mono-unsaturated FA (18:2, 18:3) , and 

Trans FA (CLA) were collected for each sample twice across lactation. Across all the FA, 

Mahalanobis distance was calculated. Outlier samples and absorbance (with Mahalanobis 

distances >3) were removed. 

Two equations obtained from Phuong et al (2016) were used to calculate energy balance (EB) 

from feed trial data.  The first equation was energy intake minus energy output (EBinout ), 

estimated using smoothed energy intake minus the energy required for maintenance, milk yield, 

and activity. The second equation was applied to calculate EB using milk composition only 

(Friggens et al., 2007).  

Methane emissions were measured for each cow over a 5 day period that occurred within the 

32d experiment using the SF6 tracer method of Deighton et al. (2014). Three phenotypes were 

calculated: 1) AvCH4, which was the mean of total methane emissions over 5 day period; 2) 

AvCH4yield, which was total methane yield divided by the actual feed intake over 5 day period; 

3) AvCH4Intense, which was total methane yield divided by milk yield over the 5 day period.  

 

Mid-infra-red spectral data.  The MIR spectrum for each milk sample had 899 data points 

(absorbance) for wavelengths ranging from 649 to 3998 cm-1. Using approaches developed by 

Grelet et al., (2015), several pre-processing steps including removal of outliers, standardizing, 

smoothing, and noise removing were applied to the raw MIR data. As reported by Hewavitharana 

and van Brakel (1997), and De Marchi et al. (2012), two spectral regions (from 1603 to 1682 cm-1; 

from 3006 to 3998 cm-1) are either water absorbance or useless chemical information, these spectra 

were removed leaving 620 wavelengths for analysis. 

 

METHODS 

Partial least squares regression method. Partial least squares regression method is commonly 

used in the analysis of MIR spectral data (De Marchi et al., 2012). An example is the SimPLS 

algorithm in R (R Development Core team, 2010) which was implemented for MIR prediction. To 

avoid over-fitting problems, 10 fold cross validation (10fold-CV) was used to assess the accuracy 

of the MIR prediction. The data sets were randomly separated into 10 subsets, and then each 

subset wass treated as a validation set while the other nine sets  were combined as reference set. 

The accuracy was assessed as the coefficient of determination (r2) calculated as the mean of 10 

fold cross validation applied to prediction equations . 

 

 

RESULTS AND DISCUSSION 

We found a considerable number of significant correlations between energy balance and milk 

fatty acids, especially C:18 and C:20 (Figure 1). The high proportion of C:18 and C:20 during 

periods of negative energy balance is related to a high uptake of long chain fatty acids released 

from the mobilisation of body fat reserves  (Bastin et al., 2011). Most of the correlations between 
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energy balance and milk fatty acids were quite small. An explanation for these findings is the late 

lactation stage when the cows participated in the experiment. In the current  experiment, days in 

milk of the cows varied from 87 to 124 which were >12 weeks where milk fatty acids would 

change very little or even remain constant. 

 

 

 
 

Figure 1. Pearson correlations between milk fatty acids and energy balance derived using 

individual cow data (blue bars) and the prediction accuracy using MIR data on the Fatty 

acids (red curves). 

 

As shown in Figure 1, the accuracy of MIR prediction of milk fatty acid traits as determined by 

the coefficient of determination is higher than 0.50. For some fatty acids, for example, C4:0-

C19:0, the prediction accuracy reached around 0.80. 

 

Table 1. MIR prediction of two energy balance traits (predicted as the difference 

between energy intake and output; EBinout; energy balance using an equation applied to 

milk production data; EBalMilk) and three methane emission traits. 

Phenotypes Country r2* RMSE 

Energy 

Balance 

EBinout AU 0.42 31.27 

EBinout UK 0.39 - 

EBalMilk AU 0.45 31.05 

Methane 

Emission 

AvCH4  AU 0.51 21.48 

AvCH4yield AU 0.49 31.09 

AvCH4Intense AU 0.52 20.45 

*The accuracy was assessed as the coefficient of determination (r2) and root mean square error of 

calibration (RMSE) calculated as the mean of 10 fold cross validation applied to prediction 

equations developed using Australian (AU) or UK reference datasets .  
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The prediction accuracy of energy balance and methane emissions using MIR is shown in 

Table 1. The prediction accuracy of EBinout  is 0.42 with the root mean square error of calibration 

(RMSE) of 31.27. For the same trait, using the equation derived from the UK (estimated with a 

much larger reference dataset up to thousands of animals  and a similar energy balance trait), we 

observed a similar accuracy (around 0.39). Similarly, the prediction accuracy of energy balance 

based on milk composition is around 0.45. The reasons that the accuracy in Australia was lower 

than observed in studies such as McParland et al (2011) include the fact that the reference 

population was not optimised for Australia; the phenotypes were subtly different to the energy 

balance used for the UK and it is possible that genotype by environment interactions exist.  

 

Similarly, the accuracy of MIR prediction of the three methane emission traits ranges from 

0.49 to 0.52 with the values of RMSE ranging between 20.45 and 31.09. 

 

All the above results show that the accuracy of MIR prediction is currently lower than other 

comparable studies. The most likely explanation is that most previous studies have much larger 

reference size. For example, McParland et al (2011) had a large reference population of 6,665 test 

days from 465 lactations of 277 cows matched to MIR spectra. Our reference population in 

comparison is small. Therefore, the strategy of improving the prediction accuracy is to increase the 

reference population by expanding the number of phenotypes from research herds, or devising 

ways in which to measure energy balance on commercial farms.  

 

CONCLUSION 

Our analyses show MIR prediction is promising but needs further improvement. In the next 

phase, we are investigating ways in which more energy balance phenotypes can be collected from 

research and commercial dairy herds.  
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SUMMARY 

Mastitis in dairy cows affects milk yield, welfare and production efficiency. In this paper the 

somatic cell count (SCC), milk urea nitrogen (MUN) and lactose percentage of 41 Holstein (H) and 

30 Fleckvieh x Holstein (FxH) cows were compared using 1688 repeated test-day records. 

Production parameters did not differ between breeds except for fat and protein percentages being 

higher in FxH cows. Log transformed SCC did not differ between breeds . However, log transformed 

SCC was repeatable at 0.21 and should respond to current herd selection . Reducing SCC 

concentrations in milk would improve welfare of cows as cull rates for mastitis are reduced. 

 

INTRODUCTION 

Mastitis is defined as an inflammatory reaction of the udder tissue to bacterial infection. It is one 

of the most common diseases in dairy cows . The somatic cell count (SCC) of healthy milk is below 

200,000 cells/ml of milk with an increase indicative of an infection (Robertson 2016). Mastitis is 

next to fertility one of the main reasons for cows being culled. Crossbreeding is gaining popularity 

worldwide as crossbred cows seem to be more robust (Weigel & Barlas, 2003). One aspect of 

robustness is the ability of cows to withstand developing mastitis under farming conditions . Heins 

et al. (2011) found that breeds differed for SCC showing that Montbéliarde x Holstein and 

Scandinavian Red x Holstein cows had lower (P<0.01) SCCs than Holstein and Normande x 

Holstein cows. Milk yield between these breeds also differed (P<0.01) with Holsteins producing the 

most milk. Somatic cell score (SCS) also increased from first to fifth lactation being 2.73 vs. 4.02 

for Holsteins. Montbéliarde x Holstein cows were superior to the other breed groups across 

lactations for SCS. Prendeville et al. (2010) found that even though milk yield differed, udder health 

(SCS and the incidence of mastitis at least once per lactation) did not differ between Holstein-

Friesian, Jersey and Holstein-Friesian x Jersey cows under grazing conditions. The total incidence 

of mastitis (accounting for repeated incidences) were higher for Jersey cows in comparison to 

Holstein-Friesian cows, being 1.54 vs. 1.24. Washburn et al. (2002) and Berry et al. (2007) found 

that the prevalence of mastitis was higher for Holstein and Holstein-Friesian (HF) cows in 

comparison to Jersey cows. In South Africa, dairy farmers in pasture-based systems, have attempted 

crossbreeding using the Fleckvieh breed, a Simmental derived dual-purpose breed from Germany . 

Muller et al. (2009) and Metaxas et al. (2014) have shown better fertility and higher fat and protein 

percentages in FxH cows in comparison to H cows. Farmers perceive a lower incidence of mastitis 

in Fleckvieh crossbred cows. These claims have not been tested in previous research. The aim of 

this study is thus to compare the SCC, mastitis incidence, MUN levels in milk of H and FxH cows 

in a total mixed ration feeding system.  
 

MATERIALS AND METHODS 

Data. The study was conducted at the Elsenburg Research Farm of the Western Cape Department 

of Agriculture. The area has a typical Mediterranean climate with short, cool, wet winters and long, 

warm, dry summers with an average annual rainfall of 650 mm. Milk production data of H and FxH 
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cows in a zero-grazing system were collected over six years between 2008 and 2013. Cows from 

both breeds were kept together in a dry lot (open camp) with a fence-line feeding trough. Cows were 

fed a total mixed ration (TMR) providing 17% CP and 11 MJ ME/kg DM. Feeding was twice a day 

at ad libitum levels, i.e. orts not exceeding 5% of feed provided. Fresh drinking water was freely  

available. Cows were machine-milked twice a day in a milking parlour about 500m from the dry lot. 

The milk yield of cows at the evening and following morning’s milking was recorded approximately  

every 35 days during the lactation period. Each cow had at least three and a maximum of nine milk 

recording events per lactation. At each milk production recording event, milk samples were collected 

at both evening and morning milking sessions. Samples were combined and analysed at the milk 

testing laboratory of the National Milk Recording Scheme for their fat, protein and lactose 

concentrations as well as SCC and milk urea nitrogen (MUN) of each sample.  

Statistical analyses. Repeated test-day records (n=1688) of cross-bred (50% Fleckvieh) cows 

(n=30) were grouped together and compared to H cows  (n = 41). Fixed effects fitted in ASReml 

included parity (1 to 5), genetic group (FxH or H), year (2008-2013) and the genetic group x year 

interaction. Days in milk were fitted as a fixed linear component as well as random cubic spline 

components to model deviations  from linearity following a smooth trend (Gilmour et al. 2006). 

Random animal models were included to account for the repeated sampling of individual cows.  

 

RESULTS AND DISCUSSION 

Until recently, breeding programmes have put more emphasis on milk production performance 

without considering functional traits (Walsh et al., 2009). The effect of breed (genotype) on udder 

health has been mostly comparing Holstein, Jersey and Jersey x Holstein cows.  Although the 

Fleckvieh breed is the second largest dairy breed in the world, dairy farmers are not familiar with 

the breed, probably because of the breed’s more pronounced dual-purpose characteristics. For this 

reason, crossbreeding studies in the USA and Ireland have used the Montbéliarde breed, a Simmental 

derived breed from France which shows more explicit dairy characteristics. Descriptive statistics of 

milk production parameters for both H and FxH cows are presented in Table 1. The coefficients of 

variation (CV) for production traits were in accordance with similar data. As expected, SCCs varied 

greatly, the appropriate CV being 213%. This is because of cows with mastitis showing extreme ly  

high SCCs. The repeatability of traits ranged from 0.02 for MUN to 0.25 for lactose percentage. All 

traits, except MUN, seem likely to respond to selective breeding in the current herd. Considering 

the relatively small sample size, it is pleasing to see that most repeatability estimates were significant 

(P<0.05), i.e. above twice the appropriate standard error. 

 

Table 1. Descriptive statistics for the traits analysed on test day records (n=1688) for milk 

production traits, somatic cell count (SCC) and milk urea nitrogen (MUN), as well as the 

repeatability of the respective traits  

 

Trait Mean ± s.d. Range Repeatability ± s.e. 

Milk yield (kg) 21.3±6.4 2.7 – 59.7 0.19±0.03 

Fat (% ) 4.17±0.56 2.61 – 6.53 0.16±0.03 

Protein (% )  3.33±0.38 2.37 – 4.87 0.23±0.04 

Lactose (% ) 4.78±0.23 3.25 – 5.45 0.25±0.04 

Untransformed SCC 372±795 3 – 9,233 0.21±0.04 

MUN 15.5±4.8 5.9 – 34.4 0.02±0.01 

 

Breed differences were observed, with fat and protein percentages being higher (P<0.01) for FxH 

vs. H cows (Table 2). Other traits did not differ between breed combinations. These results are in 

accordance with those of Metaxas et al. (2014).  The distribution of SCCs did not differ (P>0.05) 
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for H and FxH cows over all lactation periods and lactation stages (Figure 1). Most, 63 and 67% of 

all H and FxH SCC records, respectively, had less than 200,000 cell/ml of milk. High SCC 

(>600,000 cells/ml milk) was recorded in 20 and 18% of all H and FxH records, respectively.  

 

Table 2. Least-squares means (±s.e.) depicting differences between Holsteins (H) and 

Fleckvieh x Holsteins (FxH) cows for test-day milk yield (MY), fat percentage (BF), protein 

percentage (PP), lactose percentage (LP), the log of somatic cell count (SCC) and milk urea 

nitrogen (MUN) recorded either in the autumn or spring  

 

Effect 

and 

level 

Trait 

MY 

(kg) 

BF 

(% ) 

PP 

(% ) 

LP 

(% ) 
SCC 

MUN 

(mg/dL) 

Breed 0.54 ** ** 0.97 0.54 * 

FxH 21.6±0.6 4.26±0.06 3.35±0.04 4.71±0.03 5.08±0.15 (161) 16.1±0.03 

H 22.1±0.6 4.08±0.06 3.22±0.04 4.71±0.03 5.17±0.15 (175) 15.5±0.03 

* P<0.01; ** P<0.01; Actual significance for P>0.05. Geometric means for SCC are in brackets  

 

 
(a)                                                                    (b) 

Figure 1. The distribution of somatic cell count (SCC) records within categories (a) and  

geometric means (±s.e.) for SCC or Holstein (□) and Fleckvieh x Holstein cows (■) across 

parities (b) 

 

Walsh et al. (2007) noted that the production of cows within a feeding system is a function of 

their genetic merit and environmental effects. According to Mrode & Swanson (1996) milk yield is 

positively correlated with SCC. Significant differences between breeds for SCC are thus expected 

for breeds differing in milk yield. In the present study, the milk yield of H and FxH cows did not 

differ (P>0.05) reflecting small differences in the average SCC and, theoretically, the number of 

mastitis cases. The correlation between animal effects for milk yield and for SCC was accordingly 

small and not significant at 0.01±0.16 in the present study. Washburn et al. (2002) found that high-

producing HF cows had higher SCCs than Jerseys. 

The MUN levels in milk can be used to assess the protein and energy status of cows. High levels 

(greater than 18 mg/dl of milk) indicate a diet containing high levels of easily degradable protein 

sources (pasture containing high levels of CP), low fermentable energy levels in the diet, high milk 

yield levels as well as breed. Jersey cows seem to have lower MUN levels in comparison to Holstein 
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cows (Johnson & Young, 2003). Contrary to these results, Wattiaux et al. (2005) found higher test-

day MUN concentrations for Jersey and Brown Swiss cows in comparison to Holstein cows  on the 

same diet. Miglior et al. (2006) found that the MUN concentration in Ayrshire milk was higher than 

in Holstein milk.  
Kgole (2013) found that non-genetic factors affecting MUN in Holstein cows were herd-test-

day, lactation stage and year of calving. Herd-test-day contributed most to the observed variation in 

the latter study, namely 58.6 and 63.2% in parity 1 and 3, respectively. The heritability estimate for 

MUN was 0.09±0.01 in first parity and 0.11±0.01 in 2nd and 3rd parities. Between-animal variation 

in the present study was accordingly low, indicating that factors other than the animal contribute 

substantially to variation in MUN. Genetic correlations between MUN and milk production traits 

were positive, albeit low, ranging from 0.01±0.00 to 0.10±0.004 across parities (Kgole 2013). This 

positive association is undesirable, indicating that high-producing cows are less efficient in utilizing 

dietary protein.  

 

CONCLUSION 

FxH cows outperformed H cows for fat and protein percentages with no observed difference in 

milk yield. Significant between-animal variation suggests that current herd gains are feasible for 

SCC in the cows studied. With repeatability being the theoretical upper limit of heritability, these 

results may suggest underlying genetic variation among cows which may be exploited by selection, 

thus benefitting the welfare of lactating cows . 
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SUMMARY 

Genetic parameters for age at puberty were estimated for Holstein-Friesian dairy heifers in an 

experimental herd comprised of genetically divergent lines for fertility. Despite the non-random 

population structure, the estimated heritability of age at puberty was approximately 13%, based on 

behavioural observations, and between 41% and 76% based on blood progesterone levels. Although 

the phenotypic correlation between these two different measures was  moderate (~0.5), the genetic 

correlation was much stronger (~0.9). In addition, the genetic correlations between age at puberty 

traits and fertility BV was ~-0.3, which suggests that age at puberty estimates may aid in the genetic 

evaluation of lowly heritable fertility traits . 

 

INTRODUCTION 

Previous studies of the onset of puberty, defined as age at first behavioural oestrus , estimated its 

heritability as approximately 0.27 in NZ beef cattle (Morris et al. 2000; Amyes and Morris  2009), 

and Martin et al. (1992) reported an average of 0.4 across nine beef cattle studies (ranging from 0.07 

to 0.67). Fewer studies have reported the heritability of age at puberty in dairy cattle, but one 

available estimate was 0.09 (Morris and Hickey 2004). While the onset of puberty itself is an 

important trait for herd management purposes, its influence on reproduct ive traits is also of interest 

since genetic correlations may aid in the genetic improvement of lowly heritable fertility. In the NZ 

dairy industry, the fertility breeding value (BV) is comprised of several distinct traits such as PM21 

(presented for mating within 21 days of planned start of mating; h2=0.05) and CR42 (calving rate in 

1st 42 days after planned start of calving; h2=0.03). In NZ beef cattle, favourable genetic correlations 

have been reported between heifer age at puberty and several reproductive traits, such as scrotal 

circumference in NZ beef bulls (-0.25), pregnancy rate (-0.23) and calving date (0.57) (Morris and 

Amyes 2010). 

Oestrus onset may instead be directly measured and defined as the age when blood progesterone 

(P4) concentration has reached a certain threshold. McNaughton et al. (2005) used a criterion of P4 

>1ng/mL for 2 of 3 consecutive weekly samples  in NZ dairy heifers. Age at puberty determined in 

this way may have an advantage over behavioural measurements due to its quantitative accuracy, 

and may thus provide a better estimate of heritability. No heritability estimate for P4-based age at 

puberty in dairy heifers is currently known. 

The objective of this study was to estimate genetic parameters of several age at puberty (AP) 

traits in dairy cattle, including their heritabilities and genetic correlations with fertility BVs. These 

AP traits would be determined via either observational oestrus or several P4-based criteria. 

The data used was from a physiological study of NZ dairy heifers in which the experimental herd 

was genetically divergent on fertility (Meier et al. 2017). This divergence could introduce bias into 

any genetic analyses, so an auxiliary objective of this study was to evaluate a basic method to 

account for this. 

 

MATERIALS AND METHODS 

Study animals . The study population consisted of 527 Holstein-Friesian heifers born across 379 

herds between June and September 2015 and produced by mating low or high fertility BV dams and 

sires to generate divergent genotypes (Low BV heifers: n=252, μ=-5.12, σ=1.37; High BV heifers: 
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n=275, μ=5.00, σ=0.74). These heifers were reared in four mobs, each consisting of a mixture of 

high and low BV heifers, with the ratio per mob being no more than 40:60 either way. 

 

Data. From April to November 2016, P4 was determined in weekly collected plasma samples . 

Tail-paint or heat mount detectors (Kamar Inc., Zionsville, IN USA) were used, and checked 

approximately weekly to quantify mounting activity associated with expression of oestrus . From 

these data, we defined six potential indicators of age at puberty: (AP1) when P4 first reached 1.0 

ng/mL; (AP2) when P4 first reached 1.0 ng/mL for 2 consecutive weekly samplings ; (AP3) when 

P4 first reached 1.0 ng/mL for 2 of 3 consecutive weekly samplings; (AP4) when P4 first reached 

0.7 ng/mL; (AP5) when P4 first reached 0.7 ng/mL for 2 consecutive weekly samplings; and, (APK) 

when either the heat mount detector was activated, tail-paint was mostly worn off (scored 1 on a 1-

5 rubbing scale; 5 being as new), or the animal was visibly in oestrus. 

The full pedigree of these animals was extracted from the New Zealand Dairy Industry Good 

Animal Database (DIGAD), which consisted of 10,992 records, up to 18 generations deep. Also 

extracted from DIGAD were the fertility BVs for the 527 heifers estimated in the most recent 

national animal evaluation (January 2017). Although these BVs are already genetic estimates based 

on pedigree linkages rather than own data, they were used as a response variable in the models, and 

are referred to as the “fertility BV trait” in this study. 

 

Variance component estimation. The data came from a population that is genetically divergent 

for fertility and, therefore, not normally distributed for this trait. Because fertility is likely to be 

genetically correlated with puberty, the herd is likely to be genetically divergent (and, therefore, not 

normally distributed) for puberty also, and so the genetic variance components and heritability of 

puberty will be overestimated by a standard univariate mixed model. To account for this , a two-

model approach was used: the first (standard) model included mob as the only fixed effect; the 

second model included fixed effects for both mob and fertility group (low or high). Both models 

included a pedigree-based random animal effect. The second model, by absorbing some of the 

puberty variation into the fertility group effect, will underestimate the variance components  for 

puberty. Consequently, the first and second models provide upper and lower bounds for the genetic 

variance of age at puberty, and thus a range for heritability. However, due to the potential for some 

confounding of mob effect with fertility group (as mobs were not exactly balanced), the upper 

heritability bound may still contain some downwards bias. If there is no genetic correlation between 

fertility and puberty, these upper and lower bounds ought to be approximately the same. 

Bivariate mixed models (having fixed mob effect and random animal effect) were fitted  with 

pairs of puberty definitions as response variables to estimate both the phenotypic and genetic 

covariances and correlations between them. Assuming linearity of genetic covariance between the 

fertility and age at puberty traits, the divergent population structure will not affect genetic covariance 

estimates, and so standard bivariate mixed models (without fertility group effect) were used. 

In order to estimate genetic correlations between fertility and puberty traits, a Pearson correlation 

was used, in which puberty genetic variance was estimated from a (standard) univariate mixed model 

and fertility genetic (co)variances were estimated from a bivariate fixed effect model (mob effect; 

no random effect), with fertility BV and a puberty trait as response variables. As  the fertility BVs  

are already genetic estimates, the residual variance in fertility and residual covariance from the 

bivariate fixed effect model are estimates of the genetic (co)variances  of fertility. Standard errors 

are not readily available for this genetic correlation, but they ought to be of a similar magnitude to 

those of the other genetic correlations. 

ASReml (Gilmour et al. 2015) was used to perform all model analyses. 
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RESULTS AND DISCUSSION 

The lower and upper bounds for heritability estimates of the six defined puberty traits and their 

standard errors are presented in Table 1. Generally, the difference between lower and upper 

estimates was about 10% for P4-based puberty, although the high standard errors may indicate that 

this range is larger than calculated. Nonetheless, the two-model approach does seem to provide a 

useful range of potential heritabilities. Observation-based puberty (APK) unexpectedly had an upper 

bound which was slightly lower than its lower bound, although given the large standard errors, this 

is not a significant anomaly. The fact that these two heritability bounds are almost identical indicates, 

initially at least, a weak genetic correlation between APK and fertility. 

 

Table 1. Upper and lower bounds of heritability estimates of puberty traits (± s.e.) 

  AP1 AP2 AP3 AP4 AP5 APK 

h2
Upper 0.63 ± 0.17 0.76 ± 0.19 0.71 ± 0.18 0.53 ± 0.16 0.76 ± 0.19 0.13 ± 0.10 

h2
Lower 0.49 ± 0.16 0.66 ± 0.19 0.62 ± 0.18 0.41 ± 0.15 0.67 ± 0.19 0.14 ± 0.10 

 

The heritability of P4-based puberty (AP1-AP5) was moderate/high (41%-76%), whereas the 

heritability of APK was low (~13%). The low APK heritability is consistent with previous findings 

(Morris and Hickey 2004), and the large difference in heritability estimates between these two types 

of puberty measures is likely due mostly to higher measurement error in APK. The heritability of 

P4-based puberty relying on when P4 first reached 1.0 or 0.7 ng/mL (i.e. AP1 or AP4) was lo wer 

than those utilising consecutive P4 data (i.e. AP2, AP3 or AP5), possibly due to a higher prevalence 

of initial false positives. Defining puberty onset using a 2 of 3 criterion (AP3) reduced heritability  

by 4-5% compared with the first of 2 consecutive weeks with elevated P4 (AP2), which may mean  

that this AP3 estimate has a similar problem to AP1 and AP4. Using the more sensitive P4 threshold 

of 0.7 ng/mL did not change heritability when considering 2 consecutive detections (AP5), although 

when considering the first detection only (AP4), this more sensitive measure had an even lower 

heritability than the AP1 estimate. 

 

Table 2. Genetic correlations (below diagonal) and phenotypic correlations (above diagonal) 

between age-at-puberty (AP) and fertility traits, derived from bivariate models (± s.e.) 

