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SUMMARY

With the advent of long-read sequencing technologies, and the rapid drop in the cost of short-read
sequencing, livestock geneticists have access to almost completely contiguous reference genome
sequences of similar quality to human and model organisms, and massive sequence level data on
variation amongst breeds and adapted populations. In livestock genomes, many protein-coding genes
are marked with placeholder names, their functional orthology to human or mouse genes is ambiguous
and the annotation of transcript diversity is sparse. Non-coding regulatory elements (promoters,
enhancers etc) and non-coding RNAs are even less well characterised, yet available evidence from
human genetics indicates that variants in these elements are enriched for trait associations. The
international FAANG (Functional Annotation of Animal Genomes, www.faang.org) consortium aims
to coordinate efforts to address the information gap (L. Andersson et al. 2015). Gene-editing
technologies, combined with sequence information, offers the promise of accelerated genetic gain
(Hickey et al. 2016). In this review, we consider some of our approaches to livestock genome
annotation.

INTRODUCTION

At the previous meeting of AAABG, Perez-Enciso et al. (2015) (Perez-Encisco et al. 2015)
reviewed the potential applications of sequence data to animal breeding; and talked of “biology-
informed sequence exploitation”. Since 2015, the cost of generating whole genome shotgun sequence
data has continued to fall. Thus, with the most recent genotyping platforms, the $1000 genome at 30X
genome coverage is not far from reality, and we and others are sequencing hundreds, and even
thousands, of animals from different breeds and different adapted populations in every livestock
species. The increased sequence depth increases the reliability of variant calling, including variants
that impact on the function of protein-coding genes such as indels, stop gains and severely disruptive
mutations (Boschiero et al. 2015, Telenti et al. 2016). These mutations are more prevalent in
populations than might be expected. In a remarkable study of human populations with high levels of
consanguinity, Saleheen et al. (Saleheen et al. 2017) reported exome sequencing of >10,000
individuals, and identified 49,000 rare predicted loss-of-function mutations of which 1317 were
homozygous in at least one individual. A subset was confirmed to cause functional changes in the
encoded protein, albeit clearly not lethal. An exome sequencing platform has been developed for pigs,
and its application similarly predicts significant prevalence of loss-of-function alleles (Robert et al.
2014). This is a potential resource for functional genomics, as well as animal breeding, since the
impact of such alleles can be confirmed by brother-sister mating or from prohibited homozygosity in
populations (if the impact is severe). We have initiated such as backcross project in chickens, where
we identified candidate loss-of-function alleles in a set of 10 founder pairs, and then mated their F1
offspring to expose homozygotes. However, even high impact functional variants are not necessarily
coding. Hoff et al. (Hoff et al. 2017) identified seven haplotypes that were relatively prevalent in
registered US Angus cattle, but were not observed as homozygotes, and used deep sequencing of >100
individuals to identify common variants within these haplotypes. None of the candidate causal
variants identified was present within exons.
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Another of the major impacts of deep sequencing is the improved detection of copy-number
variants and sequences that are not present in the reference genome. This is somewhat constrained by
the quality of the genome assembly (Couldrey et al. 2017) but the rapid improvement of livestock
genomes, driven by the FAANG consortium, will address this issue. Indeed, the contiguity of the new
goat genome, released earlier this year (Bickhart et al. 2017, Worley 2017), is approaching that of the
completed human and mouse genomes. The recent sequencing of 10,000 human genomes at 30-40x
coverage identified on average 0.7 Mb of sequence that was not present in the human reference
genome (Telenti et al. 2016). Copy number and structural (e.g. inversions/translocations) variants are
commonly associated with trait variation in all species. A recent study, which also reviewed some of
the earlier literature, identified multiple copy humber variants associated with domestication and high
altitude adaptation in the Chinese Yak (Zhang et al. 2016). Long read sequencing provides an
additional potential step-change in detection of structural variants, with an incomplete overlap between
the outcomes from short-read technologies (Couldrey et al. 2017). With all of this sequence/genomic
information, we have the potential to reverse the traditional information flow, and link sequence to
consequence. However, there are several major challenges to overcome.

Firstly, we need much more information about the function of individual genes and regulatory
sequences in a wider range of species. It is certainly the case that some functions are conserved across
species. The phenotypes associated with knockouts of protein-coding genes in mice can give insights
into likely functions and phenotypic consequences of loss-of-function in other species. Similarly,
detailed analysis of promoter and enhancer landscapes in the liver across 20 mammalian species
revealed substantial conservation of both regulatory elements and transcriptional outputs (Villar et al.
2015). Arguably, the liver has a rather generic “housekeeping” function in mammals that is not subject
to rigorous selection. By contrast, there are radical differences between mice, pigs and humans in the
response of innate immune cells to bacterial lipopolysaccharide (LPS) (Kapetanovic et al. 2012,
Schroder et al. 2012) or to glucocorticoids (Jubb et al. 2015), associated with gain and loss of
promoter and enhancer elements. It is these differences between species, and between individuals, that
are of particular interest to geneticists and developmental biologists.

Secondly, we need to find a way to take account of epistasis, which manifests as variable
penetrance. There are few knockout mutations in mice, or human genetic diseases, that do not exhibit
some measure of phenotypic variation that is apparently a consequence of gene-gene interactions, or
genetic background (Phillips 2008, Mackay 2014). Sometimes the mechanism can be disentangled
based upon biological knowledge. For example, the knockout of the macrophage-specific transcription
factor, PU.1, is mid-gestation lethal in homozygous PU.1 knockout inbred C57BI/6 mice, but when the
knockout allele is present in the homozygous state on a different genetic background, produces viable
offspring with a neutrophil deficiency. The PU.1 protein interacts with another transcription factor,
MITF, and a compound heterozygote (PU.1 +/-, MITF mi/+) phenocopies the PU.1 knockout (Luchin
et al. 2001). Efforts to model the impact of epistasis in GWAS analysis and genomic selection have
had limited success, in part due to the computational challenges (Stanislas et al. 2017). A subset of
variable penetrance results from genomic imprinting in mammals, where the apparent heritability of a
trait depends upon the parent of origin and reciprocal crosses do not produce the same outcome. The
analysis of the contribution of imprinting to estimated breeding values is also computationally
challenging (Nishio and Satoh 2015), but would be significantly less so if the set of imprinted loci and
their functions was known in each species.

Identification of causal variants has been described as the “holy grail” for quantitative genetics
(Perez-Encisco et al. 2015). Increased density of markers derived from sequence information, without
functional annotation, simply approaches the tyranny of statistics. The challenge is to develop strong
biological “priors” to prioritise variants that are more likely to be functionally associated with a trait.
Inclusion of such biological priors clearly has the potential to enhance the power of genomic prediction
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in complex traits (MacLeod et al. 2016). So, how far have we come since 2015 in generating useful
prior knowledge?

Figure 1. The transcriptional network of the sheep gene expression atlas dataset. Each node
represents a single transcript, the lines between them represent correlations (edges) and the
colours are shared by nodes that have correlated expression across the network (The graph is
comprised of 15,192 nodes (genes) and 811,213 edges, r =0.75, MCL.i = 2.2).
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TRANSCRIPTIONAL ATLAS PROJECTS