  AP1 AP2 AP3 AP4 AP5 APK 

AP1  0.972 ± 0.003 0.972 ± 0.003 0.969 ± 0.003 0.972 ± 0.003 0.485 ± 0.037 

AP2 1.000 ± 0.003  * 0.943 ± 0.006 * 0.505 ± 0.037 

AP3 1.000 ± 0.003 *  0.946 ± 0.005 * 0.514 ± 0.035 

AP4 1.000 ± 0.004 1.000 ± 0.007 1.000 ± 0.006  0.947 ± 0.005 0.477 ± 0.037 

AP5 0.999 ± 0.003 * * 0.999 ± 0.007  0.500 ± 0.037 

APK 0.830 ± 0.217 0.925 ± 0.217 0.888 ± 0.205 0.770 ± 0.244 0.896 ± 0.200  

Fertility† -0.333 -0.285 -0.295 -0.335 -0.279 -0.252 

* Log-likelihood failed to converge 
† Standard errors not available for fertility genetic correlations 

 

Genetic and phenotypic correlations between puberty traits , and their genetic correlations with 

fertility BV are presented in Table 2. Correlations between P4-based puberty traits (AP1-AP5) are 
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close to 1, as expected, with phenotypic correlations slightly lower than genetic correlations. 

Phenotypic correlations between APK and AP1-AP5 are moderate at ~0.5, but the genetic 

correlations are high at 0.77-0.92. Although P4-based puberty and observation-based puberty ought 

to be genetically the same or strongly associated traits, P4 fluctuations may occur prior to corpus 

luteum (CL) formation, thus resulting in false positives. As previously discussed, the AP2 trait ought 

to be the best measure for avoiding false positives, and the fact that it has the highest genetic 

correlation with APK indicates that it is succeeding in doing so, and is thus a good measure of the 

genetics of puberty onset (i.e. oestrus). 

Genetic correlations between fertility and puberty traits are consistent at approximately -0.3, 

including that of APK, despite this latter measure having similar lower and upper heritability bounds. 

This low/moderate correlation agrees with previous findings (Morris and Amyes 2010). Of note is 

that this correlation is stronger for the P4-based puberty traits which are more sensitive to early P4 

levels (i.e. AP1 or AP4), indicating that the fertility BV trait may have a stronger genetic association 

with P4 increase in general than with the stable P4 increase at oestrus. 

 

CONCLUSIONS 

Although the data is limited in size and divergent in nature, the analysis undertaken here has 

yielded useful preliminary results which are consistent with current literature. Age at puberty as 

determined via behavioural oestrus observations has a low heritability and a moderate genetic 

correlation with fertility. Age at puberty as determined via blood P4 measurement has a high 

heritability; a moderate genetic correlation with fertility; and, given appropriate threshold criteria, 

appears to be able to capture the genetic signal of CL formation associated with puberty onset, as 

behavioural oestrus does. P4-based puberty may thus be of good use for the genetic improvement of 

puberty and/or fertility. Although P4 measurement may have limited practicality on a national scale 

under traditional selection, it may be quite feasible within the reference population of a genomic 

selection scheme. Consequently, these findings indicate that further investigation to establish more 

robust genetic parameter estimates  and assessment of feasibility are warranted. 
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SUMMARY 

A stochastic simulation model was used to determine the impact of incorporating genomic 

selection into the IVF process to generate high merit young bull candidates, from a breeding 

company perspective. IVF candidates were simulated with varying selection proportions applied at 

the blastocyst stage, then combined with standard genomic selection scheme candidates with the 

top 50 bulls selected on EBV using truncation selection. Selecting a low proportion of genotyped 

blastocysts for cloning was key to producing high EBV young bull candidates where the cost of 

the IVF technologies would be offset by a large reduction in rearing costs through having fewer 

candidates to rear through until semen producing age.        

 

INTRODUCTION 

Dairy cattle breeding is a highly competitive business driven by commercial semen companies 

that have generated substantial genetic gains. Genomic selection has been widely used in dairy 

cattle improvement systems since 2008, with recent estimates of the reduction in generation 

interval ranging from 7 months for dams of cows up to 4.5 years for the sires ’ of bulls’ pathway 

(Garcia-Ruiz et. al., 2016), accompanied by substantial improvements in selection pressure on key 

traits.  These improvements are based on genomic testing of young bull candidates to predict 

performances earlier along with improvements in the accuracy of genomic breeding values, 

particularly in lower heritability traits.   

Fisher et al (2012) proposed a method of genotyping bovine embryo biopsies, with rates of in 

vivo development not significantly different to fresh control embryos. Carrying out genomic 

selection at the blastocyst level would allow for intense selection for favourable genotypes within 

a set of candidate embryos. This could be exploited within a commercial breeding program, either 

through increased selection intensity at an earlier stage, or through reduced rearing costs to 

identify top young AI bull candidates because only blastocysts of sufficient predicted genetic merit 

would be reared through to semen production and beyond.   

This study used simulation to determine the impact of incorporating genomic selection into the 

IVF process. A breeding company perspective was taken, whereby elite young bull candidates 

were generated within a genomic selection breeding scheme.  

 

MATERIALS AND METHODS 

A stochastic simulation framework was developed using the python programming language, 

and with a generic parameterisation based on industry statistics of ages of young bulls. The 

simulation framework starts by using a burn-in phase to model a base population selection pool for 

a genomic selection breeding scheme, followed by various scenarios incorporating varying levels 

of selection candidates generated via IVF and genomic selection . Bulls generated via IVF coupled 

with genomic selection then had to compete with a wider population of bulls generated from 

conventional matings. into the final pool of bulls available for selection.  

An initial pool of selection candidates was generated using 25 unrelated animals of each sex 

expressing a single polygenic normally distributed trait with a heritability (h2) of 0.25. The burn in 

phase was simulated over 9 discrete generations of random mating between equal numbers of 
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males and females with known pedigree to generate an effective population size of 50 on average, 

before expanding out via factorial mating to 60,000 individuals in the 10th generation. True 

breeding values (TBV) in the first generation were drawn from a random normal distribution with 

a mean of zero and standard deviation equal to the square root of the heritability. For subsequent 

generations where parent information was available, the progeny TBV was calculated as the 

average of the parent TBV plus a Mendelian sampling term. Estimated breeding values (EBV) 

were simulated for the expanded population individuals as a trait correlated to their true breeding 

values using a Cholesky decomposition (Van Vleck and Gregory, 1992), with an accuracy of 0.8 

simulated for genomic BVs. 

Following the expansion stage, a genomic selection breeding scheme was simulated by 

selecting 50 sires and 1500 dams on EBV from the final pool of 60,000 individuals. The mating 

structure was weighted such that the top quintile of sires by EBV were randomly assigned the top 

60% of the dams, the second quintile were randomly assigned to the next highest 20% of dams, 

and then the third, fourth and final quintile were assigned the remaining best ranked 10, 6 and 4% 

of dams respectively, to replicate a commercial industry structure. Each mating produced a sing le 

male offspring, resulting in a contribution of 1500 bull calf candidates  to the final pool for 

selection. 

Additional selection candidates resulting from IVF with prior prediction of genetic merit and 

selection at the pre-implantation stage were generated. The reproductive technologies processes 

were simulated using a series of random variates to assess the likelihood of a given cross between 

a selected male and female progressing through each stage from oocyte production through to 

survival of a semen producing bull. Top sires and dams were selected from the pool of candidates 

on EBV and mated using a factorial cross mating design. It was assumed that females could be 

flushed for oocytes multiple times, with each cross producing 10 oocytes.  

 

Table 1.  The base input parameters used to simulate the stages of the IVF process, 

including the unit for each input factor.   

 

IVF input parameters Value Unit 

Oocytes 10.7 Per cow flushed 

Viability rate of oocytes  0.9 Oocytes viable per oocytes recovered 

IVP development rate 0.31 
Blastocysts for testing per oocyte 

flushed 

DNA tests 1 Per blastocyst for testing 

Semen sexing rate 0.5 
Male blastocysts per blastocyst for 

testing 

Selection rate 0.05 to 1 Selected blastocysts/blastocyst tested 

Mortality (post biopsy, cryopreservation) 0.1 Deaths per biopsied blastocyst 

Cloning factor 4 Demi-embryos per embryo cloned 

Cloning success rate 0.85 Surviving embryos per demi-embryo 

Embryos implanted per recipient 1 

 
Embryo survival rate 0.2 to 0.4 Per embryo implanted 

Calf survival rate 0.95 Per calf born 

Acceptable bulls  1 Per viable calf 

 

For each oocyte simulated, a series of random standard uniform variates were generated to 

simulate the likelihood that each oocyte is viable and passes the in -vitro production (IVP) stage, 

using the base parameters shown in Table 1. Genomic EBVs were generated for the remaining 

blastocysts assigned to be male using the equation below 
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where ρ2 is the accuracy of genomic selection. Blastocysts were then selected prior to cloning at a 

specified rate using truncation selection. 

The cloning of the embryos occurred after the biopsy and genomic selection stage, with up to 4 

demi-embryos created per embryo cloned and a cloning success rate of 85%. Finally, random 

standard uniform variates were used for the likelihood of both embryo and calf survival, with the 

assumption that all surviving calves were acceptable for potential usage as a bull, and these bulls 

were added to the pool of conventional selection candidates. Each of these probabilities act as 

linear multipliers.  The values shown in Table 1 for example, a single cow flushed would produce 

between 0.087 calves with a blastocyst pre-selection rate of 0.05 and 1.17 calves with a pre-

selection rate of 1, where all blastocysts were retained.  

Costs were assigned to each stage of the IVF process , then multiplied by the input parameters 

shown in table 1. If there was no pre-selection of blastocysts, the estimated cost to produce a 

single viable bull calf was $2,647 (NZ), of which 57% was attributed to rearing costs.  

Scenarios were compared based on the top 50 bulls selected from the pool of 1500 selection 

candidates via truncation selection, and according to their additional costs attributable to the IVF 

process. The proportion of IVF bulls selected in the top 50 out of those generated was compared, 

along with the TBV superiority of the top 50 bulls. The pre-selection rate applied to the IVF 

blastocysts following DNA testing was varied between 0.05 and 1 (i.e. all blastocysts selected) and 

the number of cows flushed increased to maintain the same number of effective calves for each 

selection rate. The number of effective calves generated was varied  between 2 and 36, with an 

embryo mortality rate of 0.2.  

 

RESULTS AND DISCUSSION 

 

 
Figure 1. The average percentage of IVF bulls created that were selected in the top 50 as the 

blastocyst pre-selection rate increased from 0.05 to 1, with between 2 and 36 IVF calves 

created from the required number of cows flushed. The cost per bull calf for the given pre-

selection rate is shown on the secondary axis.   
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Figure 1 shows the average percentage of the IVF bulls generated that were selected in the top 

50 as the pre-selection rate applied to blastocysts during the IVF process was increased from 0.05 

to 1, with the cost per bull calf produced. When the top 5% of blastocysts were pre-selected for 

implantation using genomic selection, all bull calves created via IVF were selected in the top 50 

candidates in all replicates, regardless of the number of calves created , at a cost of $7,990 per calf. 

The percentage selected dropped to between 50 and 60% with a pre-selection rate of 0.25 and a 

cost of $3490 per calf, with a further reduction to between 10 and 20% without any pre-selection 

of blastocysts. These results show that the pre-selection rate applied to blastocysts was the key 

variable, where a low selection rate of blastocysts would require a larger number of cows to be 

flushed and blastocysts biopsied for DNA testing, (e.g. 100 cows flushed to produce  on average 9 

IVF calves) but in turn this would reduce the rearing costs of those young bull candidates which 

would not have been of sufficiently high merit to be selected in the top 50 after pooling with the 

calves selected at birth. 

Table 2 shows the mean TBV and EBV of the pool of 1500 young bull candidates, along with 

the non-IVF bull and IVF bulls and IVF bull calves selected in the top 50 for a blastocyst pre-

selection rate of 0.05. The TBV of the IVF bull calves was significantly (p<0.05) higher than the 

non-IVF bulls with 9, 18 or 27 IVF calves produced, although this superiority was not observed 

with pre-selection rates higher than 0.1.  

 

Table 2. The mean (standard deviation) TBV and EBV of all candidates for selection, the 

non-IVF bull calves and IVF bull calves in the top 50 selected, with a blastocyst pre-selection 

rate of 0.05.  

 

IVF calves produced 9 IVF Calves 18 IVF Calves 27 IVF Calves 36 IVF Calves 

Cows Flushed 100 200 300 400 

All Candidates TBV 0.86 (0.25) 0.84 (0.24) 0.84 (0.24) 0.84 (0.23) 

All Candidates EBV 0.55 (0.16) 0.55 (0.15) 0.56 (0.15) 0.56 (0.15) 

Non IVF bull TBV 1.23 (0.26) 1.21 (0.25) 1.22 (0.25) 1.22 (0.24) 

Non IVF bull EBV 1.49 (0.17) 1.50 (0.15) 1.51 (0.15) 1.54 (0.16) 

IVF bulls selected 9.12 (2.39) 17.56 (4.75) 26.72 (4.61) 36.92 (6.09) 

IVF bull TBV 1.45 (0.30) 1.43 (0.34) 1.39 (0.28) 1.37 (0.30) 

IVF Bull EBV 1.78 (0.19) 1.74 (0.21) 1.73 (0.20) 1.70 (0.19) 

 

The utilisation of IVF technologies in combination with genomic selection at the blastocyst 

stage could be advantageous from a breeding company perspective, to carry out intensive selection 

on blastocysts prior to implantation, as it would reduce the rearing costs required to identify the 

top young bulls. While the cost of a large scale IVF program incorporating genomic selection may 

be prohibitive, the scenarios tested in this simulation project suggest that it could be used in 

combination with a more traditional genomic selection breeding scheme to increase the merit of 

the semen marketed from young bulls.  
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SUMMARY 

Selective breeding within the pearling industry is heavily confounded by the complexity of 

production traits and the ability to accurately measure these phenotypes. Pearls are produced by 

implanting a nucleus along with a small piece of donor tissue from a sacrificed oyster into a host 

oyster. Unravelling trait architecture for these complex pearl quality traits is integral if genomic 

selection is to be implemented into established selective breeding programs. By combining  

simulated and exploratory datasets, this study uses genome-wide loci to better understand the genetic 

architecture of pearl colour which provides insights into the optimal design and implementation for 

a genomic selection breeding program within the pearling industry.  

 

INTRODUCTION 

The silver-lipped pearl oyster is a globally important aquaculture species with pearl production 

from this species currently the second most valuable Australian aquaculture export (GLOBEFI SH 

2016). However, like most aquaculture industries, pearling has yet to establish and implement the 

advanced selective breeding programs required for industry progression. Although traditional 

animal improvement methods have had some success with simple traits (i.e. animal growth), they 

are inefficient for the complex pearl traits (size, colour, lustre and shape), which are polygenic, hard 

to measure and have a low heritability (Jerry et al. 2012, Jones  et al. 2014). For the Australian pearl 

industry (and aquaculture in general) to maintain international competitiveness, industry must 

engage in a paradigm shift in breeding practices and implement pioneering technologies that 

circumnavigate current limitations associated with sole reliance on phenotypic selection. 

Successful incorporation of genomic data into traditional selective breeding programs depends 

on many factors including the diversity within a farm, the species genome size and structure, and 

the architecture of traits of interest. Herein, we describe the development of an optimal genomic 

selection approach required for rapid-genetic improvement in pearl colour in pearl oysters. In doing 

so, we propose a breeding system which promises to not only improve efficiency of selection within 

the pearling industry, but will serve as a case study for many aquaculture species.  

 

MATERIALS AND METHODS 

Experimental animals, pearl seeding and phenotypic records . To investigate the ideal design of 

a genomic selection breeding program for pearl colour, we utilised a dataset previously published in 

Jones et al. (2014) as a pilot dataset to explore the parameters required for robust application. 

Briefly, this dataset contains 2,306 individually traced commercial pearl grading phenotypes for 358 

donor oysters from 6 families, as well as genotypic data for 1,146 SNPs across these individuals . 

Herein, we focus on the analysis of pearl colour, categorised into five sub-categories; SW.O.G: silver 

and white vs. gold vs. all remaining colours; G.O: gold vs. remaining colours ; S.O: silver vs. 
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remaining colours; W.O: white vs. remaining colours ; and finally SW.O: silver and white vs. 

remaining colours (Jones  et al. 2014).  

 

Variance components, heritability and genetic parameters. Previous estimates of variance 

components and heritability (h2) for pearl colour have been based on pedigree information. To test 

the premise that genomic relationships are equally useful in calculating unbiased heritabilities (or 

variance explained by SNPs), we generated genomic relationship matrixes (GRMs) across the 358 

oysters using GCTA v1.26.0 (Yang et al. 2011). Variance components and heritabilities were 

calculated using mixed linear models (MLM) whereby all SNPs were fit as random effects. Briefly ,  

𝒚 = + 𝒈 +   with  𝑽 = 𝑨𝒈
𝟐 + 𝑰

𝟐 

where g in an n x 1 vector of the total genetic effects of the individuals with g ~ N(0, 𝑨𝒈
𝟐 ), and 

A is interpreted as the GRM between individuals. An estimate of 𝒈
𝟐  can then be produced by the 

restricted maximum likelihood (REML) approach, relying on GRM estimates from all SNPs. Co-

variables identified as significant in the previously published heritability estimates (i.e. seeding 

nucleus size and seeding technician) were also included within current the analysis described here. 

In addition to calculating GRMs, individual animal breeding values (best linear unbiased predictors; 

BLUPs) and SNP effects were calculated after incorporating in genomic relationship informat ion . 

Genetic parameters generated using GRM were then compared to previously published pedigree 

derived results (Jones  et al. 2014).  

 

Optimal number of markers. To test the minimum number of SNPs necessary to produce robust 

estimates for GRM within the test farm data, we simulated a theoretical dataset to compare the 

potential benefit of including larger numbers of markers within GRM calculations . Firstly, a founder 

population was identified as the last generation of 1,000 historic simulated generations with 430 

animals in each generation (equal to the effective population size of wild oyster populations as per 

Lind et al. 2007). Simulations were conducted for 4,200 SNPs using QMsim (Sargolzaei et al. 2009). 

From the founder population, 20 males and 20 females were used for breeding with each mating  

producing 50 offspring. The effective population size reflects the number of founders within the 

pilot dataset described above (N = 50). Simulations were run for 10 discrete generations with random 

selection of parents from the earlier generation. For positional information, the 4,200 SNPs were 

placed proportionally to the length of the 14 linkage groups of a Pinctada maxima linkage map  

published in Jones et al. (2013). In the last three generations of the simulations, only 2,000 SNPs 

remained polymorphic. The resulting dataset was utilised to run comparisons of GRMs between 

1,000 and 2,000 SNPs.  

 

Optimal number of samples. Power calculations for related vs unrelated individuals based on 

genetic parameters related to pearl quality were conducted to estimate the minimum number of 

samples required to accurately identify additive genetic variance. Using methods described in 

Visscher et al. (2014), we simulated the power, defined as ‘the probability of detecting h2 > 0 for a 

quantitative trait for the given type I error rate and the SNP-heritability assumed in the population’. 

Heritabilities of 0.05 - 0.30 were run to reflect previous estimates of h2 for pearl colour (0.14 - 0.36;  

Jones et al. 2014). The type 1 error rate was set at 0.01 and the variance of the SNP-derived genetic 

relationships was 0.00002 (for unrelated individuals) and 0.025 (for related individuals  within this 

study population, obtained from the genetic relatedness between individuals ).  

 

RESULTS AND DISCUSSION 

Pearl colour trait heritability and genetic parameters. The average difference between 

heritability estimates of pearl colour using GRM instead of pedigree was minor (average h2 
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difference of 0.02 ± SD 0.02) indicating that the substitution of the relationship matrix provides 

similar power and accuracy to pedigree data when separating variance components and calculating 

heritability (Figure 1). The calculation of animal BLUP values based on the GRM were highly 

correlated to those previously published with r2 values ranging from 0.72 to 0.88 for the different  

colour categories except for S.O where the r2 was 0.46. This lower r2 may be due to the relatively  

low number of silver pearls observed within the data (N = 216).  

 

 
 

Figure 1: Heritability estimates derived from GRM () as compared to pedigree ().  

 

The architecture of pearl colour has previously been reported to be polygenic and influenced by 

many genes of small effects (Jerry et al. 2012, Jones  et al. 2014). One major region on linkage group 

12 returned 13 significant genetic associations across the different categorisations of pearl colour 

which have SNP effect sizes ranging from 0.11 to 0.26 (Jones  et al. 2014). For these SNPs, the SNP 

effects returned in GCTA using GRM were highly correlated to the previously published GWAS 

SNP effects (SW.O.G r2 = 0.97; G.O r2 = 0.96; S.O r2 = 0.94; W.O r2 = 0.98; SW.O r2 = 0.98).  

 

Optimal number of markers. To determine the potential effect of adding more SNPs into GRM 

calculation, we simulated a larger genotypic dataset containing 2,000 SNPs. The r2 correlation 

between 1,000 and 2,000 SNPs was 0.98 indicating that increasing the number of SNPs with similar 

spacing throughout the genome yielded very little improvement to GRM accuracy in this test farm 

data. This indicates that 1,000 genome-wide markers is sufficient to give accurate GRM calculations 

for this closed farm population with limited founders  (Ne previously estimated at 60). If however, 

if this is to be applied outside of this closed farm population, increasing the marker density would 

yield substantial benefit. The relative advantage of GBLUP models is at higher marker density and 

low heritability. In Atlantic salmon, GBLUP performed better with upwards of 4,000 SNPs 

(Ødegård et al. 2014).  

 

Optimal number of samples. Simulations of the power to detect the unbiased heritable component 

of a trait from related individuals (variance of SNP-derived genetic relationships of 0.025) at sample 

sizes ranging from 100 – 400 and h2 of 0.05 – 0.30 reveal that 99% power is obtained at 300 samples 

for a h2 of 0.2 (Figure 2). For the pilot dataset with 2,000 phenotypic records (from 358 unique 

related individuals), power to detect the heritable component of a trait is estimated to range from 

0.78 – 1.00 (for h2 of 0.10 – 0.30) indicating that the current number of individuals is sufficient for 

estimating trait heritability. However, if this was to be expanded to unrelated individuals (i.e. 

variance of SNP-derived genetic relationships of 0.00002), 99% power is only reached at 8,000 

samples for h2 > 0.2.  
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Figure 2: Power simulations for varying heritabilities across increasing sample size. 

 

CONCLUSIONS  

The re-analysis of the farm test dataset within GCTA using GRM instead of pedigree returned 

comparable heritability, animal BLUP and SNP effects to previously published GWAS results . This 

suggests that the use of GRM alone is as effective as pedigree data within a closed breeding 

population and adds support to the notion that pearl colour is a highly complex polygenic trait. The 

ability to use GRM instead of pedigree to calculate BLUP enables the inclusion of individuals for 

which pedigree information is not known, but more importantly the relationship between relatives 

can be calculated more accurately (Veerkamp et al. 2011). Considering this, it is hypothesised that 

the variance components can be estimated more precisely with GRM. Furthermore, for a genomic 

selection breeding program to be implemented for complex traits such as pearl colour within a closed 

population of pearl oysters, a minimum number of 300-400 farm data records are required to 

estimate the variance explained by the genome-wide SNPs for the range of heritabilities evaluated. 

To extend this to a breeding population with a larger number of founders (N = 300), simulations 

indicate that the minimum number of markers required to achieve an equivalent GRM outcome is 

~3,000 SNPs and that a minimum of 8,000 samples would be required to reliably detect heritable 

components of pearl production traits . Based on these recommendations, the current pearl oyster 

breeding program has collected phenotypic data (i.e. pearl quality and growth traits) and genotypic 

data (a minimum of ~3,500 genome-wide SNPs) from 10,000 farm production animals  to achieve 

these outcomes. These data simulations described herein are integral to refining the direction of 

ongoing research into implementing advanced genomic selection into traditional breeding programs.  
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SUMMARY 

Residual feed intake is a measure of feed efficiency in beef cattle which is an economically 

important trait in beef production. Gene expression is the key determinant of cellular phenotype 

and genome-wide expression analysis will provide insight into the molecular events underlying 

biology of feed efficiency. We carried out genome-wide gene expression in liver, muscle and 

blood with total 199 samples and micorRNA expression with 96 samples. These datasets provide a 

resource of expression QTL mapping for understanding the functional consequences of genetic 

variation, and how it affects feed efficiency in beef cattle. 

 

INTRODUCTION 

Feed use and feed efficiency are important for the survival and selective advantage of an 

animal. In animal production enterprises, feed intake and feed efficiency are important factors that 

affect overall profitability. In a typical beef production system, about 65–85% of the feed is used 

to maintaining the cow breeding herd (Montaño-Bermudez and Nielsen 1990). Feed efficiency in 

beef cattle can be measured as Net feed intake (NFI) or residual feed intake (RFI). This is the 

difference between an animal’s actual feed intake recorded over a test period and the expected feed 

intake based on the animal’s size and growth rate (Koch et al. 1963).  

There is strong evidence that genetic variation in RFI exists. The estimated heritability of RFI 

in cattle populations is moderate ranged from 0.07 to 0.62 (Berry and Crowley 2013). In Australia, 

heritability estimates for NFI at feedlot is 0.41 and 0.34 for post-weaning (Jeyaruban et al. 2009).  

However, the accurate measurement of RFI for individual animals is an expensive process, and 

this has been a major limitation to the adoption of feed efficiency as an economically important 

trait in animal breeding. Much of the research projects were focus  on to to develop genetic markers 

that can be used for genomic selection using high density single nucleotide polymorphism (SNP) 

chips and more recently, next generation sequencing technologies that enable breeders to select 

animals based on genomic sequences (Meuwissen et al. 2001; Barendse et al. 2007; Meuwissen 

and Goddard 2010; Bolormaa et al. 2011; Khansefid et al. 2014).  

In the past decades, we have gained considerable knowledge of understanding of animal’s 

development with the advance of genome sequence of human and many other species (The-

ENCODE-Project-Consortium 2012). The genome sequence contains all the information necessary 

to develop from the initial zygote to an adult with full set of organs to respond to the 

environmental influence. Although all cells from an individual have the same genome sequence, 

there are more than 400 distinct cell types which and their cellular developments, morphology, and 

function are governed by precise patterns of gene expression which are regulated by the function al 

elements in the genome.  

A number of studies of gene expression in beef cattle have been published (Chen et al. 2011; 

Tizioto et al. 2015; Weber et al. 2016) with a limited number of samples and a number of 

differentially expressed genes between high and low NFI cattle were revealed by comparing two 
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extreme phenotype groups. However, a large gene expression dataset with sufficient number of 

animals and crossing multiple tissues is essential to study the patterns of transcriptome variation 

across individuals and tissues. We carried out genome-wide gene expression in liver, muscle, and 

blood tissues with total 199 samples, In addition, we also carried out genome-wide expression of 

micorRNA for 96 samples. These datasets provide a resource of expression QTL mapping for 

understanding the functional consequences of genetic variation, and how it affects feed efficiency 

in beef cattle. 

 

MATERIALS AND METHODS 

All animals used for the genome-wide gene expression by RNA-sequencing were from Angus 

divergent selection line for NFI at the Agricultural Research Centre, Trangie, NSW (Arthur et al. 

2001). The first set of animals consisted of 48 young bulls born in 2005 which were approximately 

three generations of divergent selection for NFI.  Liver biopsies were taken from 24 animals with 

the lowest RFI and 24 animals with the highest NFI at the end of the test at feedlot Tullimba. The 

second set of animals contained 48 young bulls born at 2008. Muscle biopsies were taken at post 

weaning at the Agricultural Research Centre, Trangie. The third dataset was 30 steers and 30 

heifers born in 2012, the blood tissue and liver biopsies were taken at the end of NFI test.  

All animals used in these experiments were recorded for average daily gain during the 70day; 

net feed intake, average daily feed intake; P8 fat thickness (ultrasound) at the end of NFI test; RIB 

fat thickness (ultrasound); eye muscle area (ultrasound). 

 All experiments were approved by the University of New England Animal Ethics Committee 

(AEC 06/123, AEC14-002 and AEC14-036) and New South Wales Department of Primary 

Industries (NSW DPI) Animal Research Authority ((ORA09/015, ORA 13/16/004). Male calves 

were castrated at 4 months of age. After weaning animals were grown on native pastures until they 

reached feedlot entry weight of approximately 400 kg BW. NFI was tested in the Beef Research 

Feedlot Tullimba, NSW with an automated recording system. During the 70-day test, the animals 

had ad libitum access to a barley-based feedlot ration containing 12 MJ metabolizable energy per 

kilogram dry matter and 15–17% crude protein.  

Ninety-seven RNA-sequencing samples were obtained using HiSeq 2000 (Illumina Inc) and 

the RNA-sequencing libraries were created from the polyadenylated fraction of RNA from each 

animal by using modified protocol of Illumina sample preparation. The remaining 104 RNA-

sequence samples were obtained by using HiSeq 2500 (Illumina Inc) at Beijing Genome Institute  

and the sequencing library were created by using non-strand specific protocol with poly-A 

selection of mRNA (the Illumina Tru Seq™) protocol. 

Small RNA libraries were constructed for each animal using 1µg total RNA with NEXTflex™ 

Small RNA-Seq Kit v2 (Bioo Scientific, TX, USA) following the protocols supplied by the 

manufacturer. The libraries were sequenced at Ramaciotti Center, University of NSW with 

Illumina HiSeq 2000 Sequencing System.  

The quality of the sequence was assessed with FastQC v0.11.3 (Andrews 2010) and the low 

quality bases and adaptor sequences were removed by Trimmomatic v0.33 (Bolger et al. 2014). 

We used topHat v2.1.1 (Trapnell et al. 2009) to align all paired reads against the Bos taurus 

reference genome (Ensembl UMD3.1). Read counts for each sample was obtained with HTSeq v 

0.6.0 (Anders et al. 2014). In order to visualize the clustering of the tissues samples, batch effects, 

and possible outliers we performed plots from the output of Principal Component Analysis (PCA) 

on the raw counts. 

We used R package ComBat (Johnson et al. 2007) to adjust for batch effect in liver samples of 

the bull and steer datasets. The differential expressed (DE) genes  between tissue were obtained by 

Edge R (false discovery rate <0.05 and the logarithm fold change (logFC) ≥ 1.5). 
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RESULTS AND DISCUSSION 

In total, we obtained more than 1772 million high quality paired sequence reads for RNA-sequencing and 240 million microRNA sequence 

reads. Among all the RNA-sequencing samples, more than 90% of the paired sequence reads from liver and muscle tissue were aligned to the 

bovine genome (bostau6, UMD_3.1) albeit, the mapping rate for sequence reads in blood is lower (~ 81%) (Table 1). For the microRNA 

sequencing, more than 80% of the sequence reads mapped to the bovine genome and 69% sequence reads mapped to known bovine mature 

miRNA (bostau6, UMD_3.1).  

 

Table 1 Summary of the RNA-sequencing results

 Dataset 

Liver 

/bull 

Liver 

/steer 

Liver 

/heifer 

Muscle 

/bull 

Blood 

/steer 

Blood 

/heifer 

Liver 2 

miRNA 

Muscle2 

miRNA 

No sample 47 25 27 48 25 27 48 48 

Paired reads (106)  6.0 11.3 11.3 6.8 11.2 11.2 2.81 2.2 

Range (106) 1.6-12.5 11.0-11.5 11.0-11.5 0.6-9.4 9-11.5 11-11.5 0.32-9.8 0.4-7.5 

Mapped pair reads %1  81 90.8 90.8 88.7 80.6 80.6 88  (0.69)3 84  (0.69)3 

         
1 the concordant pair alignment rate; 2:miRNA-sequencing using 1x75 single read; 3:the sequence reads mapped to known miRNA in bovine 

genome sequenced (UMD3.1).  

 

We explored gene expression similarity between tissues and across samples by  principal component analysis (PCA) on the raw counts . 

Liver, muscle and blood tissues show a characteristic transcriptional signature (Figure 1 A). Furthermore, the expression profiles in liver of 

young bulls are quite distinct to steers and heifers, while there is little difference of expression pattern in liver between steer and heifer 

(figure 1B). Indeed, we found the largest number of differential expressed genes between tissues (>12000). In liver expressio n, there are 

more than 9000 differentially expressed genes between young bull and steer/ heifer, only 2 differentially expressed genes between steers and 

heifers (data not shown due page limits).  This suggests that male hormones played important roles in liver expression. The liver is one of the 

most essential organs involved in the regulation of energy homeostasis  and associated with lipid formation and breakdown, glucose 

production and catabolism, and cholesterol synthesis and secretion. It was well documented in mice and human that males, testosterone 

works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and 

promote cholesterol storage in the liver (Shen & Shi 2015). 

Understanding the gene regulation and the identification of the functional elements in genome are important to increase the a ccuracy 

of genome selection by increase the level of linkage disequilibrium in the marker panel by including functional SNPs. These gene expression 

datasets provide a potential resource for mapping functional elements by eQTL mapping .  
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A total of 560 known miRNAs we 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Gene expression similarities between tissues and sex by principal components 

analysis. A:gene expression between tissues across all samples. B:Liver gene expression between 

young bulls, steers and heifers.  
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SUMMARY 

A high-quality transcriptome is important for genome annotation  and differential gene 

expression studies, but a comprehensive transcriptome assembly for non-model species like 

prawns is still challenging. Most assemblies are carried out in a single assembler; however, recent 

publications have shown that while different assemblers produce a shared core of contigs, they 

each also produce unique contigs. Using the transcriptome assembly of the black tiger prawn 

(Penaeus monodon) as an example, we merged the assemblies generated by four transcriptome 

assemblers, and incorporated newly published best practices into a novel pipeline. This multi 

assembler approach produces an improved, less redundant assembly which is also transferable to 

other non-model species. Therefore, in contrast to older approaches, using multiple assemblers 

improves assemblies by using the strengths of different assemblers, while decreasing their 

weaknesses. 

 

INTRODUCTION 

Complete transcriptomes are an important resource that can be used for differential gene 

expression studies (Wang et al. 2009), genome annotation (Saha et al. 2002), and more recently 

genome scaffolding (Song et al. 2016), among other applications. The two main methods for 

transcriptome assembly are genome guided and de novo. A genome guided transcriptome 

assembly is computationally simpler, but depends on the completeness of the reference genome 

and is impeded by sequencing errors and isoforms (Grabherr et al. 2011). In contrast, the de novo 

approach is used when no reference genome is available, but is computationally more complicated, 

especially for large data sets. While model species often have a variety of genomic resources 

available, these are by definition lacking for non-model species. 

Recently the number of transcriptome assemblers has exploded  from the limited number that 

was available ten years ago. These various assemblers have different strengths and weaknesses, 

resulting in contigs that are unique to a specific tool (Smith-Unna et al. 2016). Trinity, one of the 

most popular assemblers (cited in 2865scientific articles based on Web of Science as of January 

2017), can assemble most transcripts including different isoforms , or recent gene duplications 

(Grabherr et al. 2011), although with the drawback of the final transcriptome often including a 

large number of misassembled contigs. Another bias in transcriptome assembly is introduced by 

sequencing errors or increased heterozygosity due to sequencing multiple individuals, both leading 

to more fragmented assemblies.  

Recently, MacManes (2016) published recommendations for the transcriptome assembly of 

non-model species, suggesting to only sequence tissues from one individual, which is not always 

possible (for example for small organisms), and to use Rcorrector to reduce sequencing errors. 

https://members.asnevents.com.au/event/1486/abstract/40928/view#affiliation_82578
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BUSCO (Simão et al. 2015) and TransRate (Smith-Unna et al. 2016) are used to assess the final 

transcriptome and remove low coverage reads. Transfuse has been made available 

(github.com/cboursnell/transfuse), which can merge multiple transcriptome assemblies from 

different individuals or different assemblers using reads to improve the final assembly. Therefore, 

the aim of this study is to compare the assembly of individual samples using four assemblers 

(Trinity, Bridger, BinPacker and IDBA-tran) merged using Transfuse with a single assembly in 

Trinity.  

 

MATERIALS AND METHODS 

Samples were collected from five different individuals of Penaeus monodon (3 female, 2 

males). Two replicates each of the following tissues were sent for sequencing: eyestalk, female 

gonad, male gonad, gills, haemolymph, hepatopancreas, muscle and stomach. One sample each 

from gills, haemolymph and stomach failed the library preparation, resulting in 13 successfully 

sequenced samples. Sequencing was carried out at the Australian Genome Research Facility in 

Melbourne, Australia, on a HiSeq 2500 using a 125 bp paired-end, strand-specific, ribo-minus 

protocol. On average, 20 million reads were obtained per sample with an average of 91% bases 

≥Q30. 

Two assembly approaches were used: one assembling all samples collectively in a single 

assembler (single assembly, Fig. 1a) and the other where each sample was assembled ind ividually 

in four assemblers (multi assembly, Fig. 1b). The transcriptome generally followed the 

recommendations of MacManes (2016). For both approaches, the individual samples were 

collectively error corrected using RCorrector version 1.0.2 (Song et al. 2015). 

 
Fig. 1 Assembly pipeline for a) single assembler approach and b) multi assembler approach 

 

Using Trinity 2.2.0 (Grabherr et al. 2011), adapter and bases with a Phred score <2 were 

trimmed with trimmomatic (Bolger et al. 2014) and reads were in-silico normalised. For the single 

assembly, the 13 samples were concatenated and assembled in Trinity. The multi assembly was 

carried out for each sample individually in Trinity 2.2.0, BinPacker 1.0 (Liu et al. 2016), Bridger 

r2014-12-01 (Chang et al. 2015) and IDBA-Tran 1.1.1 (Peng et al. 2013). For IDBA-Tran the k60 

transcriptome was used for downstream processing. For both approaches transfuse version 0.5.0 

(https://github.com/cboursnell/transfuse) was used to remove redundant contigs, and also merge 

the individual assemblies for the multi assembly approach. For the multi assembly, the 

https://github.com/cboursnell/transfuse
https://github.com/cboursnell/transfuse
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transcriptomes of the four assemblers were merged by sample using transfuse  in a first round. In a 

second round, samples were then merged with transfuse into a final transcriptome. 

The two final assemblies were annotated using Blast2Go (Conesa et al. 2005) against the 

SwissProt database (Boeckmann et al. 2003) downloaded on 12. January 2017. The quality of both 

assemblies was assessed with BUSCO version 1.2 (Simão et al. (2015) using the arthropod set and 

TransRate version 1.0.3 (Smith-Unna et al. 2016). 

 

RESULTS AND DISCUSSION 

The aim of this study was to compare the use of multiple assemblers (multi: Trinity, 

BinPacker, Bridger, IDBA-Tran) on individual samples with a combined approach using only one 

assembler (single: Trinity). When comparing the two approaches, the multi assembly resulted in a 

more manageable number of contigs and lower duplication levels; however, at the price of 

completeness (Fig. 2a). The number of fragmented contigs was comparable in both approaches. 

The raw assembly in Trinity resulted in 280,846 contigs, with 85% of the arthropod 

Benchmarking Universal Single-Copy Orthologs (BUSOs) complete, of which 24% were 

duplicated (Fig. 2a). After merging with Transfuse, this was reduced to 212,526 contigs with 

C:83%[D:24%] and 36,086 contigs annotated with SwissProt. In contrast, the sum of the contigs 

of all samples in the four assemblers added up to 2,412,355 contigs. Merging the individual 

assemblies by sample reduced the total number of contigs in the 13 samples combined to 392,349 

with a C:70%[D:11] (Fig. 2a). The second round of merging of the individual samples into a final 

transcriptome resulted in 73,406 contigs with C:70%[D:10%] of which 17,885 contigs were 

annotated with SwissProt. The single assembly resulted in 10,470 unigenes (29% of annotated 

contigs), while the multi assembly resulted in 8,450 unigenes (47% of annotated contigs), with 

7071 shared unigenes (Fig. 2b). The BUSCO analys is and unigene comparison shows that while 

the single assembly approach produces more annotated contigs, most of these contigs are 

duplicated. 

 
Fig. 2 a) Benchmarking Universal Single-Copy Orthologs (BUSOs) values and #contigs for 

the two approaches using single and multiple assemblers. b) Venn diagram showing number 

of shared and unique genes identified in Blast2Go. 

 

Table 1 Quality assessment using TransRate. Scores and percentages derived from mapping 

reads to the assembly.  

 Assembly 

Score 

# of 

contigs 

Assembly 

Size 

N50 Percent 

mapping 

Percent bases 

uncovered 

Percent contigs 

low covered 

Single 0.48 212,526 171.1 Mb 1571 81.8 35.6 80.2 

Multi 0.36 73,406 65.5 Mb 1687 82.7 18.2 36.9 
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Comparing the TransRate mapping scores of the two assemblies strategies, the multi assembly 

exhibited higher support for the contigs. While the single assembly has a slightly higher assembly 

score of 0.48 compared to 0.36 in the multi assembly, the percentages of reads mapping to the 

transcriptome (81-83%) and N50 values (1500 bp to 1687 bp) were comparable (Table 1). 

However, the multi assembly had a lower proportion of bases that were not covered by reads 

(18.2% compared to 35.6%) and fewer contigs with low read coverage  reads (36.9% compared to 

80.2%). 

Compared to two other multi-tissue decapods assemblies, the present assembly lies between 

the assemblies of the two freshwater crayfish Astacus astacus (Theissinger et al. 2016) and Cherax 

quadricarinatus (Tan et al. 2016). The A. astacus assembly combined four tissues (abdominal 

muscle, hepatopancreas, ovaries and green glands) and used  Trinity only for the assembly. This 

resulted in 158,649 non-redundant contig and 45,415 contigs after filtering for lowly expressed 

transcripts, with a BUSCO score of C:64%[D:27%] and a TransRate assembly score of 0.20. In 

contrast, the C. quadricarinatus assembly combined five tissues (heart, kidney, hepatopancreas, 

central nerve cord, and testis) from a single individual and used both Trinity and IDBA-Tran for 

the assembly and merged the contigs using Corset (Davidson et al. 2014). This resulted in 180,635 

contigs between Trinity and IDBA-Tran, and a final assembly of 44,525 contigs, with a BUSCO 

score of C:74%[D:7%] 

Based on these results, using multiple assemblers in conjunction with a merging software like 

Transfuse highly reduces the number of contigs to a more realistic number by removing redundant 

contigs. However, while the multi assembler approach in this study also reduced the over-inflation 

of contigs commonly found in Trinity, it came at the cost of completeness of the assembly. While 

older approaches to transcriptome assembly relied on a single assembler, the field is now moving 

towards using multiple assemblers which improves assemblies by using the strengths of different 

assemblers, while decreasing their weaknesses. 
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SUMMARY 

Performance data were recorded at INRA in two lines divergently selected for residual feed 

intake (RFI) for eight generations (G0 to G7). A subsample of piglets were bled shortly after 

weaning to establish concentrations of juvenile IGF-I. The line effect was clearly detected for 

juvenile IGF-I, confirming previous studies which found that juvenile IGF-I is an indirect early 

predictor of efficiency. The line difference in juvenile IGF-I was partly explained by differences 

between the RFI lines in their growth immediately after weaning, but remained significant after 

post-weaning growth was accounted for. Selection for efficiency has implications for post-

weaning management to limit feed deprivation and growth delays during the post-weaning period. 

 

INTRODUCTION 

Selection for feed efficiency is important, but phenotyping is costly. Previous studies have 

demonstrated that juvenile IGF-I recorded shortly after weaning is genetically correlated with feed 

intake, efficiency and fatness traits in pigs (Bunter et al. 2005), as well as piglet birth weight 

(Hermesch et al. 2001), and that selection for lower RFI is accompanied by reduced juvenile IGF-I 

(Iowa State lines) (Bunter et al. 2010). Therefore, juvenile IGF-I is an early predictor of efficiency 

during growing-finishing growth stages. Postnatal IGF-I is related to growth and development (Le 

Roith et al. 2001) but literature on its role in the early post-weaning stage is scarce. In this study, 

an independent validation of the results reported from the Iowa State lines was investigated, and 

the impact of post-weaning growth for the measured levels of juvenile IGF-I were explored, using 

the INRA lines - divergently selected for RFI over 8 generations. 

 

MATERIALS AND METHODS 

Animals and records. Performance data were recorded at INRA in two lines divergently selected 

for residual feed intake (RFI) for eight generations (G0 to G7). A total of 419 pigs from lines 

divergently selected for low (LRFI) or high (HRFI) residual feed intake were tested in 8 batches. 

Male and female piglets born in generation G7 (after 7 generations of selection: 117 LRFI and 123 

HRFI) and entire males from generation G8 (106 LRFI and 73 HRFI) were recorded. The 

difference between lines for RFI in G8 was 137 g/day (P < 0.001). Details of the selection of the 

RFI lines have been given in Gilbert et al. (2017a). In a given batch, pigs were born the same 

week, weaned on the same day at 28.3 ± 1.7 days and followed exactly the same protocol for 

performance testing. At weaning, pigs were penned per line in groups of 24. During the growing-

finishing period (10 weeks of age (START) until slaughter weight of 115 kg), 12 pigs of the same 

line and sex were allotted per pen equipped with a single-place electronic feeder to record feed 

intake (ACEMA 64). 

 

*AGBU is a joint venture of NSW DPI and the University of New England 

 

Pigs were weighed at birth (BIRTH_WT), at weaning (WEAN_WT), and the week after 
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weaning at the time of blood sampling for IGF-I measurements (35.3 ± 1.7 days) (IGF-I_WT). 

Average daily gain (ADG) traits between time points were calculated. The summary statistics of 

the traits are given in Table 1, together with the trait abbreviations. 

 

Table 1. Summary statistics for weight (WT), growth (ADG) and log IGF-I traits after 

outlier elimination 

 
Traits unit N Mean SD Min Max 

BIRTH_WT kg 416 1.50 0.31 0.50 2.45 

WEAN_WT kg 417 9.0 1.5 3.6 12.9 

IGF-I_WT kg 415 10.0 1.6 5.1 14.8 

ADG_BIRTH_WEAN g/day 416 265 48 99 397 

ADG_BIRTH_IGF-I g/day 415 242 40 121 365 

ADG_BIRTH_START g/day 412 353 57 194 507 

ADG_WEAN_IGF-I g/day 415 149 102 -186 570 

ADG_WEAN_START g/day 412 416 83 181 634 

lIGF-I (RIA) log(ng/mL) 178 3.99 0.39 3.00 4.98 

lIGF-Ij (ELISA) log(ng/mL) 417 4.50 0.49 3.18 5.65 

 

IGF-I data. Animals were bled post-weaning to measure concentrations of juvenile IGF-I using 

radioimmunoassay (RIA) (IGF_I) or ELISA (IGF-Ij) methodology. Blood samples were obtained 

from the jugular using a vacutainer and deposited on the Primegro IGF-I bloodspot cards (for IGF-

Ij). For 178 G7 pigs, 5 mL of blood was also collected into heparin tubes, centrifuged and plasma 

was aliquoted and stored at -20°C for RIA measurements. Samples extracted from Primegro 

bloodspot cards were assayed using an IGF-I Quantikine ELISA Kit (R&D systems). As per 

manufacturer’s instruction, the raw values were standardized to NIBSC/WHO 02/254 values by 

applying a multiplication factor of 1.54. For the RIA methodology, concentrations of plasma IGF-I 

were determined using a double antibody RIA after an acid-ethanol extraction (Louveau and 

Bonneau, 1996) with recombinant human radiolabelled IGF-I (PerkinElmer). 

 

Statistical analyses. The IGF-I and IGF-Ij measurements were log-transformed (lIGF-I and lIGF-

Ij, respectively) for analysis. Outlier values for raw and log data exceeded 1.5 times the inter-

quartile range based on the log transformed distribution and excluded from the analyses (2 pigs 

excluded). The relationships between IGF-Ij measurements, divergent selection for RFI and early 

growth were evaluated using a series of model comparisons. The simplest models accounted for 

the batch effect (production traits, Model M0) or a combination of batch and assay (BA, 

accounting for sampling date and generation) (lIGF-Ij, M1), along with sex within generation and 

line effects. For all samples but 11, effects of batch, sampling date and assay were confounded. 

Age at sampling was not significant for IGF-Ij traits and not included. A second level of models 

applied to lIGF-Ij fitted additional linear covariates across lines: early body weights until blood 

sampling (M2 to M4) or early ADG traits (M5 to M7, Table 2). 

 

RESULTS AND DISCUSSION 

Correlations between assay procedures for IGF-I. The correlation between the ELISA 

values, corrected for batch of birth and assay effects, and RIA measurements of IGF-I, corrected 

for batch, was 0.72. Thus, only results on IGF-Ij will be reported on the following to maximise the 

number of available measurements. 

Line effect on IHG-Ij and early growth. The line effect was significant for weaning body 

weight (9.2 kg in LRFI vs 8.7 kg in HRFI, P<0.001), ADG from birth to weaning (270 vs 260 g/d, 

P=0.04) and ADG from weaning to blood sampling (120 vs 177 g/d, P<0.001) (Table 2). Piglets 
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from both lines were born with similar birth weights, but LRFI piglets were 0.5 kg heavier at 

weaning. This is consistent with differences between these lines reported by Gilbert et al. (2017a). 

Due to reduced growth in the LRFI line immediately after weaning the line difference in body 

weight was no longer significant at one week post-weaning. Subsequently, overall growth until the 

end of the post-weaning period was similar in the two lines. In a study on the G9 pigs of the same 

selection lines, a larger line difference (-66 g/d) in ADG the week after weaning was observed in 

piglets having no creep feeding before weaning. This was accompanied by a 25% reduction in feed 

intake in the LRFI piglets (Gilbert et al. 2017b). 

A very significant difference in IGF-Ij levels was found between the lines, regardless of 

adjustments for growth or weight measured at different time periods, with lower (untransformed) 

values in the LRFI line compared to the HRFI line (-35.4 ng/mL, P < 0.001). A larger line 

difference in IGF-Ij (47 ng/mL) measured in G5 of the Iowa State lines was reported by Bunter et 

al. (2010). This study confirms the association between selection for low RFI and reduced IGF-Ij. 

 

Table 2. Model R² and the significance of the line effect (P(line)) on weight (WT), growth 

(ADG) and juvenile IGF-I (lIGF-Ij) traits, including models fitting body weight or average 

daily gain as linear covariates for lIGF-Ij 

 
Model* Trait R² P(line) P(WT) P(ADG) 

M0 Y = batch + sex + line BIRTH_WT 0.08 0.26 - - 

M0 Y = batch + sex + line WEAN_WT 0.07 <0.001 - - 

M0 Y = batch + sex + line IGF-I_WT 0.04 0.54 - - 

M0 Y = batch + sex + line START_WT 0.07 0.73 - - 

M0 Y = batch + sex + line ADG_BIRTH_WEAN 0.06 0.04 - - 

M0 Y = batch + sex + line ADG_BIRTH_IGF-I 0.05 0.32 - - 

M0 Y = batch + sex + line ADG_BIRTH_START 0.07 0.60 - - 

M0 Y = batch + sex + line ADG_WEAN_IGF-I 0.22 <0.001 - - 

M0 Y = batch + sex + line ADG_WEAN_START 0.11 0.16 - - 

M1 Y = BA + sex + line                lIGF-Ij 0.41 <0.001 - - 

M2 Y = BA + sex + line + BIRTH_WT lIGF-Ij 0.42 <0.001 0.04 - 

M3 Y = BA + sex + line + WEAN_WT lIGF-Ij 0.42 <0.001 0.11 - 

M4 Y = BA + sex + line + IGF-I_WT lIGF-Ij 0.49 <0.001 <0.001 - 

M5 Y = BA + sex + line + ADG_BIRTH_WEAN lIGF-Ij 0.42 <0.001 - 0.22 

M6 Y = BA + sex + line + ADG_BIRTH_IGF-I lIGF-Ij 0.49 <0.001 - <0.001 

M7 Y = BA + sex + line + ADG_WEAN_IGF-I lIGF-Ij 0.65 <0.001 - <0.001 
*BA= combination of batch of birth and assay accounting for sampling date and generation 

 

Line effect on lIGF-Ij when early growth measurements are accounted for. Accounting for 

pre-weaning WT or ADG covariates in the analysis did not change the significance of line 

differences for lIGF-Ij or increase coefficient of determination (R²) of the model: 0.41 (M1) vs 

0.42 (M2, M3 and M5) (Table 2). There was no evidence in these data that weaning weight 

significantly affected post-weaning gain within or across lines, supporting results from M1 vs M3. 