All of the processes that underpin development, growth, physiology and productivity depend upon
the functions of numerous gene products that act together to generate pathways, macromolecular
complexes, organelles, cells, organs and systems The set of genes required to deliver a cell-type, an
organelle or a functional complex must share transcriptional regulation, so that their products are
available in the correct place at the right time. If one samples the transcriptome of many different
organ and cellular systems that differ from each other, the levels of transcripts encoding products that
function together must be correlated with each other. The more physiological states that one samples,
the more stringently one can determine that a pair of genes shares strict coexpression. Since the
pioneering efforts that produced the Symatlas (now BioGPS, http://biogps.org) from sets of
microarray data from mouse and human cells and tissues, there has been an explosion of gene
expression “atlases” across multiple tissues in a number of species and within tissues across cell types
and developmental time in humans and mice. The principal of guilt by association, namely that one
can infer a great deal about the likely function of a gene product from its transcriptional neighbours,
was clearly fulfilled in analysis of the mouse BioGPS dataset (Hume et al. 2010). For example, the
entire set of genes encoding the lysosome was co-expressed, and specifically elevated in phagocytes.
Similarly, genes involved in the cell cycle, in protein synthesis, or in extracellular matrix, clearly
formed co-expression clusters because they are regulated activities and different cells and tissues
engage these pathways to different extents. The exception is the set of genes that is relatively
ubiquitously-expressed: the house-keeping genes. The housekeeping gene set also contains the
highest proportion of genes that lack informative annotation, a reflection of the focus of biologists on
differential expression. To identify and visualise transcriptional clusters in very large datasets, we
utilized the network-clustering tool Biolayout Express®®, now developed as Miru
(http://lwww.kajeka.com). One advantage of the consistency of commercial microarray platforms was
that it was possible to consolidate and integrate data from multiple laboratories, for example to
generate an atlas of gene expression in human cells (Mabbott et al. 2013), also available as a default
set on BioGPS.

The generation of transcriptional atlases for livestock species is more recent. We utilized
extensive EST data to design a comprehensive microarray for the pig, and created a transcriptional
atlas (Freeman et al. 2012). One example of the principal of guilt-by-association was the
identification of a comprehensive set of transcripts associated with mitochondrial oxidative
phosphorylation, and separation of the nuclear and mitochondrial-encoded transcripts (indicating that
their transcription is not perfectly correlated). A bovine expression atlas was generated based upon
tag sequencing of tissue from adult, juvenile and fetal tissues (Harhay et al. 2010) and subsequently
extended in a set of 18 tissues from a single animal by RNAseq (Chamberlain et al. 2015). More
recently, we have produced an extensive transcriptional atlas based upon direct sequencing of mMRNA
from six adult sheep as well as embryos and juveniles at various developmental ages
(bioRxiv132696). The animals were deliberately chosen as cross breeds between the reference Texel
(Jiang et al. 2014) and the Scottish Blackface. Figure 1 shows the overview of the transcriptional
network, which clearly segregates the transcripts into tissue, cell-type and process-specific clusters.
The latter clusters include a comprehensive set of genes involved in the cell cycle, protein synthesis,
oxidative phosphorylation and motile cilia. Note also the close proximity of liver and kidney cortex in
the network, indicating their similar expression profiles. We identified many transcripts encoding
enzymes associated with gluconeogenesis and amino acid metabolism that are shared between the
two organs. These data have also been made available on Biogps (biogps.org/sheepatlas). We are
also currently analyzing similar projects, albeit on a smaller scale (guided by transcript diversity
observed in the sheep) in commercial cross-bred goats, Indian and Mediterranean (the reference breed
for the current assembly of a water buffalo genome) water buffalo and broiler and layer chickens.
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These data together will produce a quantum leap in the analysis of transcript variants in each of the
species and have contributed to the various genome projects to support improved annotation.