In contrast, including body weight at blood sampling (M4) or ADG from birth to sampling (M6) 

increased the model R² to 0.49, but with limited impact on the estimated line difference for lIGF-Ij 

measurements. Finally, accounting for ADG_WEAN_IGF-I decreased the line difference by 49%, 

as showed in Figure 1. This suggests that the line difference in lIGF-Ij is partly due to line 

differences in weight gain after weaning. These results are consistent with the literature on the role 

of IGF-I as a growth factor involved in growth and protein metabolism (Le Roith et al. 2001) that 

depends on the feed intake and nutritional status of the animal (Caroll et al. 1998). 

The LRFI piglets had a higher growth rate before weaning compared to HRFI piglets, and all 

were suckled only by LRFI sows, ie no cross-fostering was allowed across lines. Therefore, line 
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differences in piglet performance are potentially confounded with line differences in maternal 

effects. Weaning is a stressful event for piglets, with separation from the dam, a change of feed 

and mixing of litters. It generates a transient reduction of feed intake that can lead to digestive 

disorders. The greater difficulty of the LRFI piglets to adjust to weaning needs further examination 

to decipher the role of pre-weaning conditions from individual sensitivity to stress on these results. 

However, the absence of body weight difference between lines when growing-finishing starts also 

suggests a good resilience of these piglets, which return to a higher growth rate after the stress of 

weaning (Gilbert et al. 2017b). 

 
Figure 1. LSM of the line effects for back-transformed lIGF-Ij depending on the covariate 

included in the model – see Table 2 for details on the models. 

 

CONCLUSION 

Our study confirms that juvenile IGF-I is an indirect indicator of growing-finishing feed 

efficiency of the pigs. The immediate growth after weaning affected IGF-Ij, which could be 

considered for a better prediction of genetic merit for feed efficiency. The biological mechanisms 

underlying these phenomena remain to be studied for a better understanding of the relationships 

between post-weaning growth, juvenile IGF-I and subsequent feed efficiency. Our study 

confirmed that weaning creates a greater growth check in pigs selected for low RFI, not explained 

by variation in weaning weight, but also that LRFI pigs show good resilience to the challenge, as 

indicated by their overall post-weaning growth rate. Altogether, our results show that selection for 

reduced RFI should be combined with optimized management of the young weaned pig. 
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SUMMARY 

Limited information is available about the genetic structure of Australian pigs. The genetic 

relationships of 20 Large White and 2 Duroc pigs sampled from one herd were explored and their 

genetic distance to European pigs of the same and different breeds was estimated using SNP data. 

On average, 36% of SNPs were heterozygous for Large White pigs. Mean correlations between 

Australian Large White and European breeds were highest for European Large White (0.35) and 

Middle White (0.34), and lowest for European Duroc (0.20) and Meishan (0.09). The analysis of 

breed percentages based on constrained genomic regression showed highest similarity of 

Australian Large White with European Large White (36.8%) followed by Middle White (15.9%) 

and Welsh (12.6%). Based on this small sample, the Australian pigs sampled retained significant 

heterozygosity and can be regarded as a distinct population to the sampled European breeds. 

 

INTRODUCTION 

Importation of porcine genetic material into Australia has been prohibited for over 2 decades. 

The domestic industry has had to breed for productivity while controlling inbreeding without the 

ability to introduce external genetics. With the number of producers shrinking by approximately 

two thirds during that time (Australian Pork Limited 2013), sourcing diverse off-farm genetics has 

become more difficult. 

Genomic information being accessible on-line offers opportunities to examine relationships 

and genetic diversity between populations. The availability of this information vastly reduces the 

cost to any given individual researcher, and enables initial exploration of the genetic (genomic) 

structure of the Australian population to be undertaken. 

 

MATERIAL AND METHODS 

Hair samples were obtained from 22 pigs (21 boars and 1 sow) in the herd at the University of 

Queensland, Gatton Australia which has used boars from other Australian herds. The samples 

were from 20 Large White and 2 Duroc. The 2 Duroc pigs were not discussed in detail in the 

results presented here due to the small numbers.  

Samples were genotyped using the GeneSeek Genomic Profiler HD chip.  The chip originated 

from the original Illumina Porcine60k chip with approximately 12,000 SNPs of low 

informativeness in major commercial breeds removed and an extra 20,000 added to fill gaps in the 

chromosomes (J. Walker, personal communication, April 1 2017). Quality control consisting of 

minimum 85% call rate was applied resulting in 1 sample being rejected. One duplicate was also 

detected. SNPs were removed where there was at least 1 missing call resulting in 44,749 SNPs. 

The 2 possible heterozygote calls were not considered as different in any calculation. 

The publically available European SNP data was already subject to quality controls from its 

original publication (Wilkinson et al. 2013a,b). The Australian genotypes were merged with the 

European SNP data by SNP name and SNPs were removed if there was at least 1 missing call 

resulting in 24,564 SNPs that were available in both SNP data sets.  Pearson correlation in R (R 

Core Team 2015) was used to generate the correlation matrix between the genotypes.  

Breed percentage was calculated for the Australian Large White pigs using the European data 
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as the reference set with constrained genomic regression (Boerner 2017). This was repeated for the 

European Large White pigs with the Australian Large White pigs in the reference set for 

comparison. Principal component analysis on the Middle White, European Large White and 

Australian Large White breeds was done by generating a genetic relationship matrix (Yang et al. 

2010) followed by singular value decomposition using the SVD function from the NumPy package 

(van der Walt et al. 2011) for python. The R functions kmean and dist (R Core Team 2015) were 

used to assign individuals to clusters and calculate the distance between the cluster centres. 

 

RESULTS AND DISCUSSION 

Within herd comparison. The mean correlation between the genotypes was 0.41 with a range 

from 0.33 to 0.62 and a standard deviation of 0.04. The maximum value of 0.62 was confirmed by 

pedigree records to be a parent-progeny pair.  

The percentage of heterozygous SNPs for each pig ranged from 34 to 38 with a standard 

deviation of 1. The low standard deviation is likely to be the result of considering a single breed. 

Including the 2 Duroc pigs increased the standard deviation to 2 because of their lower percentage 

of heterozygous SNPs (31 and 32). Duroc is the smaller breed in comparison to Large White in 

Australia which was reflected in higher inbreeding levels and smaller effective population size for 

Duroc in comparison to Large White based on pedigree information (D’Augustin et al. 2017). The 

results of this study based on genomic information corresponded to the findings based on pedigree 

data despite the small sample size. 

The percentage of heterozygous SNPs in the European and Australian breeds is shown in Table 

1. The Australian Large White pigs (AULW) were the highest of all with a mean of 35.5. These 

means were much lower than those of Zhang and Plastow (2011), which may be the result of only 

considering SNPs that were called for all pigs. Imputation of these sporadic uncalled SNPs may 

allow more of the data to be used. Li et al. (2006) showed that reasonable accuracy of imputed 

SNPs can be achieved with as few as 90 individuals which could be achieved for this sample of 

pigs with additional genotyping. 

 

European comparison. The heat map (Figure 1) of the correlation matrix indicated that the 

Australian animals could be considered a separate breed to the European Large Whites. The 

squares along the diagonal show the groups of animals of the same breed. The order of breeds 

from the top left to the bottom right corner was Meishan (MS), Gloucestershire Old Spots (GL), 

Berkshire (BK), Wild boar (WB), Large Black (LB), British Saddleback (BS), Tamworth (TA), 

Hampshire (HA), Mangalica (MA), Australian Duroc, Duroc (DU), Landrace(LR), Welsh (WE), 

Pietrain (PI), Middle White (MW), European Large White (LW), Australian Large White 

(AULW). The highest mean correlations to Australian Large White were European Large White 

(0.35) and Middle White (0.34) as shown in Table 2. The lowest correlation was Meishan(0.09). 

 

Table 1 Mean percentage of heterozygous SNPs for breeds 

 

AULW MS GL BK WB LB BS TA HA MA DU LR WE PI MW LW 

35.5 16.3 23.3 23.8 20.7 26.7 30.2 21.7 24.3 15.2 26.3 32.3 33.9 34.2 29.6 33.9 

 

Principal component analysis of the White breeds (Middle White, European Large White and 

Australian Large White) showed that each breed formed separate clusters (Figure 2). The Middle 

White and European Large White breeds were focused on due to the higher relationship shown in 

the correlation heat map. The distance between the cluster centers was 14.0 from the Middle White 

to the European Large White, 12.6 from the Middle White to the Australian Large White and 9.0 
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between the European and Australian Large Whites. 

There were significant proportions for European Large White, Middle White, Pietrain and 

Welsh breeds. Minimal proportions of Landrace, Duroc, British Saddleback, Gloucestershire Old 

Spots, Meishan, Tamworth, Hampshire and Large Black (Table 3). Breeds where the mean was 

below 1% are not shown (Berkshire 0.6%, Mangalica 0.2%, Wild Boar 0.8%).  

 

Table 2 Mean correlations between Australian Large White and European breeds (*100) 

 

 

MS GL BK WB LB BS TA HA MA DU LR WE PI MW LW 

Mean 9 28 28 28 29 31 30 28 29 20 29 30 29 34 35 

SD 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

 

 
 

 

Table 3 European breed percentages of Australian Large White pigs 

 

 

MS GL LB BS TA HA DU LR WE PI MW LW 

Mean 2.3 2.4 1.1 2.6 2.0 1.9 3.1 5.8 12.6 12.5 15.9 36.8 

Min 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 2.6 10.3 21.1 

Max 4.1 5.8 4.6 7.5 4.8 4.5 5.9 18.2 26.0 18.3 22.3 44.5 

SD 1.1 2.0 1.5 2.6 1.4 1.2 1.6 4.7 5.3 3.8 3.4 5.2 

 

The calculated breed percentages of European Large White pigs is shown in Table 4. Breeds 

where the mean was below 1% are not shown (Duroc 0.2%, Gloucestershire Old Spots 0.8%, 

Hampshire 0.3%, Mangalica 0.6%). The highest percentage was the Australian Large White at 

45%.  The Australian Large White pigs showed nearly 10 times the percentage of the Welsh breed 

(12.6%) than the European Large White pigs (1.3%). 

Figure 1 Heatmap of individual correlations 

between Australian and European Breeds. 

Figure 2 PC1 vs PC2 for European Large 

White, Middle White and Australian 

Large White. 
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Table 4 Breed percentages of European Large White pigs 

 

 

MS BK WB LB BS TA LR WE PI MW AULW 

Mean 3.9 2.3 3.5 2.3 5.5 1.3 6.8 1.3 10.2 15.9 45 

Min 1.4 0 0 0 0 0 1.5 0 3.1 8.2 31.3 

Max 6.8 6.8 8.2 7.1 10.2 4.1 11.6 10.3 38.6 21.8 52.8 

SD 1.3 1.6 2.5 1.8 2.8 1.2 2.9 2.3 6 3.1 5.2 

 

CONCLUSIONS 

This Australian Large White population has different from the European Large White 

population. The between-breed correlation matrix showed a higher relationship between the White 

breeds when compared to the other breeds but the principal component analysis showed that this 

sample of Australian Large White pigs was distinctly different from the European White breeds. 

Although the Australian genotypes originated from just 1 herd, there was a similar level of genetic 

diversity within this one herd as within the European Large White population, suggesting that this 

herd at least is maintaining diversity. Both the Australian and European Large White populations 

retained genetic contributions from other breeds, presumably reflecting introductions over time. 

This study is based on a small sample and caution should be exercised in concluding that the 

diversity estimated within this herd is an accurate estimate of that in the whole Australian 

population. Further investigation of the genomic structure of a larger sample of Australian pigs is 

required in order to obtain more detailed knowledge of the genetic diversity of Australian pigs.  
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SUMMARY 

An issue for implementation of single step genomic evaluations is how to weight genomic and 

pedigree relationships in modelling genetic co-variance. A weighting parameter lambda ranging 

between 0 and 1 can be used in the statistical model, with higher values corresponding to greater 

weighting of genomic information. We investigated appropriate values of lambda for a range of 

carcass traits in terminal sire sheep breeds, using the accuracy and bias of genomic prediction of 

breeding values as criteria. The accuracy generally increased with lambda, although the “optimal” 

value of lambda at the maximum accuracy varied widely, covering almost the entire range of 

possible values across traits. Accuracy typically approached an asymptote towards the optimal 

lambda, so a wide range of values could be used with minimal loss of prediction accuracy. The bias 

in Estimated Breeding Values (EBVs) increased with lambda, such that EBVs over-predicted 

phenotypic performance at high values of lambda. 

 

INTRODUCTION 

Evaluations utilising genomic information in the form of blended EBVs have been available to 

Australian sheep breeders since 2011 (Swan et al. 2012). However utilising all available information 

on animals including phenotypes, genotypes and pedigree information in routine Australian sheep 

analysis were desired but had not previously been accomplished. In 2016 large scale multi-trait 

single step analyses (Legarra et al. 2014) were implemented for carcass and live weight traits in the 

three major breed evaluations, Terminal sires, Maternal breeds, and Merinos. These analyses include 

17 traits, with pedigrees in excess of 2 million animals, and SNP genotypes for up to 15 thousand 

animals.  

One of the issues for the implementation of single step in routine evaluations is how to optimally 

combine genomic and pedigree information for genotyped animals, since it is often argued that SNP 

genotypes do not explain all of the genetic variation (Goddard et al. 2011). To accommodate this, 

the variance of breeding values for genotyped animals can be modelled as (𝜆𝐺 + (1 − 𝜆)𝐴22)𝜎𝑢
2, 

where 𝐺 is the genomic relationship matrix calculated from SNP genotypes, 𝐴22 is the pedigree 

relationship matrix between genotyped animals, 𝜎𝑢
2 is the genetic variance, and 𝜆 (lambda) is a 

weighting factor between 0 and 1. This variance matrix can be used in single step analyses, and often 

a high value of lambda, between 0.95 and 0.99, is used for the pragmatic reason that the resulting 

modified genomic relationship matrix can be reliably inverted. However, the broader questions 

remain, what is an appropriate value for lambda, and does lambda vary between traits? In this paper 

we use cross-validation to investigate the accuracy of genomic predictions across a range of lambda 

values for a range of carcass traits important for the terminal sire single step evaluation. 

 

                                                 
 AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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MATERIALS AND METHODS 

A subset of animals from the Australian Terminal sire sheep evaluation were chosen, derived 

from the genomic reference population first established by the Sheep CRC (Van der Werf 2010). 

These animals have both genotypes and phenotypes for the traits studied. Key traits from the single 

step carcass analysis for terminal sires were investigated, including post-weaning weight (pwt), post-

weaning eye muscle depth from live animal scanning (pemd), post-weaning fat depth from live 

animal scanning (pfat), hot carcass weight (hcwt), carcass eye Muscle Depth (cemd) carcass C-site 

fat depth (ccfat), lean meat yield (lmy), intra-muscular fat (imf), and shear force at day 5 (sf5). A 

summary of the animals recorded per trait and total animals in the pedigree is shown in Table 1. 

Table 1: Data summary for terminal sire cross-validation analyses, with size of pedigree, number of 

animals recorded (and genotyped), number of Poll Dorset/White Suffolk animals with records (PD/WS 

rec), number of sires (PD/WS sires), and number of cross-validation sets (PD/WS ncv). 

 
Trait Pedigree Records PD rec PD sires PD ncv WS rec WS sires WS ncv 

pwt 28826 7714 3764 247 12 2567 169 8 

pemd 28825 7713 3764 247 12 2566 169 8 

pfat 28820 7712 3763 247 12 2567 169 8 

hcwt 31774 8976 4298 248 14 2981 170 9 

cemd 31345 8720 4172 248 13 2896 170 9 

ccfat 31191 8630 4132 248 13 2868 170 9 

lmy 22752 5254 2416 85 8 1658 56 5 

imf 29952 8088 3905 215 13 2770 154 9 

sf5 30764 8374 4017 248 13 2814 170 9 

 

For each of these traits, the procedure involved estimating SS-GBLUP (Single Step Genomic 

BLUP) REML variance components using the Wombat software package (Meyer 2007) for values 

of lambda ranging between 0 and 1 in increments of 0.1. Animals with phenotypes were then 

allocated to cross-validation groups of approximately 300, stratified within two breeds, Poll Dorset 

(PD) and White Suffolk (WS). Animals were allocated to breeds based on the breed content of their 

sires. In addition, progeny from the same sire family were always allocated to the same cross-

validation group, such that no animal in a cross-validation set would have half-sibs in the training 

data. Within these strata animals were allocated to groups at random, and the same groupings were 

used for all values of lambda. Summaries of the cross-validation schemes are shown in Table 1. 
SS-GBLUP analyses were carried out for each cross-validation set across the range of lambda 

values specified above, using the ‘s1step’ option in Wombat. Phenotypes for animals in the cross-

validation set were omitted from the training data, but their pedigree and genotype data were 

included in the analysis in order to obtain their EBVs. Prediction accuracy was then calculated as 

the correlation between these EBVs and their phenotypes (adjusted for fixed effects). To 

approximate the correlation between True Breeding Value and EBV, these correlations were then 

scaled by the square root of the heritability of the trait, which was assumed to be the heritability 

estimated in the absence of genomic information. EBV bias was also calculated for each cross-

validation set as the slope of the regression of phenotype on EBV (the expected value of the slope 

is 1, and if the estimate is less than 1 then EBVs over-predict phenotypic performance). Prediction 

accuracies and bias was then averaged across the cross-validation sets.  

 

RESULTS AND DISCUSSION 

Table 2 shows for each trait the estimated heritability (lambda = 0), the maximum cross-

validation accuracy for breeds (rmax), the value of lambda where the maximum cross-validation 
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accuracy was observed, and the range in lambda values where the accuracy varied by ±0.01. Figure 

1 displays accuracy across the range of lambda values by sire breed. 

Table 2: Terminal sire lambda cross-validation summary, with estimated heritability (h2), maximum 

cross-validation accuracy (rmax), λmax = λ at rmax, and range in lambda where accuracy varied by ±0.01 

around rmax (λlow to λhigh). 

 
Trait h2 rmax(PD) rmax(WS) λmax(PD) λmax(WS)  λlow(PD) λlow(WS) λhigh(PD) λhigh(WS) 

pwt 0.29 0.32 0.27 0.50 0.20 0.20 0.10 0.95 0.60 

pemd 0.35 0.37 0.28 0.80 0.95 0.40 0.70 0.95 0.95 

pfat 0.24 0.28 0.29 0.95 0.95 0.70 0.70 0.95 0.95 

hcwt 0.14 0.41 0.27 0.20 0.95 0.20 0.80 0.50 0.95 

cemd 0.21 0.34 0.21 0.60 0.90 0.40 0.50 0.95 0.95 

ccfat 0.28 0.21 0.22 0.60 0.60 0.40 0.40 0.95 0.95 

lmy 0.49 0.26 0.39 0.80 0.60 0.60 0.40 0.95 0.80 

imf 0.60 0.35 0.28 0.80 0.60 0.50 0.40 0.95 0.95 

sf5 0.37 0.28 0.24 0.60 0.50 0.30 0.30 0.95 0.95 

  

Lambda values at maximum accuracy were 0.5 or greater, except pwt (WS) and hcwt (PD).  As 

the maximum accuracy was approached, the response surface was generally asymptotic (see Figure 

1), such that the range encompassing rmax ± 0.01 was large. Therefore, accuracy was relatively 

insensitive over a large range of lambda values especially beyond 0.5.  

 

 
Figure 1: Accuracy versus lambda by sire breed in terminal sires (PD=Poll Dorset,  

WS = White Suffolk). Error bars show ± 1 standard deviation. 

The slope of the regression of phenotype on EBV was used to assess the bias of EBVs across the 

range of lambda values and is shown in Figure 2. Results show some variation between traits and 

sire breeds within traits, but there is a clear general trend that the bias increases with lambda. That 

is, higher values of lambda lead to EBVs which over-predict phenotypic performance. In selection 
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cohorts with a mix of genotyped and un-genotyped contemporaries, this may lead to genotyped 

animals being incorrectly favoured. It is uncertain to us why the bias increases with lambda, but it 

may be due to an increasing influence of small genomic relationships in the 𝐺 matrix which are due 

to identity by state rather than identity by descent genome sharing. 

Correlations between EBVs for different lambda values were also calculated for different classes 

of animals, including progeny tested sires, and animals with and without phenotypes. For EBVs 

calculated with lambda of 0.5 and 0.95, these correlations ranged between 0.96 and 0.99, 

demonstrating that a wide range of lambda values between 0.5 and approaching 1 can be used with 

minimal impact on the ranking of animals. 

 

 
Figure 2: EBV bias versus lambda by sire breed in terminal sires (PD = Poll Dorset,  

WS = White Suffolk). 

Given the relatively large window for insensitivity of prediction accuracy, high correlation of 

EBVs between lambda 0.5 and 0.95 and the levels of bias in EBVs when lambda is high we have 

initially used a value of 0.5 for lambda in routine industry evaluations. More research on this issue 

is warranted, including the impact of lambda in multi-trait models. 
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SUMMARY 

There is little evidence that mortality rates in Australian sheep during the period after weaning 

are improving over time. This paper explores the potential for producers to select to improve survival 

rates and the potential impact this may have on key production traits. A total of 114,272 weaner 

survival records were obtained from a wide variety of Australian Merino sheep types and production 

systems. Weaner survival, a binary dependent variable, was analysed as a continuous trait using a 

sire model. The heritability of weaner survival was estimated at 0.05 ± 0.01, significantly greater 

than zero. The survival of weaned lambs to yearling age was influenced by weaning weight with 

higher survival rates observed in heavier lambs (rg = 0.14). Weaner survival adjusted for weaning 

weight was found to be antagonistically genetically correlated with fleece weight (rg = -0.12 to -

0.24). Due to antagonistic genetic correlations with greasy fleece weight and other production traits, 

producers should record weaner survival which will assist Sheep Genetics to produce breeding 

values and incorporate weaner survival in future indexes. 

 

INTRODUCTION 

The Australian sheep flock includes a significant proportion of young Merino sheep that are 

often characterised by poor growth, slower development and high mortality in the period follow 

weaning (Hatcher et al. 2008). There is little evidence to show that survival of Merino sheep for the 

post-weaning period have improved since the 1950’s (Hatcher et al. 2008) with weaner mortality 

rates in Australian Merino flocks at a constant 5.2% (Campbell et al. 2014). Current management 

protocols to improve weaner survival are based on providing adequate nutrition and controlling 

worm burdens and fly strike to enable weaners to achieve live weight targets by weaning and 

maintain positive growth rates in the period following weaning (Hatcher et al. 2008, Campbell et al. 

2014). It has been reported that lighter weaners were less able to cope with nutritional and or other 

stresses owing to lower energy reserves than heavier weaners and to improve post-weaning survival, 

Merinos should be managed to achieve approximately 45% of mature liveweight at weaning 

(Thompson et al. 2011). However, genetic parameters for weaner survival in sheep have not been 

estimated and the capacity to select for improved survival rates is unknown. The aims of this paper 

were to quantify the genetic variation in the Australian Merino population for survival from weaning 

to the yearling stage (7 to 9 months after weaning) and to estimate the genetic relationships between 

survival and key growth, carcass and wool traits.   

 

MATERIALS AND METHODS 

Data were obtained from 18 Merino flocks with lambs born from 1990 to 2014. The flocks 

included ram breeding, sire evaluation and research flocks from across Australia contributing to the 

MERINOSELECT database (Brown et al. 2007). Weaner survival was analysed as a binary trait of 

the lamb with animals assigned a value of 1 if alive or 0 if dead at the yearling stage. Weaner survival 

was verified by the presence of weight or production records provided to Sheep Genetics at or after 

________________________________________________________________________________________________________________________________ 

1AGBU is a joint venture of the NSW Department of Primary Industries and University of New England 
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the yearling stage (7 - 9 month period after weaning). Only animals with a known sire (syndicate 

sires removed) and a weaning weight record were included in the analyses. Contemporary groups 

(flock x location x year x sex) with a large number of animals which could not be assigned as dead 

or alive were excluded from the study. After data cleaning and the removal of uninformative 

contemporary groups, 104,557 weaner survival records were available for analysis with an average 

survival rate of 93%. 

The growth and wool traits analysed included weaning, post-weaning and yearling liveweight 

(kg), ultrasound fat and muscle depth (mm), greasy fleece weight (kg), fibre diameter (µm), 

coefficient of variation (cv) in fibre diameter (%), curvature, staple length (mm), and staple strength 

(N/ktex). All scan and fleece traits were recorded at the yearling stage. 