The next phase of genome/transcriptome annotation is the identification of regulatory elements.
Several of the authors have had a long-term association with the FANTOM Consortium. The
consortium utilized Cap Analysis of Gene Expression (CAGE) to generate a promoter-based atlas of
gene expression in humans and mice (Consortium et al. 2014). CAGE, which is essentially genome-
scale 5’RACE, also detects the short transcripts that are produced by active enhancers (R. Andersson
et al. 2014) and the integration of information derived from detected promoter and enhancer activity
can be used to infer the relationship between the two. Enhancers and promoters generated by CAGE
sequencing were strongly correlated with similar elements detected by ChlP-seq analysis of the
location of acetylated and methylated histones including data from the ENCODE consortium. In the
analysis of a diversity of time courses of cell activation or differentiation, the transcriptional activity
of enhancers in the vicinity of inducible genes was increased transiently in advance of detectable
promoter activation (Arner et al. 2015, Baillie et al. 2017). The most recent FANTOM publication
integrated CAGE and RNAseq data to identify 27,000 long non-coding RNAs encoded by the human
genome, and to demonstrate that these transcripts derive primarily from enhancers. They further
demonstrated that the InNcRNAs that overlap trait-associated SNPs are expressed in cell types that are
relevant to the trait in humans. The RNAseq data we have obtained from livestock species also
greatly expands the diversity of IncRNAs identified and by inference, will contribute to the location
of likely trait-associated regulatory elements. The FANTOMSb data from humans and mice can be
usefully mapped across to other large animals such as pigs to identify conserved promoters and
enhancers (Robert et al. 2015), in the process supporting other evidence that the transcriptome of pigs
is substantially more human-like than that of mice.

APPLICATIONS OF TRANSCRIPTOMIC DATA IN GENETICS

SNPs associated with enhancers and promoters detected by the FANTOMS consortium were more
likely even than exonic SNPs to be associated with human disease susceptibilities (R. Andersson et al.
2014), mirroring evidence based upon identification of open chromatin detected as DNasel
hypersensitive sites (Maurano et al. 2012). More recently, genome-wide analysis of long range
interactions between distal enhancers and promoters in multiple human cell types provided further
links between regulatory variants and disease susceptibility traits (Javierre et al. 2016). The principle
can be extended further. Regulatory variation in sets of genes that each contribute independently to a
common pathway are likely to each contribute to a trait that depends upon that pathway. Consistent
with the proposal, it is possible to identify and quantify co-expression of RNAs from trait-associated
regions (bioRxiv, 095349) and from that information, to draw inferences about the likely underlying
biology and to identify additional candidate susceptibility loci. Based upon that principle, we formed
the hypothesis that genes involved in susceptibility to inflammatory bowel disease (IBD) were co-
expressed specifically in monocytes and regulated during their differentiation. We identified a set of
promoters that fulfilled that criterion and which were strongly enriched for associations with 1BD,
including >100 novel loci (Baillie et al. 2017).

The link between SNPs in regulatory regions and complex traits, of course has an intermediate
phenotype in the form of heritable variation in the level of the regulated transcript, so-called
expression quantitative trait loci (eQTL). Variation within such loci may act in cis or trans to produce
differences in transcript abundance. Most evidence of eQTL to date has relied on microarray profiling
of the same tissue or cell type from large numbers of individuals and conventional GWAS, or in
defined crosses, an approach that has been called “genetical genomics” (de Koning et al. 2007,
Martinez-Montes et al. 2017). Studies of human leukocytes have revealed that the large majority of
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transcripts detected on a microarray display detectable and heritable variation in expression (Fairfax et
al. 2014, Westra et al. 2015).

Sequence-based analysis of the expression of each allele in individual animals has the potential to
massively increase the power of detection of eQTL (Almlof et al. 2012), and this approach has
become substantially more straightforward with the feasibility of obtaining high depth coverage of
DNA and RNA sequences from the same animal(s). Chamberlain et al (Chamberlain et al. 2015)
utilized RNAseq data to demonstrate the pervasive allele-specific expression of genes in 18 tissues of
a single cow, including a surprising level of mono-allelic or parent of origin-specific expression and
tissue-specificity. The sheep genome consortium also noted pervasive mono-allelic expression in
transcriptome analysis of the pure-bred Texels (Jiang et al. 2014). In our own RNAseq data from
multiple species, we have deliberately chosen to analyse cross-bred animals, and sequenced a wider
diversity of tissues at greater depth than previous studies. One of the advantages of deep sequencing
is that unprocessed nuclear RNAs, and IncRNA are covered at sufficient depth to detect variation in
expression, and these non-coding regions have much higher density of SNVs (Barreiro et al. 2008).
The MBASED algorithm (Mayba et al. 2014) can be used to integrate expression estimates from
multiple SNV level RNAseq counts, to integrate allele specific expression (ASE) detection across a
locus. With sufficient sequencing depth, the analysis can extend into neighbouring regulatory regions
without the requirement for phasing information. We are currently utilizing this approach to identify
ASE in sheep, water buffalo, pig and chicken RNAseq datasets.

One of the applications of particular interest is to begin to understand the benefits of cross-
breeding or heterosis. The molecular basis for the benefits of cross-breeding is relatively poorly
understood, and much of the analysis comes from plants, rather than animals (Chen 2013). In the
sheep transcriptional atlas, we were able to integrate data from a smaller RNA-seq atlas derived from
pure-bred Texels, produced in association with the release of the sheep genome (Jiang et al. 2014). A
subset of transcripts was much more highly-expressed in the muscle and brain in the cross-bred
animals than in the pure Texel animals. If most trait variation is associated with transcriptional
regulation, heterosis presumably derives from some form of optimal contribution of the variant
expression alleles of each parent within the cell and tissues that control the trait. Combining data from
transcriptional networks and allele-specific transcription in cross-bred animals may eventually
underpin the prediction of cross-bred animal performance.

GENOME EDITING

Alongside the revolution in genome sequencing, genome editing technologies provide a second
revolution; the capacity to confirm predictive functions by altering the genome in model organism or
in the species of interest. However, genome editing is more likely to be deployed in farmed animal
species to modify or delete protein coding genes in order to generate animals with desirable genotypes
that cannot readily be established by conventional selective breeding. A couple of recent examples of
such desirable traits are resistance to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)
and germline ablated male pigs that can serve as vehicles to increase the delivery of gametes from
elite males (Burkard et al. 2017, Park et al. 2017). The use of primordial germ cells has expedited the
application of germ-editing in poultry (Taylor et al. 2017). Perhaps more challenging is the prospect
of accelerating genetic gain in breeding programmes by multiplex editing of functional variants in a
single generation (Hickey et al. 2016), or even the application of so-called “gene drives” (Gonen et al.
2017). That prospect is certainly on the horizon, but the consequences of editing enhancer elements in
mice have not been entirely predictable. Most genomic loci contain numerous apparently conserved
and functional enhancers, and many others that are gained and lost between species (Villar et al. 2015).
There is still some way to go before we can predict consequence from sequence in regulatory elements.
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CONCLUSIONS

The availability of high throughput sequencing and its decreasing cost combined with
development of new methods for modifying animal genomes has opened a wide range of approaches
that will enhance genome annotation in livestock animals and lead to greater understanding of
important production traits and processes such as heterosis.
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FROM BREEDING TO MARKET: OPPORTUNITIES WITHIN A DISRUPTED
FOOD CHAIN

A.W. Campbell and P.R Amer
AbacusBio Ltd., Dunedin, New Zealand

SUMMARY

Food production and traditional agricultural systems are in a state of change due to increasing
consumer demands and technological advances. In this paper, we outline international food trends
as a background for creating discussion for supporting the positioning of future animal breeding
programmes. We then present at a high-level, two case studies of programmes where breeding
indexes could, or have been altered, to achieve changes in traits previously unselected for. We
complete the paper with some discussion on the challenges of being closely aligned with industry
and what that means for developing capabilities of young scientists.

THE FAST CHANGING WORLD WE LIVE IN

“Beware of the incumbent’s chortle” was a line given in response to a discussion about
disruption. It is of course, quite probable that the Blockbuster’s former CEO chortled at the concept
of live-streaming, when they turned down the opportunity to buy Netflix.

Disruption is a term in regular use and the food industry is not immune. Insect-based proteins,
synthetic and plant-based meat and milk products, greenhouse gas (GHG) minimisation and
consumer beliefs associated with animal welfare are challenging traditional agriculture food
production systems. So too are these challenges creating opportunities and we, as scientists and
technologists, have an important role to play in working closer with industry to take full advantage
of them.