 

Statistical analysis. Genetic parameter estimates were calculated using a sire model in ASReml 

(Gilmour et al. 2009). The models fitted to the data were developed and described by Brown and 

Swan (2016) and was based on the linear mixed model: 

 

𝑦 = 𝑋𝛽̂ + 𝑍1𝑠 + 𝑍2𝑚 + 𝑍2𝑚𝑝 + 𝑠𝑥𝑓 + 𝑒 

 

where, y is a vector of observations for the trait; 𝛽̂ is a vector of the fixed effects including birth type 

(1,2,3,4+), rearing type (1,2,3+), age of dam (as a linear and quadratic term) (mean 4.5 years of age), 

age of the animal (linear) and contemporary group. Contemporary group for the production traits 

described flock, management group, sex, and date of measurement (Brown and Swan 2016). All 

contemporary groups were transformed to a common mean as done routinely for Sheep Genetic 

analyses (Brown et al. 2007). The vectors s, m, and mp are the sire genetic effects, maternal genetic 

effects, and permanent environment due to dam effects, respectively. The incidence matrices X, Z1, 

and Z2 relate the respective effects to y; and e is a vector of random error effects. A sire by flock 

(sxf) term was also fitted as random for the production traits. 

 Weaner survival was recorded as a binary trait (0/1) but analysed as a continuous trait. A logit 

function was also tested, but for computational ease was not used in the bi-variate analysis.  The 

fixed effect models fitted for weaner survival were based on the terms normally fitted for weaning 

weight in Sheep Genetics analyses. Data limitations (unavailable for a large proportion of 

individuals) meant that the contemporary group structure could not include weaning date, age at 

weaning or weaning management groups, all of which are fitted in the routine genetic evaluation of 

weaning weight (Brown and Swan 2016). Thus, contemporary groups for weaner survival described 

flock, flock location, year of birth and sex (male or female).  The analysis was repeated with weaning 

weight fitted as a covariate for survival, in part to help account for the influence of weaning date, 

age at weaning, weaning management groups and maternal effects. The influence of weaning weight 

was tested by fitting weaning weight, first, as a covariate (linear effect) across the population and 

also as a nested covariate within contemporary group. 

 

RESULTS AND DISCUSSION 

The association of weaner weight with survival. Weaning weight exerted a strong, positive and 

highly significant effect on weaner survival, which is consistent with other reports in the literature 

(Hatcher et al. 2008, Thompson et al. 2011). In the current study, the regression of weaner survival 

on weaning weight predicted that on average, an 0.006 ± 0.001 (0.6%) improvement in weaner 

survival for every 1 kilogram increase in weaning weight, assuming a linear relationship (weaning 

weight; mean of 25kg, range of 6 - 49kg). However, the influence of weaning weight on weaner 

survival was not uniform across contemporary groups with the nested effect of weaning weight was 

highly significant and ranging from -0.078 to +0.050 weaner survival / kg of weaning weight. Some 

of the variation in survival responses to weaning weight between contemporary groups observed in 
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the current study was likely to be due to interactions between weaning weight and post-weaning 

growth rate. Although not tested in this study, Thompson et al. (2011) concluded that post-weaning 

growth rates should exceed 30 g/day, and that growth rates below this level resulted in a decline in 

survival rates. Overall, the results suggest that the optimum weaning weight in pertaining to weaner 

survival is likely to differ across production systems, breeds and environments. 

 

Variance components. Heritability of weaner survival in Merinos was low but significantly greater 

than zero and estimated at 0.05 ± 0.01 (Table 1) when analysed from a sire model. An animal model 

was also tested and estimated a heritability of 0.13 ± 0.01. Maternal genetic and permanent 

environmental effects were minimal and not significant whether an animal or sire model was fitted 

but were in part limited, since the structure of the survival trait means that all dams will have to have 

survived to the yearling stage. However, the significant effect of weaning weight on weaner survival 

is likely to be capturing some of the maternal environmental influence. Fitting weaning weight as a 

covariate had a small but not significant effect on the heritability and additive variance of weaner 

survival. Analysing weaner survival as a binary trait using a sire model with the logit-link function 

produced a heritability on the underlying scale of 0.19 which when transformed using the average 

frequency (incidence) equated to an approximate estimate of 0.01 on the observed scale.  

 

Table 1: Heritability of weaner survival and genetic correlations for weaner survival with 

production traits when weaner survival is unadjusted for weaning weight, adjusted for 

average weaning weight (adjusted) or within each contemporary group (nested) 

 
Trait Records unadjusted adjusted nested 

Heritability of weaner survival 104,557 0.055 ± 0.005  0.053 ± 0.005 0.052 ± 0.005 

Genetic correlations with:     

Weaning weight 193,784 0.14 ± 0.06 - - 

Post-weaning weight 106,968 0.30 ± 0.06 - - 

Yearling weight 110,023 0.24 ± 0.06 - - 

Yearling fat depth 39,318 0.34 ± 0.11 0.35 ± 0.10 0.36 ± 0.10 

Yearling eye muscle depth 39,968 0.35 ± 0.09 0.13 ± 0.14 0.31 ± 0.09 

Yearling greasy fleece weight 78,079 -0.12 ± 0.08 -0.22 ± 0.08 -0.24 ± 0.08 

Yearling fibre diameter 82,293 0.16 ± 0.07 0.07 ± 0.08 0.07 ± 0.08 

Yearling fibre diameter cv 81,687 -0.09 ± 0.08 -0.07 ± 0.08 -0.07 ± 0.08 

Yearling curvature 74,575 0.05 ± 0.07 0.08 ± 0.07 0.07 ± 0.07 

Yearling staple strength 31,131 0.10 ± 0.10 0.11 ± 0.10 0.10 ± 0.10 

Yearling staple length 54,069 0.15 ± 0.08 0.10 ± 0.08 0.10 ± 0.08 

 

Genetic relationship of weaner survival with production traits. Weaner survival (unadjusted for 

weaning weight) was moderately positively genetically correlated with liveweight (Table 1). This 

was consistent with the significant phenotypic influence of weaning weight on weaner survival 

observed in this study and in the literature (Hatcher et al. 2008, Thompson et al. 2011).  

The genetic correlations of weaner survival with ultrasound fat depth was moderate and positive 

at 0.34 (Table 1). The genetic correlation for lamb survival with fat depth of the carcase at the GR 

site and the 5th rib has been reported as 0.34 and 0.00, respectively (Brien et al. 2013). These results 

suggest that high “genetic fat” was favourably associated with survival in lambs prior to and 

following weaning, and this is independent of any effect of weaning weight per se. The genetic 

correlations for weaner survival with ultrasound muscle depth were positive and ranged from 0.13 

to 0.35 (Table 1). Lamb survival to weaning was lowly positively correlated with carcase eye muscle 

depth and area with Brien et al. (2013) reporting estimates of 0.17 and 0.04, respectively. Low to 

moderate positive correlations observed in this study suggest that weaner survival rates to the post-
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weaning stage will improve with selection for increased fat and muscle depth. 

The genetic correlation of greasy fleece weight with weaner survival was -0.12, suggesting a 

weak genetic relationship (Table 1). After adjusting weaner survival for the effect of weaning weight 

this genetic correlation was slightly stronger at -0.24 (Table 1). These low negative genetic 

correlations suggest that high genetic fleece weight is associated with poorer survival rates from 

weaning to post-weaning at a standardised weaning weight (weight corrected). Previous research by 

Ferguson et al. (2007) and Hatcher and Atkins (2007) have both indicated unfavourable phenotypic 

associations of fleece weight with lamb survival. Adams et al. (2006) proposed that Merinos 

genetically superior for fleece weights have relatively smaller energy reserves which could 

contribute to the unfavourable genetic correlations observed in this study. 

The genetic correlations for weaner survival and fleece quality traits, including mean and 

coefficient of variation in fibre diameter, curvature, staple length and staple strength were all low 

and generally not significantly different from zero (Table 1). Adjusting weaner survival for weaning 

weight had no significant impact on the genetic correlations between survival and wool quality traits. 

 

CONCLUSION 

Survival in Merinos from weaning to the yearling stage is lowly heritable but not zero, indicating 

that genetic variation exists which could be exploited. The survival of lambs from weaning to 

yearling was significantly influenced by weaning weight, with higher survival rates observed in 

genetically heavier lambs. The relationship with weight indicated that selection for heavier weaning 

and post-weaning weights, and in turn higher growth rates, will improve weaner survival. However, 

there remains genetic variation in weaner survival unrelated to weaning weight which can be 

selected for, and which is antagonistically associated with fleece weight. Due to antagonistic genetic 

correlations with key production traits, recording weaner survival would enable Sheep Genetics to 

calculate breeding values, and allow more balanced selection for improved survival and production 

traits. 
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SUMMARY 

Ewes joined to first lamb as yearlings in industry ram breeding flocks were sampled for 

progesterone concentration (PROG) exactly 14 days after first exposure to males. The heritability 

of PROG was 0.22±0.06. PROG had positive genetic (P>0.05) and phenotypic (P<0.05) correlations 

with yearling, but not two-year old (2yo) ewe, reproductive traits affected by fertility. Pubertal status 

assigned using PROG was a significant (P<0.0001) factor for yearling fertility and related traits. 

Systematic effects, such as birth-rear type and dam age groups influenced yearling outcomes but 

were generally not significant for reproductive performance of 2yo ewes. 

 

INTRODUCTION 

The reproductive performance of ewes joined to lamb as yearlings is highly variable across 

flocks and years (Fogarty et al. 2007), even when weight and condition at joining are sufficient. A 

similar situation exists with beef heifers first joined to calve as two-year olds in Northern herds, 

where failure to attain puberty during the joining period has been identified as a contributing factor 

(Johnston et al. 2009). In that study, serial ovarian scanning was used to identify attainment of 

puberty based on the age when the first corpus-luteum (CL) was observed. However, this strategy 

is costly and time consuming and an alternative could be to evaluate physiological status based on 

reproductive hormone levels, such as progesterone. Circulating progesterone is potentially suitable 

as a marker for puberty, because it is produced post-puberty by the CL and is maintained at relatively 

high levels throughout most of the reproductive cycle (Foster and Jackson 2006). 

In this study we investigate the use of progesterone sampling in the field during the first joining 

event for ewe lambs (<1 year old), under a controlled protocol of ram exposure and timing of 

sampling. The implications of systematic effects for progesterone and the subsequent reproductive 

performance of yearling and 2yo ewes are evaluated, along with the association between sire 

breeding values for yearling reproductive performance traits and progesterone level. 

 

MATERIALS AND METHODS 

Ewes used in this study were sourced from industry ram-breeding flocks representing a range of 

production environments and breeds recorded across nine sites in Southern Australia. Pedigree and 

birth details were available, along with accompanying growth and reproductive data. Ewes 

represented Merino (MER), maternal (MAT) and terminal (TERM) breed types. Flocks commenced 

joining predominantly in February and March when ewes averaged 7.5 months of age, but ewes 

ranged from 152 to 321 days of age at the commencement of joining. Blood samples from all sites 

were collected exactly 14 days after the introduction of ewes to males (teasers or rams). Plasma from 

these samples was assayed for progesterone concentration using a commercial ELISA for human 

samples, following the manufacturer instructions (Demeditec 2009). Ewes were classified as not 

pubertal (<0.95 ng/ml), of uncertain pubertal status (0.95-1.05 ng/ml) or pubertal (>1.05 ng/ml) at 

D14 of joining based on previous studies defining the threshold at which puberty is indicated 

(Sangha et al. 2002), while allowing for variation due to ELISA procedures. Ewes without 

progesterone recorded were classified as unknown status. Accompanying reproductive data from 

these flocks were extracted from the Sheep Genetics database for four years (2013-2016). 
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Reproductive traits included fertility (FERT), number of lambs born (NLB) and weaned (NLW) for 

ewes joined, litter size at lambing (LSIZE) and weaning (LWEAN) for ewes which lambed. Fertility 

and litter size traits were inferred from lambing data, or scanning data otherwise. 

Reproductive traits were analysed fitting contemporary group (CG: 44 levels), which was a 

combination of site, year of joining and joining sub-group, and flock-dam breed group as the base 

model (M0). The M0 contemporary group for progesterone reflected site, date of bleeding and assay 

plate (PCG: 39 levels). Additional systematic effects were then investigated through a series of 

analyses. Dam age group (AGD: 4 levels; 1, 2, 3-5, 6+ years), month of birth (MON: 9 levels; March 

- November) and birth-rear type (BRT: 7 levels; 11, 2-, 21, 22, 31, 32, 33) were added 

simultaneously to M0 (M1). Pubertal status (PUB: 4 levels) was added to M1 for yearling traits, or 

after accounting for whether the ewe was previously joined as a yearling (YJOIN) for 2yo ewes 

traits (M2). Heritability estimates and genetic correlations between progesterone values and 

reproductive traits were estimated from a series of bivariate analyses under M1 fitting an animal 

model, using ASREML (Gilmour et al. 2009). Pearson correlations between sire breeding values for 

yearling reproductive traits (obtained from Sheep Genetics) and progesterone concentration (for 

sires with daughters recorded for progesterone) were calculated. 

 

RESULTS AND DISCUSSION 

Reproductive data were dominated by MAT breed types (~85% of all data) contributing to the 

relatively high mean litter size (Table 1). Fertility, NLB and NLW were substantially higher for 

ewes bred to lamb as 2yo ewes compared to yearling ewes, as expected. The heritability for 

progesterone concentration was moderate (0.22±0.06, Table 1). Heritability estimates for FERT, 

NLB and NLW were higher for yearling than 2yo ewes. Negligible heritability for yearling LWEAN 

(Table 1) indicates that culling on yearling LWEAN will be ineffective. 
 

Table 1. Raw data characteristics along with heritability estimates (h2) and the phenotypic 

variance (2
p) for progesterone concentration and the reproductive traits (model M1) 

 Yearling ewes 2yo ewes 

 N Mean (SD) h2 2
p N Mean (SD) h2 2

p 

FERT 10998 0.59 (0.49) 0.18±0.02 0.21 6494 0.92 (0.27) 0.03±0.02 0.02 

NLB 10998 0.89 (0.86) 0.13±0.02 0.63 6494 1.46 (0.76) 0.08±0.02 0.54 

NLW 9422 0.64 (0.78) 0.13±0.02 0.52 5913 1.07 (0.86) 0.07±0.02 0.69 

LSIZE 6201 1.49 (0.54) 0.09±0.02 0.26 5972 1.58 (0.65) 0.08±0.02 0.39 

LWEAN 4850 1.13 (0.67) 0.03±0.02 0.42 5421 1.17 (0.83) 0.07±0.02 0.63 

PROG 1894 0.98 (0.13) 0.22±0.06 0.009 na na na na 

 

Contemporary group was very highly significant (P<0.0001) but explained less than 10% of 

variation for all reproductive traits (R2(M0), Table 2). The addition of MON, AGD and BRT in 

combination increased model R2 by up to 70% for YFERT, YNLB and YNLW (M1, Table 2), 

although overall R2 remained relatively low, as expected for reproductive traits. Month of birth was 

the most significant factor (P<0.0001) affecting YFERT and therefore YNLB and YNLW, and 

remained significant for reproductive traits of 2yo ewes. Month of birth was more significant than 

month of joining when fitted concurrently (not presented). Birth-rear type was significant (P<0.05) 

for reproductive outcomes of yearling but not 2yo ewes, while dam age group was only significant 

for fertility (not litter size or lamb survival) outcomes and progesterone levels (M1, Table 2). Month 

of birth remained significant for yearling (but not 2yo ewes) reproductive traits even when age at 

the commencement of joining was fitted as a linear covariate (not presented), demonstrating that the 

effect of MON for yearling outcomes was not solely due to variation in age at joining. Pubertal status 

assigned using progesterone results was significantly associated with YFERT, YNLB and YNLW, 
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but did not greatly increase model R2 values due to both limited data for PROG and because 

systematic effects were common to both reproductive traits and PROG (Table 2). PUB was also 

significantly associated with litter size traits (but not fertility) of ewes lambing as two-year olds. 

This suggests that females which attain puberty early may also have higher litter size when more 

mature, supporting results observed by Edwards et al. (2015). 

 

Table 2. The significance of systematic effects for yearling (Y) and 2yo ewes (H) reproductive 

traits and progesterone (PROG) under various models 

Model 1 (M1) Trait R2(M0) R2(M1) P(AGD) P(MON) P(BRT) P(PUB) 

CG + AGD + MON + BRT YFERT 8.8 14.3 0.04 <0.0001 0.006 - 

CG + AGD + MON + BRT YNLB 9.0 15.3 0.28 <0.0001 0.0002 - 

CG + AGD + MON + BRT YNLW 9.6 15.0 0.24 <0.0001 0.31 - 

CG + AGD + MON + BRT YLSIZE 7.6 9.3 0.26 <0.0001 0.007 - 

CG + AGD + MON + BRT YLWEAN 5.8 6.7 0.32 0.003 0.75 - 

HCG + AGD + MON + BRT HFERT 7.7 8.4 0.82 0.003 0.02 - 

HCG + AGD + MON + BRT HNLB 5.5 6.4 0.87 <0.0001 0.25 - 

HCG + AGD + MON + BRT HNLW 5.8 6.5 0.58 <0.0001 0.81 - 

HCG + AGD + MON + BRT HLSIZE 7.3 7.9 0.74 0.001 0.43 - 

HCG + AGD + MON + BRT HLWEAN 9.1 9.5 0.63 0.003 0.99 - 

PCG + AGD + MON + BRT PROG 46.4 51.3 0.04 <0.0001 0.07 na 

Model 2 (M2)  R2(M1) R2(M2)     

M1 + PUB YFERT 14.3 14.7 0.05 <0.0001 0.01 <0.0001 

M1 + PUB YNLB 15.3 15.5 0.34 <0.0001 0.0003 <0.0001 

M1 + PUB YNLW 15.0 15.1 0.32 <0.0001 0.31 0.001 

M1 + PUB YLSIZE 9.3 9.3 0.28 <0.0001 0.007 0.70 

M1 + PUB YLWEAN 6.7 6.8 0.33 0.004 0.75 0.51 

M1 + YJOIN + PUB(YJOIN) HFERT 8.4 8.4 0.80 0.01 0.02 0.81 

M1 + YJOIN + PUB(YJOIN) HNLB 6.4 6.9 0.68 0.005 0.37 0.03 

M1 + YJOIN + PUB(YJOIN) HNLW 6.5 6.7 0.39 0.001 0.79 0.07 

M1 + YJOIN + PUB(YJOIN) HLSIZE 7.9 8.5 0.61 0.02 0.67 0.0006 

M1 + YJOIN + PUB(YJOIN) HLWEAN 9.5 9.8 0.41 0.01 0.99 0.01 

 

Least square means show declining fertility outcomes with increasing MON, of large magnitude 

for yearling ewes (Y) and lesser magnitude for 2yo ewes (H). Relative to lambs reared as singles, 

lambs reared as multiples had reduced YFERT, but not reduced HFERT. YFERT was lower when 

progesterone sampling indicated that the ewe was not showing signs of puberty 14 days into the 

joining period (Table 3). In addition, ewe lambs born to yearling dams had both lower progesterone 

(0.92 vs 0.95, P=0.02) and poorer fertility outcomes (0.54 vs 0.59, P=0.01) than ewe lambs born to 

older dams. 

Genetic and phenotypic correlations between PROG with YFERT, YNLB or YNLW suggest a 

positive genetic association between progesterone levels and yearling reproductive traits influenced 

by fertility (Table 4). Correlations between sire breeding values for PROG with ASBVs for YNLB 

or YNLW, derived using more extensive data, were positive in two of the three breed groups. For 

sires with N>10 daughters sampled for progesterone and with an accuracy >30% for the ASBV for 

YNLB, Pearson correlation coefficients were 0.35 and 0.51 (P=0.02) in Merino’s (20 sires), 0.21 

and 0.10 in MAT breeds (48 sires) and -0.16 and -0.33 in TERM breeds (12 sires) for YNLB and 

YNLW. However, yearling reproductive data for TERM breed ewes were affected by a delay in 

joining following pharmaceutical intervention, whereas MER and MAT ewes were naturally joined. 

The timing of sampling for progesterone was chosen to minimise false negatives (ie ewes which 

tested negative because of the phase of their cycle). However, it was also possible for ewes to attain 
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puberty within the joining interval after progesterone sampling and therefore a single sample of 

progesterone is not a perfect predictor for the early attainment of puberty. 

 

Table 3. Least square means for systematic factors affecting progesterone concentrations or 

yearling (Y) and 2yo ewes (H) reproductive traits 

Factor  Month of birth Birth-rearing group Pubertal status 

Trait  6 7 8 9 10 SS MS MM 0 1 2 U 

PROG Y 0.98a 0.96a 0.96a 0.85b 0.83b ns ns ns na na na na 

FERT Y 72a 70a 55b 33c 37c 59a 59a 56b 50a 57a 67b 58ac 

 H 96a 91ab 90ab 87b 84bc ns ns ns ns ns ns ns 

NLB Y 1.12a 1.06a 0.74b 0.38c 0.45c 0.85a 0.89a 0.79b 0.75a 0.80a 1.0b 0.83ac 

 H 1.56abc 1.48ac 1.47ac 1.38b 1.50c ns ns ns 1.46a 1.52ab 1.68b 1.61bc 

NLW Y 0.84a 0.76a 0.49b 0.21c 0.11c ns ns ns 0.52a 0.57ab 0.68b 0.53ac 

 H 1.43a 1.08b 1.11b 0.88c 1.08ab ns ns ns ns ns ns ns 

LSIZE Y 1.52a 1.44a 1.30bc 1.26c 1.25c 1.35ab 1.39a 1.31b ns ns ns ns 

 H 1.71ac 1.58a 1.63a 1.54b 1.70ac ns ns ns 1.64a 1.69a 1.79b 1.68a 

LWEAN Y 1.15a 1.02a 0.92bc 0.86c 0.75abc ns ns ns ns ns ns ns 

 H 1.60ac 1.15a 1.28a 1.00b 1.20ac ns ns ns 1.25a 1.32a 1.22ab 1.12b 

SS: born-reared single; MS: multiple-reared single; MM: multiple-reared multiple; 0: not pubertal; 2: pubertal; 

1: intermediate; U: untested; ns: P>0.05; na: not applicable; common superscripts within factor indicate P>0.05 

(Month of birth and Birth-rearing type levels simplified for presentation) 

 

Table 4. Genetic (rg) and phenotypic (rp) correlations between progesterone concentration and 

reproductive traits for ewes joined to lamb as yearlings or 2yo ewes 

Trait  FERT NLB NLW LSIZE LWEAN 

Yearling rg 0.21±0.18 0.25±0.19 0.09±0.19 0.39±0.28 0.05±0.39 

 rp 0.16±0.02 0.12±0.02 0.05±0.02 -0.02±0.04 -0.11±0.04 

2yo ewes rg na 0.08±0.21 0.19±0.22 -0.05±0.22 0.11±0.23 

 rp na 0.05±0.03 0.06±0.03 0.06±0.03 0.08±0.03 

 

CONCLUSIONS 
Results from this study suggest that failure to attain puberty is a likely contributor to failed 

reproductive performance ewes joined to lamb as yearlings. Progesterone measured at D14 after the 

commencement of joining was a heritable indicator of puberty and fertility. Several systematic 

effects which contribute to yearling reproductive performance were not significant for outcomes of 

2yo ewes, and therefore models used for the genetic evaluation of yearling reproductive outcomes 

requires refinement for more accurate genetic evaluation of performance in this age class. 
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SUMMARY 

This study reports phenotypic and genetic parameters and trends for reproduction traits in a 

Merino flock divergently selected for number of lambs weaned per ewe joined. Three component 

traits (ewes conceived per ewe joined, lambs born and average lamb weaning weight per ewe reared) 

and three composite traits (number of lambs born and weaned as well as total weight of lamb 

weaned, all per ewe joined) were assessed. Most traits were variable and heritable and should 

respond to selection. Genetic trends suggested divergence between the lines in all traits assessed. 

Composite trait selection for number of lambs weaned resulted in genetic trends in the desired 

direction in those component traits considered here. 

 

INTRODUCTION 

It is generally accepted that reproduction traits are economically important in sheep. It has been 

suggested that a trait closely resembling lamb output per ewe joined, termed as net reproduction 

rate, most closely resembles the breeding objective strived for (Olivier 1999). However, selection 

decisions are complicated by the composite nature of this trait. Snowder and Fogarty (2009) argued 

that selection for such a composite trait will ensure that the contributing component traits remain in 

balance. However, approaches followed to select for reproduction vary in different sheep producing 

countries (Brien et al. 2014). Selection focuses on ewe records and number of lambs weaned in 

Australia and South Africa. In contrast, in New Zealand selection was based on lamb records, 

including ewe litter size and lamb survival as separate traits. Bunter and Brown (2015) contended 

that selection based on a balanced index, including reproduction rate as well as direct and maternal 

components of lamb weaning weight could potentially yield better and more predictable genetic 

gains. Against this background, data from a South African resource flock divergently selected for 

number of lambs weaned per ewe joined were used to study genetic and phenotypic parameters and 

trends for composite as well as component reproduction traits. 

 

MATERIALS AND METHODS 

Animals and selection procedures. Two lines of Merino sheep were divergently selected from 

the same base population from 1986 to the present, solely using maternal ranking values for number 

of lambs reared per joining. The selection regime resulted in two lines differing appreciably in 

reproduction (Cloete et al. 2004), termed the High (H) line for the line selected in the upward 

direction and the Low (L) line for the line selected in the downward direction. Details of the origin 

of the lines and the procedures for the selection of replacements have been reported elsewhere 

(Cloete et al. 2004; 2009). Only data recorded from 1987 to 2007 were used in this study. Outside 

sires were since introduced to the flock, to link this genetic resource with the broader South African 

Merino industry (Cloete et al. 2014). The lines are managed as a single flock, except at mating.  

Location and data recording. The resource flock is being kept at the Elsenburg Research Farm 

near Stellenbosch. The climate, pastures grown as well as the management of the animals at joining 



Poster presentations 

570 

in single-sire groups and at lambing were described by Cloete et al. (2004; 2009). The composite 

reproduction traits number of lambs born per ewe joined (NLBEJ), number of lambs weaned per ewe 

joined (NLWEJ) and total weigh of lamb weaned (pre-corrected for lamb age and sex) per ewe joined 

(TWWEJ) were recorded (Cloete et al. 2004). The component traits number of ewes lambed per ewe 

joined (ELEJ), number of lambs born per ewe lambed (NLBEL) and average lamb weaning weight 

per ewe reared (AWWER) were derived additionally. 

Statistical analyses. The data were analysed for fixed effects to obtain an operational model, 

fitting the effects of line (H or L), lambing year (1987-2007) and ewe age group (2-7+ years), as 

well as interactions. Random effects for each trait included additive animal (ewe) effects, ewe 

permanent environmental (PE) effects to accommodate repeated records and service sire PE (SS). 

All analyses were conducted in ASREML (Gilmour et al. 2015). Fixed effects significant in analyses 

to determine an operational model were used in downstream analyses. After the appropriate random 

effects for each trait were determined with Log Likelihood tests, bivariate analyses were conducted 

to derive correlations between traits for additive genetic, ewe PE and SS effects based on 

significance in univariate analyses. Genetic trends were constructed from within-line regressions of 

animal solutions from single-trait analyses excluding selection line (and its interactions with year) 

on birth year. The pedigree file included 6167 animals, the progeny of 300 sires and 1444 dams. 

 

RESULTS AND DISCUSSION 

Reproduction traits were all highly variable, coefficients of variation ranging from 37-73 % 

(Table 1). Lamb AWWER, in contrast, was less variable. These results are consistent with results in 

the literature (Cloete et al. 2004; Safari et al. 2005; Bunter and Brown 2015) although the observed 

coefficients of variation were on the higher end of the ranges reported. 

 

Table 1. Descriptive statistics for the traits analysed on the ewes forming part of the study, 

namely ewes lambed per ewe joined (ELEJ), number of lambs born per ewe lambed (NLBEL), 

number of lambs born per ewe joined (NLBEJ), number of lambs weaned per ewe joined 

(NLWEJ), weight of lamb weaned per ewe joined (TWWEJ) and average weaning weight per 

ewe reared (AWWER)  

 
Trait N Mean s.d. CV Minimum Maximum 

ELEJ 3790 0.86 0.35 40.7 0 1 

NLBEL 3256 1.38 0.51 37.0 1 3 

NLBEJ 3790 1.19 0.67 56.3 0 3 

NLWEJ 3790 0.90 0.66 73.3 0 3 

TWWEJ 3790 19.8 14.1 71.2 0 64.8 

AWWER 2756 22.5 4.4 19.6 9.3 46.6 

 

All traits were affected (P<0.01) by selection line and year (Table 2). Only NLBEL was not 

affected by interactions between line with year or age, although line x year approached significance. 

Ewe age affected all traits, except AWWER. ELEJ and AWWER were affected by the line x age 

interaction. Cloete et al. (2003) also reported that the composite reproduction traits were 

independent of this interaction. Least squares means for the component traits ELEJ and NLBEL and 

the composite trait NLWEJ (Figure 1) all indicated observed divergence between the selection lines. 

No distinct line differences were observed in the early years of the experiment, but consistent 

significant differences in favour of the H Line for NLBEL were observed from 1995 (P<0.05). 

Significant divergence for ELEJ was first observed in 1999 (P<0.05).  However, the H Line clearly 

and consistently outperformed (P<0.05) the L line for NLWEJ from 1993. It is notable that this line 

difference in NLWEJ were found prior to obvious divergence in the component traits reported here. 
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Table 2. Significance, using type III p-values, for the fixed effects fitted in the full model to the 

traits analysed in the study, namely ELEJ, NLBEL, NLBEJ, NLWEJ, TWWEJ and AWWER (see 

Table 1 for trait abbreviations) 

 

Effect  
Trait 

ELEJ NLBEL NLBEJ NLWEJ TWWEJ AWWER 

Selection line (SL) ** ** ** ** ** ** 

Year (Y) ** ** ** ** ** ** 

Ewe age (A) ** ** ** ** ** 0.678 

SL x Y ** 0.052 ** ** ** ** 

SL x A ** 0.378 0.223 0.370 0.739 ** 

* - P<0.05; ** P<0.01; Actual significance for P>0.05 

 

 
Figure 1. Least squares means (±s.e.) depicting the selection line x year interaction for the 

component traits ELEJ and NLBEL (left) and the composite trait NLWEJ (right). 
 

All reproduction traits were lowly heritable (Table 3), with estimates below 0.10 except for 

NLBEL and NLBEJ. The heritability of ELEJ was not significantly different to zero. All traits were 

affected by animal PE. These results are not presented, but the derived estimates ranged from 

0.04±0.02 for NLBEL to 0.14±02 for ELEJ. All traits except for NLBEL were affected by SS. These 

estimates were small at 0.04±0.01 for ELEJ and 0.02±0.01 for NLBEJ, NLWEJ, TWWEJ and AWWER. 

These results were consistent with results reported in the literature (Cloete et al. 2004; Safari et al. 

2005; 2007; Bunter and Brown 2015). Genetic correlations were favourable and significant, except 

for correlations of all traits with AWWER, where the estimates were still favourable but commonly 

smaller than the corresponding s.e. Animal PE and SS correlations among reproduction traits were 

mostly similar to genetic correlations. However, these correlations became negative with AWWER 

for the reproduction traits ELEJ, NLBEJ and NLWEJ. The exception in this respect was PE correlations 

of TWWEJ with AWWER. Previous studies also reported favourable genetic correlations among 

reproduction traits (Cloete et al. 2004; Safari et al. 2005; 2007; Bunter and Brown 2015) and 

potentially small or unfavourable correlations with AWWER (Bunter and Brown 2015). 

Linear estimates of genetic trends for the respective traits are reported in Table 4. In terms of 

composite traits, both lines responded in the expected direction from the selection pressure applied. 

Expressed relative to the overall least squares mean for the first year with data (1987), the responses 

in the composite traits were larger in magnitude compared to component traits. Not surprisingly, the 

responses in the composite traits were consistent in direction and magnitude with previous results 

in the same resource flock (Cloete et al. 2004). The latter authors related the asymmetry in the 

responses of the H and L lines to an attempt to select against natural selection in the L Line, as well 

as to a reduced selection differential stemming from the reduced lamb output in the latter line. 
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Table 3. Phenotypic variance components (²P) and (co)variance ratios for ELEJ, NLBEL, 

NLBEJ, NLWEJ, TWWEJ and AWWER (see Table 1 for trait abbreviations) 
 

Component 

and trait 

Trait 

ELEJ NLBEL NLBEJ NLWEJ TWWEJ AWWER 

²P 0.117 0.229 0.406 0.399 174.97 17.99 

(Co)variance ratios* 

ELEJ 0.02±0.02 0.78±0.43 0.78±0.23 0.64±0.32 0.57±0.10 0.16±0.58 

NLBEL 0.03±0.03 0.13±0.03 1.00±0.05 0.76±0.20 0.66±0.18 0.30±0.22 

NLBEJ 0.71±0.01 0.88±0.02 0.10±0.02 0.83±0.11 0.72±0.12 0.12±0.27 

NLWEJ 0.54±0.01 0.47±0.02 0.64±0.01 0.04±0.02 0.96±0.03 0.34±0.37 

TWWEJ 0.56±0.01 0.32±0.05 0.57±0.01 0.94±0.01 0.06±0.02 0.37±0.44 

AWWER -0.01±0.03 -0.40±0.02 -0.52±0.02 -0.59±0.01 0.26±0.02 0.06±0.03 

* Heritability in bold on the diagonal, genetic correlations above the diagonal and phenotypic correlations 

below the diagonal 

 

Table 4. Genetic trends for ELEJ, NLBEL, NLBEJ, NLWEJ, TWWEJ and AWWER (see Table 1 

for trait abbreviations) expressed relative to trait means in 1987 
 

Trait 
High Line* Low Line* 

Regression ± s.e. As % of mean Regression ± s.e. As % of mean 

ELEJ 0.0047±0.0004 0.50 -0.0028±0.0001 -0.30 

NLBEL 0.0114±0.0002 0.76 -0.0035±0.0002 -0.23 

NLBEJ 0.0186±0.0002 1.33 -0.0053±0.0003 -0.38 

NLWEJ 0.0159±0.0001 1.96 -0.0064±0.0002 -0.79 

TWWEJ 0.430±0.004 2.35 -0.147±0.005 -0.81 

AWWER 0.065±0.001 0.29 -0.042±0.001 -0.19 

* All regressions were significant (P<0.01)  

  

CONCLUSIONS 

This study suggested that composite trait selection for NLWEJ resulted in genetic responses in 

the desired direction in the component traits studied, as suggested by Snowder and Fogarty (2009). 

The present study did not include a measure of lamb survival or ewe rearing ability. It is thus 

important that further studies should also consider these traits (Bunter and Brown, 2015).    
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SUMMARY 

Divergent selection for number of lambs weaned per ewe joined from the same base population 

since 1986 resulted in Merino lines that differ markedly in reproduction rate. Subjective scores for 

dags (DS), breech cover (BCS), crutch cover (CCS) and belly wool quality (BQS) (1 = lowest; 5 = 

highest) were recorded for mature ewes of these lines. Expressed relative to High (H) line 

performance, BCS was 19% higher in the Low (L) line ewes. Corresponding selection line 

differences in favour of the H line amounted to 9% for DS and 32% for CCS. In contrast, BQS were 

reduced by 24% in the H Line. Ewes that reared more lambs had a higher mean for DS and lower 

scores for the other traits than ewes not rearing any lambs (P<0.01). All traits were heritable, with 

estimates ranging from 0.36 for DS to 0.68 for BCS. Genetic correlations suggested that DS was not 

highly related to BSC, CCS or BQS. Genetic correlations among the latter three traits all exceeded 

0.80, suggesting that these traits were genetically very similar. Selection for improved reproduction 

in Merinos resulted in favourable breech and crutch characteristics, but not in BQS. The favourable 

breech and crutch conformation supported the reduced susceptibility to breech strike in this line. 

 

INTRODUCTION 

Two Merino lines were divergently selected over about 30 years to differ substantially in their 

reproductive ability (Cloete et al. 2004). A difference in the susceptibility of breeding ewes to breech 

strike was also reported between these lines, with the line selected for increased reproduction (High 

or H line) being less susceptible than the line selected against reproduction (Low or L line) (Scholtz 

et al. 2010). Cloete et al. (2005) also reported line differences, with unmulesed hoggets from the L 

line being scored as more wrinkly than their H line contemporaries. Breech characteristics have been 

associated with the susceptibility of Merino sheep to breech blowfly strike and it has been argued 

that strikes could be reduced if sheep were selected to eliminate susceptible crutches (De Vries and 

De Klerk 1944). It has been recommended that the bare patch in the locality of the anus and vulva 

should be as “large as possible” (De Vries and De Klerk 1944). Despite these arguments or 

recommendations, genetic solutions to breech strike were not pursued in earlier years, most probably 

due to the exceptional effectiveness of surgical mulesing. Mulesing, however, has been discarded as 

an appropriate management strategy because of its obvious impact on animal welfare. 

Selective breeding for resistance to breech strike is considered an alternative long term solution. 

Apart from wrinkle scores, breech cover score has been identified as an indicator trait associated 

with breech strike (Brown et al. 2010). Dag score was also found to be genetically related to breech 

strike (Greeff et al. 2014). These traits were thus studied in mature ewes recorded in the recent years 

of the H and L lines in an attempt to relate the proven line difference in breech strike prevalence 

(Scholtz et al. 2010) of breeding ewes to these subjective scores. 

 

MATERIALS AND METHODS 

Animals and selection procedures. Two lines of Merino sheep were divergently selected from 

the same base population from 1986 to the present, using maternal ranking values for number of 
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lambs weaned per ewe joined. Details of the origin of the lines and the procedures for the selection 

of replacements have been reported elsewhere (Cloete and Scholtz 1998; Cloete et al. 2004). Briefly 

male and female progeny of ewes that reared more than 1 lamb per joining (i.e. reared twins at least 

once) were preferred as replacements in the H line. Replacements in the Low (L) line were 

preferably descended from ewes that reared fewer than one lamb per joining (i.e. were barren or lost 

all lambs at least once). 

Location and recordings. The resource flock was maintained at the Elsenburg Research Farm 

near Stellenbosch. The climate, pastures grown and management of the animals were described by 

Cloete et al. (2004), while lambing and reproduction practices in the breeding flock were described 

by Cloete and Scholtz (1998). Winter lambing (June-July) was practiced routinely. Although these 

references are quite old, the same basic conditions still prevail at the site. All lambs had their tails 

docked at the third palpable joint and none of the ewes participating in the study were mulesed as 

lambs. Mature ewes were shorn in April/May just prior to lambing and crutched in springtime (5-6 

month’s wool growth) to reduce the probability of strikes over the early summer period (Scholtz et 

al. 2010). A number of commercial rams have been introduced to the flock since 2008 to link the 

lines to the commercial industry. These rams were selected on the same principles used for within-

line selection and it was thus not attempted to account for their impact. Since the traits under 

consideration were not directly selected for it was assumed that the impact of these introductions 

would be minimal for the traits considered. From 2009 to 2016, mature reproducing ewes (2 – 7+ 

years) were subjectively scored for the accumulation of dags (DS), breech cover (BCS) and crutch 

cover (CCS) by the same experienced scorer using the Visual Breech Scoring System (Australian 

Wool Innovation Limited 2007). All scores were recorded in November, a month after the ewes 

weaned their lambs. Scores of 1 to 5 were allocated to each trait with 1 = least expression of the trait 

and 5 = most expression of the specific trait. Quality of belly wool (BQS) was evaluated on a linear 

scale from 1 to 5; where 1 = poor and 5 = excellent quality. Belly wool quality was defined as the 

regularity, evenness and definition of crimp, softness of handle and the absence of coarse fibres. 

Statistical analyses. Systematic effects present for DS, BCS, CCS and BQS were determined 

in a general linear model analysis to obtain an operational model before random effects were added. 

The fixed effects model used included the effects of selection line (H vs. L), reproduction status (3 

levels: 0, 1, 2+ lambs weaned), ewe age group (6 levels: 2 – 7+ years) and interactions among effects. 

Ewes dry after lambing were managed in a separate group with yearling replacements. Initial fixed 

effect models and the subsequent single- and four-trait genetic analyses were conducted in ASReml 

(Gilmour et al. 2015). Ewe additive genetic and ewe permanent environmental (PE) terms were 

included as random effects and assessed for significance by log likelihood test. Heritability estimates 

and genetic correlations among traits were derived from the 4-trait analyses.  

 

RESULTS AND DISCUSSION 

The scorer used the full range of scores for all subjective traits considered (Table 1). All traits 

were variable, with coefficients of variation ranging from 41% for DS to 52% for CCS. 

 

Table 1. Descriptive statistics for dag score (DS), breech cover score (BCS), crutch cover score 

(CCS) and belly wool quality score (BQS) recorded on ewes post-weaning 

Trait 
Number of 

records 
Mean 

Standard 

deviation 
Minimum Maximum 

DS 671 1.39 0.57 1 5 

BCS 1107 2.27 1.03 1 5 

CCS 1107 1.69 0.88 1 5 

BQS 1101 2.30 0.96 1 5 

When expressed relative to the relevant least squares mean for the L Line, the cover score traits 
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were  between 8% (DS) and 32% for CCS lower (P<0.05) (i.e. influenced in the desired direction) 

in the H Line (Table 2). These results are consistent with previous results reporting favourable 

correlated responses in dag score and perineal bare area dimensions in the H Line (Scholtz et al. 

2011). It also supports the report that H Line ewes were less susceptible to breech strike than L Line 

contemporaries (Scholtz et al. 2011). In contrast, BQS was poorer in the H Line than in the L line. 

Ewes that reared lambs had a higher mean for DS and lower scores for the other traits than those 

ewes not rearing any lambs (P<0.01). The differences between ewes rearing singles and those rearing 

multiples were, however, small and not significant. Ewes at 4 and 6 years of age had lower means 

for DS than 2-, 3- and 7+-year-old ewes (P<0.05). BCS was unaffected by ewe age, while CCS 

declined with ewe age. BQS generally also declined with ewe age, but tended to stabilise from 5-

year-old ewes. All traits barring BCS were affected by lambing year (results not shown). Year effects 

depend on climatic and managerial factors inherent to that specific year. Such effects were thus not 

presented, except when year interacted with selection line.  

 

Table 2. Least-squares means (±s.e.) depicting the effects of selection line, number of lambs 

weaned, ewe age and lambing year on DS, BCS, CCS and BQS recorded on Merino ewes in 

the initial fixed model analyses (see Table 1 for abbreviations) 

Effect and 

level 

Number of 

observations# 

Trait 

DS BCS CCS BQS 

Selection line  * ** ** ** 

H Line 872 1.25 ± 0.03 2.17 ± 0.05 1.51 ± 0.04 2.12 ± 0.04 

L Line 235 1.36 ± 0.05 2.69 ± 0.10 2.22 ± 0.07 2.77 ± 0.08 

Lambs weaned ** ** ** ** 

0 285 1.20 ± 0.05 2.99 ± 0.07 2.49 ± 0.05 3.04 ± 0.06 

1 604 1.37 ± 0.04 2.16 ± 0.06 1.55 ± 0.04 2.23 ± 0.05 

2+ 218 1.36 ± 0.08 2.14 ± 0.11 1.56 ± 0.09 2.08 ± 0.09 

Ewe age  * 0.17 ** ** 

2 Years 290 1.35 ± 0.03 2.61 ± 0.08 2.11 ± 0.06 2.76 ± 0.07 

3 Years 301 1.40 ± 0.03 2.49 ± 0.08 2.03 ± 0.06 2.64 ± 0.07 

4 Years 234 1.24 ± 0.03 2.34 ± 0.08 1.86 ± 0.06 2.41 ± 0.07 

5 Years 180 1.33 ± 0.04 2.47 ± 0.09 1.86 ± 0.07 2.27 ± 0.08 

6 Years 77 1.17 ± 0.04 2.38 ± 0.13 1.81 ± 0.10 2.26 ± 0.11 

7+ Years 25 1.35 ± 0.07 2.30 ± 0.20 1.53 ± 0.15 2.37 ± 0.17 
# - For BCS and CCS; * - P<0.05; ** P<0.01; Absolute significance shown for P>0.05 

 

CCS and BQS were affected by a significant interaction between lambing year and selection line 

in the fixed model analyses. Expressed relative to H Line means, the mean for CCS of L Line ewes 

exceeded that of H Line ewes by 18% in 2016, as compared to between 40 and 64% in other years. 

The corresponding difference for BQS amounted to 13% in 2016, compared to 31-40% in other 

years. Selection line also interacted with number of lambs weaned for CCS. Although CCS was 

clearly lower in H Line ewes compared to their L Line contemporaries across reproduction 

categories, the magnitude of the difference amounted to 48% for ewes not rearing a lamb, 34% for 

ewes that reared singles and 60% for ewes that reared multiples (all P<0.05). Significant fixed effects 

and interactions were included in the subsequent random model analyses.  

Heritability estimates in the four-trait analysis were mostly within 0.02 relative to single-trait 

estimates. The only slightly larger difference were for BQS where the single-trait estimate amounted 

to 0.39 ± 0.08 and the four-trait estimate to 0.46 ± 0.05. Some variation in this trait was repartitioned 

from ewe PE to the additive component in the four-trait analysis. Only four-trait results are thus 

presented in Table 3. All traits were heritable, estimates ranging from 0.36 for DS to 0.68 for BCS. 

In addition, the PE of ewes also affected DS (0.30 ± 0.09) and BQS (0.10 ± 0.03), resulting in 
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repeatability estimates for both traits exceeding 0.50. We did not find previous results in the 

literature on the magnitude of heritability estimates for the indicator traits for breech strike studied 

in mature ewes. However, but it is well known that these traits are heritable in young animals (Brown 

et al. 2010; Scholtz et al. 2011; Greeff et al. 2014), supporting the present results on the genetic 

basis of indicator traits. Genetic correlations suggested that DS was not highly related to BCS, CCS 

or BQS (Table 3). In contrast, the genetic correlations among the latter three traits all exceeded 0.80, 

suggesting that they were genetically very similar. Phenotypic correlations were mostly in the same 

direction as genetic correlations, but smaller in magnitude. 

 

Table 3. Four-trait phenotypic (²P), additive (²A) and ewe permanent environmental (²C) 

variance components and (co)variance ratios for DS, BCS, CCS and BQS of the Merino ewes 

studied (see Table 1 for abbreviations) 

Component and trait 
Trait 

DS BCS CCS BQS 

²P 0.360 0.965 0.568 0.658 

²A 0.128 0.661 0.358 0.300 

²C 0.108 - - 0.063 

(Co)variance ratios*     

DS 0.36 ± 0.10 0.00 ± 0.10 0.08 ± 0.11 0.06 ± 0.15 

BCS -0.02 ± 0.05 0.68 ± 0.03 0.83 ± 0.03 0.82 ± 0.05 

CCS 0.03 ± 0.05 0.63 ± 0.02 0.63 ± 0.03 0.85 ± 0.05 

BQS 0.01 ± 0.05 0.60 ± 0.03 0.57 ± 0.03 0.46 ± 0.05 

* Heritability in bold on the diagonal, genetic correlations above the diagonal and phenotypic correlations 

below the diagonal 

 

CONCLUSIONS 

All traits were heritable and should respond to selection if needed. Selection for improved 

reproduction in Merinos resulted in favourable dag, breech and crutch characteristics previously 

related to reductions in breech strike. In contrast, scores for BQS were compromised by selection 

for an improved reproduction. 
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SUMMARY 

A study was undertaken to identify selection signatures associated with resistance to 

gastrointestinal nematodiasis in sheep.  Ninety-three Romney sheep from two selection lines 

(resistant or resilient) were genotyped using the Ovine Infinium® HD SNP BeadChip, and extended 

haplotype homozygosity (EHH) and site-specific extended haplotype homozygosity (EHHS) 

analyses were undertaken. In total, 224 SNPs (147 in EHH and 77 in EHHS) were found to be 

significant (p <0.0001). Preliminary exploration of 10 SNPs found them to be located within two 

previously identified QTLs, namely LATRICH_2 and FECGEN, which were associated with 

nematode larval count and faecal egg count, respectively.  

 

INTRODUCTION 

Gastrointestinal nematodes are one of the most serious parasitic threats for sheep (Familton and 

McAnulty 1997; Perry and Randolph 1999), costing approximately $300 million annually to the 

New Zealand sheep industry (Rattray 2003). The current high dose usage of anthelmintics, owing 

to anthelmintic resistance, is not welcomed by the present global market, considering the increasing 

consumers’ preference for organic products. Therefore, alternative anti-parasite strategies are 

necessary. Genetic selection is one of the most important ways in animal husbandry to improve the 

quality of domestic animals. Several studies have shown that resistance to nematodiasis in sheep is 

highly variable and heritable between individuals so that selective breeding can be an alternative 

choice for nematode control (Morris et al. 1995, 2000, 2005). 

The advent of high-density single nucleotide polymorphism (SNP) microarray chips has 

facilitated detection of selection signatures based on patterns of linkage disequilibrium in selection 

lines. This is based on the assumption that the frequency of a novel mutation, that confers an 

advantage, will increase more rapidly than that of a neutral mutation (Sabeti et al. 2002). 

Consequently, long linkage disequilibrium (LD) blocks that incorporate genomic regions containing 

the causative genetic mutations could exist in populations undergoing artificial selection, given that 

they have been bred for insufficient generations to break the LD through recombination (Slatkin 

2008). Hence, a high frequency and unusually long haplotype within a selected population could 

indicate the presence of a positive selection signature.  

To detect these signatures, an algorithm called extended haplotype homozygosity (EHH) was 

initially introduced (Sabeti et al. 2002) which quantifies the decay of haplotype homozygosity 

within a population. Subsequently, another method known as the site-specific extended haplotype 

homozygosity (EHHS), was introduced to do the same purpose between populations (Sabeti et al. 

2007). These methods have been successfully used to detect selection signatures in animals (McRae 

et al 2014; Somavilla et al. 2014; Zhang et al. 2012). Using the Ovine Infinium® HD SNP BeadChip 

the current study attempts to detect positive selection signatures in two Romney sheep lines selected 

for divergent approaches to coping with nematode infections, that being either resistance or 

resilience.   
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MATERIALS AND METHODS 

This study was carried out following the guidelines of the 1999 New Zealand Animal Welfare 

Act and was approved by the Lincoln University Animal Ethics Committee (Permit Numbers: 

LUAEC#588). During early 2015, ear punch samples were collected into Allflex tissue sampling 

units (TSU), using an Allflex NZ tissue sampling applicator (TSU Applicator – 22134), from 93 

Romney sheep belonging to two selection lines (nematode resistant, n = 42, and nematode resilient, 

n = 51), currently being maintained at Lincoln University, Lincoln, New Zealand. Details regarding 

the selection lines were described elsewhere (Morris et al. 2000). Sheep in the two lines were 

selectively bred based on faecal egg count (FEC), for at least 24 years (1985-2009) and since then 

have been randomly bred within each line. The tissue samples were submitted to AgResearch, 

Invermay Agricultural Centre, Mosgiel, New Zealand, for DNA extraction and SNP genotyping 

using the Ovine Infinium® HD SNP BeadChip.  