INTERNATIONAL FOOD TRENDS

Consumer power. Food brands have long-been established through clever marketing
campaigns and product positioning. However, consumers’ rising distrust of the food industry and
their ability to promote or undermine companies via social media has led to a change in the balance
of power. Because of this, consumers need to be at the forefront of research and development
strategies of companies and industries.

For companies and industries striving to differentiate themselves from commaodity producers, a
sticker or label on packaging is not enough to denote where a product is from and how it has been
produced. Layers of evidence as to how food has been grown and produced, fulfilling ethical,
welfare and environmental considerations, and a connected value chain are critical for commanding
premium food prices.

Food and health. A significant international food trend is the relationship between food and
health. This is led by Chinese consumers who have been described as “the world’s most health
conscious,” based on a long tradition of food-based medicines. In China, 73% of consumers are
willing to pay a premium for healthier products (12 points higher than the global average), preferring
products which treat common ailments, boost energy and strengthen immune systems (Boston
Consulting Group 2014).

Aligned with the food and health trend is an increasing interest in the concept of personalised-
food, and not just for humans. “Just Right by Purina” allows dog owners to order personalised-food
formulations for their dogs. The formulations are derived according to the dog’s breed, activity
levels, coat and skin condition and the state of their stools. Similarly, for humans, Soylent is an
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example of formulated foods designed for specific human nutritional needs. Large food companies,
such as Nestle with their “Choose Wellness,” programme, are investing significantly into this area.

The changing face of food retail. The way we buy food is changing which is important for the
delivery of foods in a personalised form. Factories and big companies are out of vogue. Consumers
want to feel a connection to growers and the rise in popularity of Farmers’ Markets is testament to
this. There are increased quantities of high-end food products being sold on-line directly, or via
meal-kit companies such as Blue Apron (United States) and My Food Bag (New Zealand). This
ability to directly market and sell to consumers means that smaller companies can offer niche
products profitably, opening-up opportunities for artisan growers.

Food as an experience. Younger consumers are increasingly seeking authentic and novel food
experiences, in preference to more traditionally sought fine-dining experiences. This creates
opportunities for producing novel food products derived from less traditional livestock cuts, such as
offals and from other species such as crickets. It is worth noting that Acheta domesticus -the humble
domestic cricket, is far better at converting ingested food into protein than cattle and crickets also
have far greater fecundity (1,200-1,500 offspring per female).

The concept of food as an experience, also generates opportunities associated with food-tourism,
of relevance to both Australia and New Zealand’s significant tourism industries which are connected
to our landscapes.

“You know things are changing in the food sector when you get gourmet nosh from a food truck,
when your beer comes bolstered with protein, and McDonald’s introduces a kale-enhanced
breakfast” (Keown and Brendish, 2015).

LIVESTOCK AS A SOURCE OF PROTEIN

Protein consumption is rising internationally, especially in emerging economies. Annual meat
production is projected to increase from 218 million tonnes in 1997-1999 to 376 million tonnes by
2030 (World Health Organisation). In response, emerging economies are fast-developing their own
sources of protein with livestock production programmes growing in efficiency and volume
throughout Asia and Africa.

In parallel, the role of ruminants in the food chain is increasingly being questioned as awareness
around climate change grows. In the future, we may see political trade ramifications for high-carbon
products (Ciochetto, 2016) and food producers will become more vulnerable to negative campaigns,
be they political or social.

Thirty per cent of Earth's land surface is already devoted to livestock production, a practice that
accounts for nearly 15% of global greenhouse-gas emissions (reviewed in Heffernan, 2017). Cows
are the seen as the worst environmental culprits, not only because they emit a lot of methane, but
because the production of beef uses vast quantities of water: 15,415 litres for a kilogram of beef
(reviewed in Heffernan, 2017).