The original SNP data (idat files) were converted into to PLINK format (PED/MAP) in 

GenomeStudio® (Illumina, San Diego CA, USA). Quality control was performed using 

PLINK_v1.9 (Chang et al. 2015; Purcell et al. 2007). A within individual call rate threshold of 99% 

was applied and SNPs with a call rate <95%, or a minor allele frequency <1%, or a p value of <10-6 

for Hardy-Weinberg equilibrium were excluded. After quality control a total of 463,392 SNPs, 

located on the 26 autosomes in all 93 sampled individuals were retained for further analysis. 

The SNP data was reformatted in PLINK and inputted into fastPHASE_v1.4 (Scheet & Stephens 

2006) in order to reconstruct the haplotypes for each autosome, using the default parameters. The 

resultant haplotype data (phased data) was used to detect positive selection signatures by calculating 

the allele-specific extended haplotype homozygosity (EHH) within populations as well as the site-

specific extended haplotype homozygosity (EHHS) between populations, using an R package, 

REHH 2.0 (Gautier et al. 2017). For EHH, the test statistic was iHS (Gautier & Naves 2011), 

standardized ratio of the integrated allele-specific EHH (iHH), while for EHHS, two separate test 

statistics were employed – xp-EHH (Sabeti et al. 2007) and Rsb (Tang et al. 2007). Significance of 

detected signatures of selection was determined based on the p values for iHS, xp-EHH and Rsb. 

 

RESULTS AND DISCUSSION 

The purpose of this study was to identify SNPs or genes exhibiting positive selection from the 

pressure of nematodes. SNP genotypes pertaining to 463,392 markers covering the 26 autosomes 

were used. Since the two selection lines investigated in the study were selectively bred for at least 

24 years (1985-2009) based on faecal egg count (FEC) using best linear unbiased prediction (BLUP) 

techniques and since then randomly bred within each line, these populations are suited to 

investigations of selection signatures of long time breeding associated with resistance and resilience.  

EHH testing revealed 62 and 85 SNPs to exhibit positive selection signatures (p<0.0001) in the 

nematode resistant and resilient groups, respectively. None of the identified SNPs were shared 

between the two lines, indicating genetic differences (possibly due to selection pressure) between 

these two populations. An iHS plot for OAR2 for the two lines, revealing the differences between 

the two populations is shown in Figure 1. EHHS testing was also performed to detect positive 

selection signatures between the two populations. Two different algorithms, XP-EHH and Rsb were 

used.  A total of 39 and 48 SNPs were detected exhibiting positive selection signatures, in the two 

algorithms, respectively. None of these SNPs were common to those detected in the within-line 

EHH analysis. Figure 2 depicts the results for the Rsb and XP-EHH algorithms with respect to 

markers on chromosome 13. So far, there is no demonstrated advantage of one over the other, and 

the results from these two algorithms can be slightly different (Gautier et al. 2017). Therefore, the 

SNPs shared by two algorithms should be more reliable. Ten SNPs (Table 1) were shared between 

the two algorithms and those were found to be located in regions of known significance and hence, 

can be considered as highly confident SNPs associated with nematode resistance and resilience in 
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sheep. A QTL search (http://www.animalgenome.org/QTLdb/sheep) showed the SNP 

oar3_OAR11_48327544 to be located within the reported QTL:12901, which has been 

demonstrated to be associated with larva count (Crawford et al. 2006). The remaining nine SNPs 

were all located within a small region overlapping the gene Protein Tyrosine Phosphatase, Receptor 

Type T (PTPRT) on chromosome 13 (Oar_v4.0). PTPRT is a protein coding gene and GO 

annotations show that this gene is related to phosphatase activity and beta-catenin binding, possibly 

indicating that this gene could have a function in resistance to nematodes. Further, these SNPs are 

harboured within the previously identified QTL:16027, which has been associated with faecal egg 

counts (Sonstegard et al. 2012).   

A previous study (McRae et al. 2014) performed on Romney and Perendale sheep, that used FST 

and Peddrift to detect differentiation between nematode resistant and susceptible lines, identified 

sixteen significant regions, which included candidate genes involved in chitinase activity and the 

cytokine response. The samples from nematode resistant sheep obtained for the current study came 

from the same line as that from McRae et al. (2014), but were from a different generation.  In the 

current study, apart from the 10 significant SNPs detected by both the Rsb and XP-EHH algorithms, 

there were 77 other significant SNPs detected by one or either of the algorithms. These 77, together 

with the 147 SNPs (62 and 85 in the resistant and resilient lines, respectively) detected in the EHH 

analysis will be explored in detail to find out if they are located in or near to gene regions of 

immunological significance. 

 
 

CONCLUSION 

This study provided a genome-wide map of positive selection signatures in two Romney sheep lines 

selected for FEC. Several significant SNPs were identified and preliminary analysis of ten of the 

identified SNPs revealed that they were located within two previously detected QTLs associated 

with gastrointestinal nematodiasis in sheep.  The significance of the remaining SNPs is currently 

being explored.  
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Figure 1 iHS difference for markers on 

chromosome 2 between lines of Romney 

sheep selected for either resistance or 

resilience to gastro-intestinal nematodes 

Figure 2 REHH difference between XP-

EHH or Rsb methods for markers on 

chromosome 13 
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Table 1. SNP markers detected by both the EHHS algorithms, XP-EHH and Rsb, to suggest 

evidence of positive selection in lines of Romney sheep selected for either resistance or 

resilience to gastro-intestinal nematodes 

 

SNP Chr Position Gene QTL ID 

oar3_OAR11_48327544 11 48327544 none LATRICH_2 QTL:12901 
larva 

count 

oar3_OAR13_70810243 13 70810243 PTPRT FECGEN QTL:16027 FEC 

oar3_OAR13_70820259 13 70820259 PTPRT FECGEN QTL:16028 FEC 

oar3_OAR13_70853062 13 70853062 PTPRT FECGEN QTL:16029 FEC 

oar3_OAR13_70853714 13 70853714 PTPRT FECGEN QTL:16030 FEC 

oar3_OAR13_70870621 13 70870621 PTPRT FECGEN QTL:16031 FEC 

oar3_OAR13_70876794 13 70876794 PTPRT FECGEN QTL:16032 FEC 

oar3_OAR13_70887333 13 70887333 PTPRT FECGEN QTL:16033 FEC 

oar3_OAR13_70891326 13 70891326 PTPRT FECGEN QTL:16034 FEC 

oar3_OAR13_70896117 13 70896117 PTPRT FECGEN QTL:16035 FEC 
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SUMMARY 

Lamb survival, as a trait of high economic importance with low heritability, might show more 

response to selection by considering traits of higher heritability, genetically correlated with survival, 

as a supplement to direct selection for the trait itself. This study aimed to estimate heritability and 

genetic association of skin thickness (ST), as a potential trait in indirect selection for lamb survival, 

with lamb survival from birth to weaning (SAW), and a few growth and wool traits including fat 

depth (FD), eye-muscle depth (EMD), weaning weight (WWT) and 12-month fleece weight (FWT) 

in New Zealand Romneys. Data for ST, FD, and EMD were collected using ultrasound scans on 

hoggets at 8-10 months. Appropriate animal and sire models were applied to estimate the genetic 

parameters using ASReml software. ST had an estimated heritability of 0.26, and showed genetic 

correlations of 0.27 (±0.22), 0.22 (±0.10), -0.18 (±0.12), -0.21 (± 0.12) and 0.27 (±0.12) with SAW, 

FD, EMD, WWT, and FWT, respectively. The preliminary estimates of heritability and genetic 

correlation of skin thickness with lamb survival, obtained in this study, might suggest the idea of 

considering this trait in selection for lamb survival, though its unfavourable correlation with other 

traits should also be considered.   

 

INTRODUCTION 

Lamb mortality is a major issue to sheep producers both in New Zealand and worldwide, not only 

due to economic losses but also as an animal welfare and management problem. Lamb survival 

rates of 75 to 97% has been reported in New Zealand (Hight and Jury 1970; Dalton et al. 1980; 

Gumbrell and Saville 1986), though mortality rates of up to 40% have been found on some farms 

(Fisher 2004). In countries like New Zealand, the UK and Australia, where lambing mostly takes 

place outdoor, thermoregulatory capacity of newborn lambs plays a major role in lamb survival due 

to its contribution to starvation-exposure mortality rates, as the second most common cause of lamb 

deaths in the neonatal period after dystocia (Kerslake et al. 2005; Everett-Hincks et al. 2007).  

Due to a low heritability of lamb survival (Lopez-Villalobos and Garrick 1999; Brien et al. 

2010), indirect selection, based on selection for other easy-to-measure traits of higher heritability 

that are genetically correlated with survival can be considered as a supplement to direct selection 

for the trait itself. Skin thickness as a trait of moderate to high heritability (Slee et al. 1991; Gregory 

1982a) has been shown to be associated with cold tolerance (Samson and Slee 1981), as a component 

of lamb survival, which is moderately to highly heritable itself (Wolff et al. 1987; Slee et al. 1991).  

Hence, selection for skin thickness might be a potential alternative to selection for cold resistance 

and consequently lamb survival. Unlike cold resistance, whose assessment needs laboratory-based 

techniques that are not feasible for breeders, skin thickness could be easily measured in the field 

using objective techniques like ultrasonography (Brown et al. 2000). Prior to implementing this trait 

in selection for lamb survival, it is inevitable to first estimate its heritability and genetic association 

with other economic traits. Although a limited number of studies were undertaken for estimating 

these parameters (Slee et al. 1991; Gregory 1982a; Gregory 1982b; Coy 1983; Hynd et al. 1996), 

the size of populations in those experiments were too small. Therefore, the objective of this study 

was to estimate heritability for ultrasonographically measured traits (skin thickness, subcutaneous 
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fat depth, and eye muscle depth), lamb survival and some growth and wool traits (weaning weight, 

and fleece weight at 12 months). Also, genetic correlation of skin thickness (as the proposed trait 

influencing lamb survival) with other traits of interest was estimated.   

 

MATERIALS AND METHODS 

Data collection. Data for skin thickness, fat depth and eye muscle depth were collected by 

ultrasonography on four Terminal Romneys for Increased Genetic Gain (TRIGG) farms in the 

Manawatu region of New Zealand as part of routine farm operations using ultrasound at 

approximately 8 months of age, during 2011 to 2015. A commercial operator took measurements 

using an ultrasound scanning machine (Sonosite M Turbo) with a 38mm probe at 7.5 MHz set at a 

depth of 40 mm on the left dorsal loin region of the lambs around the 12th rib. Live weight was also 

recorded at scanning. For three out of four farms the ultrasound data were recorded only during 2011 

to 2014. Additional data on date of birth, sex, flock, birth rank, rearing rank, dam age, dam and sire 

identities, status of lamb at weaning (alive or dead), weaning weight, weaning date, fleece weight at 

12 months, and age at shearing were obtained from the Sheep Improvement Limited (SIL) database. 

Data cleaning was done so that records with dam age of 9 years or more (n=9), birth ranks of 4 and 

5 (n=114), and rearing rank of 4 (n=20) were removed from the data because of their small numbers. 

Also, lambs of unknown parents in the pedigree (n=408) were excluded from the analysis. After 

data cleaning and editing for incorrect pedigree and outlier values, the data set had 24,097 lambs 

born to a total of 199 sires and 6,413 dams. 

Statistical analysis. Univariate procedure in SAS software (SAS, 2015) was used to check for 

normality and edit the data (removing outlier observations). Data were analysed by the PROC 

MIXED procedure in SAS software (SAS, 2015) to identify significant fixed effects to be included 

in the final models. Sex, birth year, and birth flock were included as fixed effects for all the traits. 

Furthermore, for all the traits except skin thickness, dam age was included in the final models. Also, 

weight at ultrasonography was considered as a covariate for the analysis of skin thickness, fat and 

eye muscle depth. Birth rank was included as fixed effect in the analysis of survival at weaning, and 

rearing rank for the other traits excluding skin thickness. In addition, age at weaning and age at 

fleece weight measurement were considered as covariates in the models analysing the traits weaning 

weight and fleece weight at 12 months, respectively. Also, all the significant two-way interactions 

between these fixed effects were included in the final models. (Co)variance components were 

estimated by Restricted Maximum Likelihood (REML) procedure using the ASREML software 

(Gilmour et al. 2015). Appropriate animal models were used for estimation of heritability for all the 

traits. The random effects included direct additive genetic effect for all the traits, and also maternal 

genetic and maternal environmental effects for the traits survival at weaning and weaning weight.  

Because survival was coded as a binary trait, a generalized linear model analysis was performed, 

assuming a binomial distribution for this trait and using both logit and probit link functions. For all 

other traits, a linear animal model was used assuming normal distribution. Genetic correlations were 

estimated using bivariate analyses applying the best models determined in the univariate analyses. 

In the bivariate model where survival was included as a trait, a sire model was used and only those 

sires with at least 50 and 30 records of their progeny for lamb survival and skin thickness, 

respectively, were included in the analysis. In those models, lamb survival was considered as a 

threshold trait and skin thickness as normal trait. It should be noted that the statistical analysis was 

performed using the skin thickness data only from those animals that were alive until ultrasound 

scanning (at around 8 months age) and this might have led to bias in the resulting genetic correlation 

of lamb survival with skin thickness. 

 

RESULTS AND DISCUSSION 

Number of observations, mean, standard deviation (SD), minimum (Min), maximum (Max), and 
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coefficient of variation (CV) for the analysed traits are presented in Table 1. As shown, ultrasound 

skin thickness in this study, recorded at around 8 months of age, had a mean of 2.92 mm (Table 1), 

which is consistent with a report by Jopson et al. (2000) in new-born Coopworth lambs in New 

Zealand, though skin thickness was measured using skinfold callipers in their experiment. In the 

current study ewe lambs had significantly (P<0.01) thicker skin compared to males (3.24 vs. 2.87), 

while Jopson et al. (2000) did not find any significant difference between ewe and ram lambs. On 

the other hand, neither birth rank nor age of dam had any significant effect on skin thickness when 

adjustment was made for live weight at measurement, both of which are in agreement with the study 

by Jopson et al. (2000). Also, skin thickness was significantly affected by both birth flock and year 

in the present study.  

 

 Table 1. Descriptive statistics and number of records for the traits analysed 

 
Trait  No. of 

records 

Mean SD Min. Max. CV 

Survival at weaning (%) 23976 0.81 0.39 0 1.00 47.99 

Skin thickness (mm) 6082 2.92 0.50 1.50 5.00 17.20 

Fat depth (mm) 6171 2.86 1.43 1.00 12.00 50.02 

Eye muscle depth (mm) 4389 25.60 3.14 4.00 38 12.25 

Weaning weight (kg) 18657 28.68 6.10 10.00 57.00 21.25 

Fleece weight at 12 months (kg) 5426 3.32 0.67 1.60 5.80 20.29 

 

Table 2 presents heritability estimates for the traits of interest and genetic correlation of skin 

thickness with other traits. As expected, lamb survival at weaning had low direct and maternal 

heritability estimates, which is in line with several other studies (Lopez-Villalobos and Garrick 

1999; Brien et al. 2010). As mentioned at the outset, this finding shows that direct genetic selection 

for this trait is not promising. On the other hand, skin thickness as the main trait of interest 

considered for indirect selection for lamb survival showed a moderate heritability of 0.26±0.04, 

which confirms the results from previous studies showing this trait to be heritable (Slee et al. 1991; 

Gregory 1982a). Furthermore, skin thickness showed a positive genetic correlation (0.27±0.22) with 

lamb survival at weaning, which is favourable and consistent with the results from a study by Jopson 

et al. (2000) that showed 2.7% increase in lamb survival from tagging until weaning for each 

millimetre of increase in skin thickness in Coopworth sheep. This finding could be attributed to the 

effect of skin thickness on improved thermoregulation.  

 

Table 2. Estimates (±SE) of the direct (ha
2) and maternal (hm

2) heritabilities and maternal 

environmental (me2) effects for each trait, and genetic correlations (rg) with skin thickness 

  
Trait  ha

2 hm
2 me2 rg 

Survival at weaning (using probit link) 0.033 ± 0.01 0.061 ± 0.02 0.008 ± 0.02 0.27 ± 0.22 

Survival at weaning (using logit link) 0.035 ± 0.01 0.053 ± 0.02 0.016 ± 0.017 - 

Skin thickness 0.26 ± 0.04 - - - 

Fat depth 0.36 ± 0.04 - - 0.22 ± 0.10 

Eye muscle depth 0.39 ± 0.05 - - -0.18 ± 0.12 

Weaning weight 0.33 ± 0.04 0.17 ± 0.03 0.14 ± 0.02 -0.21 ± 0.12 

Fleece weight at 12 months 0.50 ± 0.04 - - 0.27 ± 0.12 
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There was also a favourable positive genetic correlation of 0.27±0.12 between skin thickness 

and fleece weight at 12 months. Similarly, Gregory (1982b) found a significant genetic correlation 

of 0.39 between skin thickness and clean fleece weight in South Australian Merino sheep. Contrary 

to this, Hynd et al. (1996) indicated a slight negative correlation between skin weight (as an indicator 

of thickness) and clean fleece weight. Unfavourably, the genetic correlation of skin thickness and 

fat depth was positive with a value of 0.22±0.10. In agreement with this, Jopson et al. (2000) showed 

that lambs from lines selected for high backfat depth had thicker skins than those selected for low 

backfat depth. Also, unfavourable genetic correlations of -0.18±0.12 and -0.21±0.12 were found 

between skin thickness and the traits eye muscle depth and weaning weight, respectively.  

 

CONCLUSION 
The preliminary estimates of heritability of skin thickness, together with its favourable genetic 

correlation (although with a high standard error) with lamb survival at weaning obtained in this 

study, suggests the idea of considering this trait as a likely attribute in indirect selection of lamb 

survival in selection programs. However, its inclusion should be with caution due to its unfavourable 

genetic correlation with fat depth, eye muscle depth, and weaning weight, as well as high standard 

errors associated with them. Otherwise, selection of animals with thicker skin might result in lambs 

with improved survival as well as increased fleece weight, but with a greater fat depth, and less 

muscle depth and lower weaning weight.  
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SUMMARY 

The aim of this study was to compare different ways of accounting for population structure for 

genomic prediction of three economic traits in an Australian Merino sheep population. Population 

structure was accounted for either by fitting genetic groups (GG) derived from pedigree, or fitting 

principal components (PCs) calculated from the genomic relationship matrix based on 50k density 

SNP marker genotypes. Genomic breeding values (GBV) were calculated using genomic best linear 

unbiased prediction (GBLUP) and the GBV accuracy was evaluated based on 5 fold cross-validation 

across half-sib families. Best linear unbiased estimation (BLUE) of GG or PC effects were added to 

the GBV. Results showed that accounting for population structure either by fitting GG or PCs 

improved the accuracy of genomic prediction. Furthermore, fitting the first two PCs gave a similar 

accuracy to fitting GG derived from pedigree. The improvement in GBV accuracy after accounting 

for population structure in studied traits was not high (3.8% when averaged across traits) which may 

be because the genomic relationship matrix will implicitly account for some of the population 

structure effect when the GG or PCs are not fitted in analysis. In the case of missing or incomplete 

pedigrees, PCs can be used to account for population structure and to improve the prediction 

accuracies. 

 
INTRODUCTION 

Differences in average genetic effects of breeds or strains within breeds (population structure) 

may affect the accuracy of genetic merit evaluation of selection candidates. Population structure 

could bias the genomic estimated breeding values (GBV) and hence affect the realized selection 

response. Australian Merino sheep is a highly diverse population due to different breeding objectives 

within the various types of Merino, and due to different production environments. The Merino breed 

consists of many sub-populations according to wool quality, e.g. strong wool, fine wool and ultra-

fine wool Merinos. Accounting for population structure is a very importance feature of 

MERINOSELECT which is the national genetic evaluation of Australian Merino sheep (Brown et 

al. 2015; Swan et al. 2014) 

The effect of population structure can be accounted for in the estimation of breeding values 

(based on phenotype and pedigree), according to genetic groups derived from pedigrees. However, 

in the case of incomplete pedigree information, population structure can be derived from genotypes 

by using Principal Components (PCs) from the genomic relationships matrix (GRM) (Price et al. 

2006). Fitting PCs explicitly in the model is likely more accurate than accounting for the structure 

implicitly through the GRM (Van der Werf et al. 2013). The aim of this study was to compare fitting 

genetic groups based on pedigree with fitting PCs based on the genomic relationship matrix when 

accounting for population structure in genomic prediction of Australian Merino sheep.  

 
MATERIALS AND METHODS 

Reference population, phenotypes and validation population. The traits studied were post 

weaning weight (PWW, 6,388 records), ultrasound scanned eye muscle depth (PEMD, 4,012 
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records) measured between 150 and 290 days from birth and yearling greasy fleece weight (YGFW, 

5,200 records) on Merino sheep. Animals originated from the “Sheep Cooperative Research Centre 

Information Nucleus Flock“ (INF) and the Resource Flock (RF) which consisted of eight sites 

located across different regions of Australia and these were linked to each other by using common 

sires through artificial insemination between 2007 and 2015. More information on the scope and 

design of the INF is provided by Van der Werf et al. (2010). The accuracy of genomic prediction 

was evaluated based on the average of 5-fold cross-validation, where whole half sib families were 

sampled such that half sibs could not appear in training as well as validation set. The accuracy was 

calculated as the correlation between the GBV and the corrected phenotype, divided by the square 

root of the trait heritability. 

Genotypes. Genotypes were available based on real 50K Ovine marker panel (Illumina Inc., San 

Diego, CA, USA) or 12K which was imputed to 50K. The 50K and 12K marker panel provided 

respectively 48,559 and 12,646 SNP genotypes after applying quality control. The sporadic missing 

genotypes were imputed first using Beagle 3.0 (Browning 2009). Animals genotyped with 12K 

marker density then were imputed to 50K density using Beagle 3.0 and using all Merino animals 

genotyped with 50K marker density as reference set. Accuracy of imputation was shown to be high 

(on average 0.96). 

Statistical methods. Genomic best linear unbiased prediction (GBLUP) was used to calculate 

the Genomic Breeding Values (GBV) using the ASReml (Gilmour et al. 2009) program. The model 

fitted for each trait was: y = Xb + Z1g +  Z2m + e where y is a vector of phenotypes, b is a vector 

with fixed effects, g is the random additive genetic effect of the animal, m is a vector with maternal 

effects and e is vector of random residual effects, X, Z1 and Z2 are incidence matrices relating effects 

to animals. The parameters g, m and e are considered normally distributed as: 𝑔 ~ 𝑁(0, 𝐺𝜎𝑔
2), 

𝑚 ~ 𝑁(0, 𝐼𝜎𝑚
2 ) and 𝑒 ~𝑁(0, 𝐼𝜎𝑒

2), respectively and G was the genomic relationship matrix 

calculated based on 50k markers genotypes using the VanRaden (2008) method. The common fixed 

effects in all models were birth type, rearing type, gender, age at measurement and contemporary 

group which was flock × birth year × management group. In the GG models 5 genetic groups were 

fitted as a regression (fixed continuous variable) on proportion of Merino sub-population (strains) 

where the proportions for individual animals were derived from a deep pedigree. In the PC models 

principal components were fitted by regression on up to ten eigenvectors associated with the largest 

10 principal components.  

 

RESULTS AND DISCUSSION 

Tables 1, 2 and 3 compare the accuracy of genomic prediction between different models of fitting 

GG or PCs to account for population structure for PWW, PEMD and YGFW, respectively. Results 

show higher prediction accuracy for three different traits studied when population structure was 

accounted for in the model and then solutions for GG or PCs’ effects were added to the GBV. This 

result was in line with a previous study by Daetwyler et al. (2013) who showed higher genomic 

prediction accuracy within Australian sheep breeds by accounting for population structure using 

PCs. However, the improvement in accuracy compared to only fitting the GRM in this study was 

not very high and on average 3.4% in absolute value.  

Results showed fitting the first two largest PCs resulted in similar prediction accuracy to fitting 

GG from pedigree. Brown et al. (2015) and Swan et al. (2014) also showed strong correlation 

between using GG derived from pedigree and PCs calculated from genomic relationship matrix to 

correct the impact of population structure on estimation of genetic merits of animals. In this study 

the accuracy of GBV (GG/PC effect inclusive) was not increased by fitting more PCs. Results also 

showed a continuous decrease in GBV accuracy if the GG or PC effect solution was not added to 

GBV (Tables 1-3). 
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Table 1. Variance components, (SE) and average accuracy of genomic predictions from 5 

fold cross-validation for PWW based on fitting genetic groups (GG) or Principal 

Components (PCs). 
 

Model Ve1 Va2 Vdam3 r(GBV1,Res)4 r(GBV2,Res+GG) 5 

No GG 13.83 (0.73) 12.05 (0.91) 2.08 (0.61) NA 0.348  

GG 14.61 (0.74) 10.22 (0.89) 2.28 (0.61) 0.243 0.368 

1PC 14.24 (0.73) 10.98 (0.90) 2.23 (0.61) 0.218 0.342 

2PC 14.41(0.73) 10.55 (0.89) 2.30 (0.61) 0.215 0.355 

3PC 14.96 (0.74) 9.33 (0.88) 2.44 (0.61) 0.194 0.322 

4PC 14.94 (0.74) 9.36 (0.88) 2.43 (0.61) 0.194 0.322 

5PC 14.93 (0.74) 9.40 (0.88) 2.43 (0.61) 0.191 0.322 

10PC 14.99 (0.74) 9.24 (0.88) 2.45 (0.61) 0.178 0.316 
1Residual variance, 2Additive genetic variance, 3Dam permanent environmental effect, 4Average of correlation between 

GBV (corrected for GG or PC effects) and corrected phenotypes (adjusted for GG effects). 5Average of correlation between 

GBV (plus solution for GG or PCs) and corrected phenotypes (not adjusted for GG effect).  

 

 

Table 2. Variance components, (SE) and accuracy of genomic prediction for PEMD based on 

fitting genetic groups (GG) or Principal Components (PCs). 

 

Model Ve1 Va2 r(GBV1,Res)3 r(GBV2,Res+GG) 4 

GG not fitted 5.066 (0.22) 2.251 (0.25) NA 0.384 

GG fitted 5.398 (0.23) 1.728 (0.25) 0.348 0.420 

1PC 5.146 (0.22) 2.121 (0.25) 0.341 0.412 

2PCs 5.237 (0.22) 1.976 (0.25) 0.320 0.422 

3PCs 5.504 (0.22) 1.565 (0.25) 0.317 0.394 

4PCs 5.496 (0.23) 1.552 (0.25) 0.316 0.393 

5PCs 5.510 (0.23) 1.550 (0.25) 0.316 0.393 

10PCs 5.524 (0.23) 1.550 (0.25) 0.311 0.387 
1Residual variance, 2Additive genetic variance, 3Average of correlation between GBV (corrected for GG or PC effects) and 

corrected phenotypes (adjusted for GG effects). 4Average of correlation between GBV (plus solution for GG or PCs) and 

corrected phenotypes (not adjusted for GG effect).  

 

 

Tables 1, 2 and 3 also show the additive genetic, residual and dam variance (for PWW and 

YGFW only) for different models. Results show a continuous decrease in additive genetic variance 

and an increase in residual variance by fitting GG or fitting 1 to 10 PCs. The change in dam effect 

was very small in PWW and YGFW. 

Results of this study showed that accounting for population structure according to pedigree or 

genomic information improves the total genetic merit prediction accuracy. However, the increase in 

prediction accuracy in traits studied was not very high compared to fitting only the GRM. This 

indicate that it is likely that the GRM could account for only part of the effect of population structure 

implicitly as was indicated before (Van der Werf et al. 2013).  
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The reason for lower accuracy of GBVs (corrected for PCs) by fitting more PCs would be 

because fitting more PCs can capture part of the total additive genetic variance between different 

flocks and between half-sib families within flocks. 

In term of estimating the total genetic merits for animals with pedigree information the results 

show the GG model seems to work slightly better than PCs model. However, fitting the first two 

largest PCs derived from the GRM can also sufficiently account for population structure. This shows 

that in the case of missing, incomplete or not reliable pedigree information and if the animals were 

genotyped, PCs could be used to account for population structure to obtain higher prediction 

accuracies within a breed. This could be more important in prediction of unbiased breeding values 

on the national scale such as Australian Sheep Breeding values (ASBV) with probable larger impact 

of genetic groups. 

Table 3. Variance component, (SE) and accuracy of genomic prediction for YGFW based on 

fitting genetic groups (GG) or Principal Components (PCs). 

 

Model Ve1 Va2 V(dam)3 r(GBV1,Res)4 r(GBV2,Res+GG) 5 

GG not fitted 0.160 (0.01) 0.128 (0.01) 0.016 (0.01) NA 0.564 

GG fitted 0.163 (0.01) 0.121 (0.01) 0.017 (0.01) 0.532 0.611 

1PC 0.153 (0.01) 0.131 (0.01) 0.020 (0.01) 0.524 0.562 

2PCs 0.156 (0.01) 0.127 (0.01) 0.021 (0.01) 0.519 0.604 

3PCs 0.157 (0.01) 0.122 (0.01) 0.021 (0.01) 0.509 0.569 

4PCs 0.161 (0.01) 0.122 (0.01) 0.021 (0.01) 0.509 0.566 

5PCs 0.163 (0.01) 0.121 (0.01) 0.022 (0.01) 0.508 0.566 

10PCs 0.167 (0.01) 0.116 (0.01) 0.021 (0.01) 0.487 0.560 
1Residual variance, 2Additive genetic variance, 3Dam permanent environmental effect, 4Average of correlation between 

GBV (corrected for GG or PC effects) and corrected phenotypes (adjusted for GG effects), 5Average of correlation between 

GBV (plus solution for GG or PCs) and corrected phenotypes (not adjusted for GG effect).  
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SUMMARY 

The inheritance of early growth rate of the litter from birth to 30 days of age was investigated as 

an indirect trait for milk production of the dam in a medium type Merino flock in a production 

system where ewes were mated over a 35 day period. Body weight at marking was used to calculate 

a standardised cumulative weight gain for each litter to an average age of 30 days. The standardised 

30 day weight gain had a low heritability (0.17 ± 0.04). It was also genetically positively correlated 

with hogget body weight (rg = 0.38 ± 0.09). The genetic correlations of 30 day weight gain with 

clean fleece weight, fibre diameter and staple strength at hogget age, did not differ significantly from 

zero. It was suggested that the heritability may be higher in a production system where artificial 

insemination is generally used, as lamb age would be less variable in such a system. These results 

indicate that it should be possible to develop an indirect breeding value for milk production in 

Merino sheep.    

INTRODUCTION 

Milk production is crucial for lamb survival and early lamb growth. Four different measurement 

techniques have been developed to measure milk production, i.e. (i) use of exogenous oxytocin and 

directly milking the ewe, (ii) weighing the lamb before and after suckling, (iii) measuring water 

turnover rate using tritiated water, and (iv) using lamb weight gain as an indirect estimate of milk 

yield (Geenty 2010). However, it is difficult and expensive to measure milk production using 

methods (i) to (iii) on individual sheep. Afolayan et al. (2009) measured milk production in 

crossbred meat sire x Merino ewes and estimated the genetic correlations between milk production 

and average lamb weaning weight in the litter and reported a genetic correlation of 0.44. Geenty 

(1979) found that the phenotypic correlation between milk production of the dam and the early 

growth rate of their lambs varies between 0.22 to 0.76 in different meat breeds and their crosses. 

This implies that early growth rate of the lamb(s) may qualify as a potential indicator trait of milk 

production for the dam. However, very little information is available on early weight gain prior to 

the lamb starting to consume solids and this could be affected by age of the dam, litter size, sex of 

the lambs, and age of the lamb(s) when first weighing occurs at marking. Snyman et al. (2016) 

published genetic parameters of milk production using the oxytocin method where milk production 

was measured at 3 and 12 weeks of lactation. They found high genetic correlations between milk 

production and the maternal effect of early body weight. Thus early growth rate of the lamb can be 

used as an indicator of milk production in the dam. This study investigates the inheritance of early 

growth rate up to 30 days of age of the lamb as a trait of the dam, and its genetic relationship with 

body weight, wool production and fibre traits of the dam at hogget age.   

 

MATERIAL AND METHODS 

The Australian Wool Innovation Breech strike flock of the Department of Agriculture and Food 

Western Australia was used in this study (Greeff et al. 2014). Ewes were naturally mated in single 

sire groups over a 35 day period. Maternal pedigree, birth weight, litter size, birth date and sex of 

the lambs were recorded at birth during July/August. Marking weight was recorded at an average 



Poster presentations 

598 

age of 30 days of age on 1954 lambs that were born in 2014, 2015 and 2016 from 954 dams mated 

to 143 sires. Weight gain from birth to marking for the litter was standardised by calculating the 

daily rate of gain from birth to first weighing and predicting the total litter weight at 30 days of age.  

Wool production and fibre traits produced over a 12 month growth period and the body weights 

were recorded on the dams and their contemporaries at approximately 18 months of age. This dataset 

consisted of 7956 sheep that were the progeny of 194 sires mated to 3120 dams that were between 

2 and 8 years of age. All flystrike information was available on each sheep.  

 

STATISTICAL ANALYSIS 

ASREML (Gilmour et al. 2009) was used to analyse the data. A univariate analysis was carried 

out to obtain estimates of the heritability of weight gain of the litter up to 30 days of age as a trait of 

the dam. A repeatability model was fitted to the data with dam as random genetic effect, and also 

fitting dam as a permanent maternal environmental effect. An animal model was fitted for wool 

yield and the fibre traits and body weight at hogget age (see Table 1). Year of birth (2014-2016), 

age of the dam (2-8 years), and year of observation were fitted as fixed effects for the 30 day weight 

gain trait. For the wool, fibre and body weight traits at hogget age, year of birth (2006 to 2014), birth 

status (single or multiple), sex (male or female), and whether the animal was struck by blowflies 

were fitted as fixed effects. Sex was confounded with management group as males and females were 

managed in separate groups.  All two way interactions were initially fitted for both models. 

Statistically non-significant factors (P>0.05) were dropped from the final model.  This was followed 

by a bivariate analysis to obtain genetic covariances to estimate the genetic correlations between 30-

day-weight gain as a trait of the dam and her production traits at hogget age 

  

RESULTS AND DISCUSSION 

Table 1 shows that the average and standard deviation for the different traits in this study.  The 

averages of the wool and fibre traits in this Merino flock shows that this flock is representative of a 

typical medium wool type in Western Australia (Greeff and Cox 2006). The weight gained from 

birth to 30 days of age was on average 10.5kg. Year of birth of the ewe, year of measurement, age 

of the ewe were significant (P<0.01) environmental effects of 30 day weight gain.  

Table 1. Number of records, raw means and standard deviation (SD) of the different traits 

 

Trait Abbreviation n Mean SD 

30 day weight gain (kg) 30d_WT 1954 10.5 3.85 

Greasy fleece weight (kg) GFW 7965 3.87 0.83 

Yield (%) Yld 7956 70.9 4.23 

Clean fleece weight (kg) CFW 7965 2.74 0.61 

Fibre diameter (micron) FD 7965 19.2 1.59 

Coefficient of variation of Fibre diameter (%) FDCV 7956 20.5 2.42 

Fibre curvature (deg) CUR 7965 93.7 11.1 

Standard deviation of CUR SDCUR 7965 55.7 6.08 

Staple strength (N/Ktex) SS 7953 26.0 10.83 

Hogget body weight (kg) HWT 7952 47.9 17.0 

 

Significant effects (P<0.05) of fixed effects were observed on various traits, as follows:  

Year of birth of the ewe:  GFW, CUR, FD, FDCV, SS, YLD and HWT. 
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Age of the dam:  GFW, CFW and FD. 

Sex of the lamb: GFW, FDCV, SS, Yld, FD and HWT. 

Birth status: GFW and CFW. 

Flystrike: GFW, CFW and HWT. 

A year of birth by sex interaction was also significant for GFW, CUR, FDCV, SS, CFW, GFW, 

YLD, FD and HWT.  

Table 2 shows that the heritability estimates found in this study for body weight and the wool 

traits at hogget age are very similar to that which has been widely reported in the literature (Safari 

et al. 2005).  

A low heritability of 0.17 (± 0.04) was found for weight gain to 30 days of age as a trait of the 

dam. The permanent maternal environmental component effect explained an additional 8.4% (± 4.9) 

of the phenotypic variation in 30-day weight gain.  

Standardised 30-day weight gain was also genetically positively correlated (0.38 ± 0.09) with 

the dam’s body weight at hogget age. For the wool traits, fibre curvature and clean yield had a small 

but significant positive (0.18 ± 0.09) and negative genetic correlation (-0.18 ± 0.09) with 30-day 

weight gain, respectively. None of the other wool production traits (clean fleece weight, fibre 

diameter and staple strength) showed a significant relationship with 30-day body weight. 

 

Table 2. The phenotypic variation (Vp), heritability (h2) of 30 day weight gain of the litter as a 

trait of the dam and her production traits at hogget age, and the genetic correlations (rg) 

between 30 day weight gain of the litter and the production traits at hogget age.  

 

Trait Vp h2 SE 

rg  

(30 day weight gain and trait) SE 

30 day weight gain 13.7 0.17 0.04   

GFW 0.40 0.46 0.02 0.23 0.09 

CFW (kg) 0.22 0.47 0.02 0.15 0.09 

YLD (%) 15.1 0.64 0.02 -0.18 0.08 

FD (micron) 2.02 0.62 0.02 0.06 0.08 

FDCV (%) 5.47 0.38 0.02 0.03 0.09 

CUR (deg) 112 0.65 0.02 0.18 0.08 

CURVSD (deg) 33 0.63 0.02 0.10 0.08 

SS (N/Ktex) 67 0.52 0.02 -0.17 0.10 

HWT (kg) 118 0.42 0.02 0.38 0.09 

 

CONCLUSIONS 

Standardised 30-day weight gain was lowly heritable (0.17 ± 0.04) in a naturally mating Merino 

flock. However, it is not surprising that the heritability estimate is relatively low, considering the 

large variation that exists in lamb age at marking due to the long lambing period. Furthermore, ewes 

with singletons and ewes with lambs younger than 30 days of age would not be adequately 

challenged to express their full milk production potential. Thus, as expected this estimate is lower 

than that of directly measured milk production of 0.32 (Barillet and Boichard 1987) in Lacaune 

sheep.  Snyman et al. (2016) reported that the heritability of milk production using the oxytocin 

method was 0.02 (Grootfontein Merino), 0.21 (Afrino), 0.10 (Cradock Merino) and 0.29 (Elsenburg 

Merino) in four different flocks. They also found relatively high genetic correlations  (Afrino, 0.76; 

Elsenburg Merino – not reported; Cradock Merino 0.83; Grootfontein Merino 0.62) between directly 

measured milk production and early growth rate up to 42 days of age in the four flocks. The 
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heritability of this study agree well with the results of Snyman et al. (2016) which indicates that 

there may be opportunities to improve milk production indirectly by selecting on early growth rate.  

No unfavourable genetic relationships were found between early weight gain and any of the wool 

production traits. Further research is necessary to estimate the heritability of the trait especially in a 

flock that predominantly uses artificial insemination, where the age of the lambs at marking is less 

variable than in a naturally mated flock. Various options should be evaluated to identify an optimum 

age when lambs should be weighed to obtain a more accurate indirect measurement of milk 

production as older and bigger lambs will challenge the dam more to obtain a better indication of 

her milk production potential.  It may offer opportunities to select indirectly for milk production in 

sheep.  
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SUMMARY 

The effect of including general immune competence (IC) as a novel trait in a fibre production 

(FP) and a dual purpose selection (DP) index was investigated. Two levels of economic values were 

assumed for IC and the sensitivity of index responses to these were tested. The results showed that 

the addition of IC to a selection index requires careful consideration in order to achieve the envisaged 

improvements in health and welfare outcomes expected while addressing primary production 

objectives.  

 

INTRODUCTION  

Selection for production traits with little or no emphasis on health and welfare traits can lead to 

increased susceptibility to disease (Rauw et al. 1998). For example in sheep, Shaw et al. (2012) 

reported that production focused selection has led to a decrease in parasite resistance. In an effort to 

improve general disease resistance, methods to assess immune competence were first developed in 

both pigs and dairy cattle (Wilkie and Mallard 1999; Mallard and Wagter 2001). In Australia, 

methods for assessing immune competence in beef cattle (Hine et al. 2016) and sheep have recently 

been evaluated, providing estimates for this study (Hine and Smith, CSIRO Agriculture and Food, 

2016, preliminary estimates). This study assumed economic values for immune competence and 

explored the effect of these on fibre and dual purpose selection indexes for Merino sheep.  

 

MATERIAL AND METHODS 

Immune competence. Responses of the immune system can be broadly classified as being innate 

or adaptive with innate responses providing the first line of defence, which arise quickly and are 

broad in action, while adaptive responses provide a second line of defence and are slower to develop 

but more specific in their action. Further, adaptive immune responses are specifically tailored to the 

type of pathogen being encountered with antibody-mediated immune responses (AMIR) 

predominating upon exposure to extracellular pathogens and cell-mediated immune responses 

(CMIR) predominating upon exposure to intracellular pathogens. Overall immune competence, 

defined as a combination of AMIR and CMIR, has been demonstrated to be correlated with 

infectious and metabolic diseases in dairy cattle (Thompson-Crispi et al. 2012). Overall immune 

competence (IC) has been used as breeding objective trait in this study. 

Selection indexes. Breeding objectives were derived from the Sheep Genetics (2014) Dual Purpose 

Plus and Fibre Production Plus indexes. The breeding objective traits in the dual purpose (DP) index 

include the adult (a) expression of clean fleece weight (aCFW), fibre diameter (aFD), bodyweight 

(aWT), yearling eye muscle depth (yEMD) and number of lambs weaned (NLW). The breeding 

objective traits in the fibre index (FP) include aCFW, aFD, aWT, NLW and adult staple Strength 

(aSS). Selection criteria for both indexes include NLW and yWT, yCFW and yFD. Yearling staple 

strength (ySS) was a selection criterion for FP only, and yearling eye muscle depth (yEMD) for DP 

only. Traits were recorded on the selection candidates, sire and dam and half-sibs. 

To test the effect of including immune competence as a novel trait in the FP and DP 

indexes, IC was added as a breeding objective trait (DP+IC and FP+IC). Additional selection criteria 

were IC and its component traits CMIR and AMIR. 
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Table 1. Heritabilities (on the diagonal in bold), genetic (below the diagonal) and phenotypic (above the diagonal) correlations, 

phenotypic trait variance (VP), the economic value (EV in $) and standardized economic values (stdEV = EV* σp in $) for breeding 

objective traits of the dual purpose and fibre indexes (DP/FP and DP/FP+IC) 

 
Traits aWT aCFW aFD aSS NLW yEMD yWT yCFW yFD ySS IC AMIR CMIR 

VP 28.77 0.26 1.35 83.93 0.27 3.27 23.3 0.16 3.00 83.8 2.36 0.24 0.04 

DP EV 0.08 0.74 -3.44 -- 125.29 3.83 -- -- -- -- 1.40/2.02 -- -- 

FP EV -0.03 1.55 -13.74 1.57 126.96 -- -- -- -- -- 1.40/2.02 -- -- 

DP stdEV* 0.43 0.38 -3.99 -- 65.50 6.93 -- -- -- -- 2.15/8.98 -- -- 

FP stdEV* -0.16 0.79 -15.39 14.38 66.12 -- -- -- -- -- 2.15/8.98 -- -- 

aWT 0.44 0.29 0.08 -0.13 0.01 -0.08 0.56 0.50 0.17 -0.13 0.00 -0.02 0.01 

aCFW -0.15 0.50 0.22 0.28 0.00 -0.20 0.26 0.50 0.22 0.26 -0.01 -0.01 0.01 

aFD 0.02 0.28 0.67 0.01 0.02 0.02 0.13 0.22 0.7 0.35 0.05 0.06 0.04 

aSS -0.31 0.37 -0.03 0.35 0.00 -- 0.09 0.03 0.03 0.40 0.00 0.02 -0.02 

NLW 0.33 -0.47 0.01 0.15 0.07 0.10 0.02 -0.07 0.03 0.00 0.001 0.001 0.001 

yEMD -0.20 -0.11 -0.08 -- 0.28 0.33 0.83 -0.03 0.06 -- -0.01 0.03 0.00 

yWT 0.77 -0.09 0.22 0.17 -0.1 0.85 0.43 0.42 0.13 0.09 0.00 -0.02 0.01 

yCFW -0.15 0.80 0.15 0.14 -0.65 0.10 0.23 0.36 0.22 0.03 -0.01 -0.01 0.01 

yFD 0.03 0.15 0.80 0.26 -0.07 0.17 0.22 0.15 0.77 0.48 0.05 0.06 0.04 

yss -0.31 -0.14 0.15 0.80 -0.45 -- 0.17 0.16 0.27 0.40 0.00 0.02 -0.02 

IC 0.06 -0.15 0.31 0.21 0.001 0.00 0.06 -0.15 0.31 0.21 0.53 0.76 0.76 

AMIR 0.02 0.03 0.28 0.20 0.001 0.11 0.02 0.03 0.28 0.20 0.82 0.47 0.16 

CMIR 0.02 -0.24 0.20 0.12 0.001 0.00 0.02 -0.24 0.20 0.12 0.79 0.29 0.42 

*stdEV=EV*σp 
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Index calculations were performed using the MTIndex software 

(http://www.personal.une.edu.au/~jvanderw). The total dollar response and individual trait 

responses to selection were calculated per animal and per round of selection.  

Genetic and phenotypic variances, heritabilities and correlations for breeding objective traits 

and selection criteria are shown in Table 1 (Brown and Swan 2015; Purvis and Swan 1999; Huisman 

et al. 2008; Huisman and Brown 2008; Huisman and Brown 2009a; Huisman and Brown 2009b; 

Swan et al. 2008; Dominik and Swan 2016).  

Economic values. The economic value for IC was developed on the basis of the strong favourable 

correlation between IC with dag score post-weaning (rg=-0.55; Hine and Smith, CSIRO Agriculture 

and Food, 2016, preliminary estimates). Dags (faecal soiling of the breech) cause hygiene and 

contamination issues at shearing and slaughter. Correlations suggested that lower IC is associated 

with higher dag score, potentially leading to the need for an extra crutch throughout the year and 

prior to shearing and potential penalties when selling lambs, which can result in extra costs for the 

producer. Based on costs for crutching obtained from High Voltage Shearing Pty Ltd. in Armidale, 

NSW (pers. comm., 15 December 2016), two economic values were used. A simple ‘market crutch’ 

that requires only the area around the breech to be shorn was valued at $1.40/head, marked in the 

index abbreviation as “a”. A full crutch on a non-mulesed sheep was valued at the highest price 

$2.02/head due to the tendency of the extra wool on those animals to be more soiled and difficult to 

remove (“b”). Using these two values, the sensitivity of index responses to different emphasis on IC 

was tested (DP/FP+ICa and DP/FP+ICb). Economic values for the other breeding objective traits 

were obtained from Brown and Swan (2015). All economic values are summarised in Table 1. 

 

RESULTS AND DISCUSSION 

The inclusion of IC in the DP index (Table 2), increased total dollar response per animal and 

round of selection from $11.75 (DP) by 27% (DP+ICa) and 26% (DP+ICb) respectively.  

With a low economic value placed on IC (DP+ICa), an 8 micron decrease in aFD and an over 

30% increase in NLW was observed, which led to the substantial increase in total dollar response. 

The response in IC was slightly unfavorable. When the economic value for IC was increased, the 

moderate unfavourable genetic correlations between IC with FD and CFW significantly influenced 

index responses. As a result, with increasing economic weight on IC the response in IC increased 

only slightly and the response in aFD, which has a high economic value, was maximised. The 

response in aWT was unfavorable, but NLW was still greatly improved compared to DP. 

The total dollar response showed a small increase of $0.02 for the FP index with the inclusion 

of IC at a low economic weight (FP+ICa) and $0.21 at a high economic weight (FP+ICb) (Table 2). 

Compared to DP these increases were lower due to low individual trait responses. The inclusion of 

IC increased the emphasis on a FD, which has a high economic value in the FP index. However, this 

increased emphasis on aFD was balanced by aSS, which is unfavourably correlated with FD. Staple 

strength is as economically important as FD, but is not as heritable. The IC trait and its components 

(AMIR and CMIR) are correlated to both FD and SS. These competing interests are reflected in only 

small changes in all traits and a small increase in the total dollar response. 

The results showed that with the assumed economic values, no major changes were achieved in 

IC. The assumptions on the economic value for IC were simplistic but could be considered 

conservative as it did not take into account any decrease in animal health treatment costs associated 

with a variety of common diseases which may be realised as a consequence of improved IC. Also 

the influence of improved consumer confidence that could be expected from improving IC, and as 

a consequence animal welfare by reducing disease incidence and deaths, was not considered. The 

influence of these factors on the economic value of IC could be substantial.  
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Table 2. Standard deviation of the breeding objective (SDBO), total dollar response (SDIndex), 

index accuracy (Acc) and trait responses per animal per round of selection in the dual purpose 

(DP) and fibre production (FP) index without and with immune comptence at EV $1.40 

(DP/FP+ICa) and EV $2.02 (DP/FP+ICb) 

 
 SDBO SDIndex 

($) 

Acc aWT 

(kg) 

aCFW 

(kg) 

aFD 

(micron) 

NLW 

(no of 

lambs) 

yEMD 

(cm) 

aSS 

(Nktex)  

IC 

(stddev) 

DP 21.28 11.75 0.55 1.31 -0.19 -0.17 0.09 -0.12 -- -- 

DP+ICa 21.27 14.87 0.70 1.03 -0.13 -0.25 0.12 -0.12 -- -0.04 

DP+ICb 21.30 14.86 0.70 1.04 -0.13 -0.24 0.12 -0.12 -- 0.00 

FP 27.42 14.90 0.54 0.55 -0.11 -0.35 0.09 -- -0.56 -- 

FP+ICa 27.73 14.92 0.54 0.55 -0.11 -0.32 0.09 -- -0.50 0.00 

FP+ICb 27.73 15.11 0.55 0.55 -0.11 -0.32 0.09 -- -0.52 0.02 

 

CONCLUSION 

Improvement in overall immune competence in sheep is desirable for future production to 

improve welfare and reduce health costs. Here it was shown, that the inclusion of this novel trait in 

a sheep breeding framework that is highly production focused requires a full economic evaluation 

of immune competence to integrate it effectively in genetic improvement programs.  
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