Alternate protein may lead to a reduction in protein sourced from livestock but it is unlikely to
become an either/or situation. Livestock producers that position their products at the high-value end
of the spectrum will not be as challenged by alternate proteins as those who operate in the commodity
space. Fully-housed livestock, produced in commodity-style with high health and feed inputs, will
increasingly be shunned by consumers.

Adding-value to livestock products, should at a very minimum, encapsulate where the product
is from, how it is produced, and have sales channels which are different to traditional commodity
channels. By shifting more of Australasia’s production systems to this minimum value-add form
we would expect increased prices and reduced volatility of those prices. This is because consumers
exhibit a lower price sensitivity to products which are more expensive and further processed (Baiardi
etal., 2014). A major challenge in making this shift is to ensure that the increased costs of producing
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a high-value product are a sound investment in the market, because almost by definition, further
processing narrows the potential end-use for a product.

WEALTH OF DATA

Throughout the value chain, increasing amounts of data are being generated. Consumers are
wearing devices measuring heart rates and sleep patterns. At the other end of the value chain,
devices are under development for livestock to wear or be tracked by, and for land-based activities,
such as irrigation and nutrient monitoring (reviewed in King 2017).

We will be moving into an era where what we eat will be defined for us by what we have done
during the day, informed by internally and externally worn sensors. Similarly, farmers and animal
breeders will have access to unprecedented amounts of animal performance data to strive for greater
productivity with less impact on environments and creating connections with consumers.

Some of these data will have relevance for how we undertake breeding and genetic evaluation.
Scientists will have access to data from greater numbers of animals and for differing traits.
Traditional nucleus breeding programmes may be replaced.

In thinking about the types of capability required for positioning our industries for future success,
geneticists, as both biologists and mathematicians, are in a prime position to be data integrators:
adding value to inherently messy data by asking relevant questions and finding smart solutions to
form the base for new technologies and applications.

CASE STUDY ONE: THE POTENTIAL TO INCLUDE GREENHOUSE GAS
MITIGATION IN LIVESTOCK BREEDING INDEXES

Many livestock industries around the world are seeking good-news stories relating to
environmental impact. An obvious option to reduce absolute GHG levels is to reduce livestock
numbers, but this has major implications for production and economic well-being and as such, is
unlikely to be taken up, unless there is considerable compliance pressure and/or economic
alternatives.

An alternative is to reduce GHG intensity - GHG per unit of product. Under current selection
approaches, the drive to improve production efficiencies indirectly lowers GHG intensity year-on-
year. So far, modelling data has demonstrated that this is likely to be a positive news story, in that
current and historic selection efforts improve livestock production efficiency substantially, and this
reduces emissions intensity (Ludemann et al., 2011; Amer et al., 2017a; Amer et al 2017b; Quinton
et al., 2017a, Quinton et al. 2017b).

There is a more aggressive option available for reducing GHG emissions intensity of livestock.
This involves placing greater than current relative selection pressure on the traits that improve GHG
emissions intensity (GHG EI) the most, and correspondingly, less relative selection pressure on traits
that do not tend to improve GHG EI (Quinton et al (paper submitted to Animal) and Ludemann et
al., 2011). Itturns out that these indexes which extract more GHG El gains than purely farm profit
based indexes are typically efficient, in that significant improvements in GHG EI gains can be
extracted with only modest reductions in the farm profitability gains expected from selecting on the
modified indexes.

There is also a challenge in this approach in that placing more emphasis on the traits that reduce
GHG EI the most (for example litter size in sheep (Ludemann et al., 2011) and milk production in
dairy (through a dilution of emissions effect) are in reverse (Wall et al., 2010) to a directional shift
in breeding goals over past decades towards traits that make animals more functional and easy to
farm.

Efforts to develop novel selection criteria to improve GHG El, including feed intake
measurements, and either methane yield per unit of feed, and/or total methane yield per animal may
be hampered by genetic antagonisms with functional aspects of animals. Another challenge is the
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cost of either trait measurement of selection candidates, or the cost of implementing genomic
selection schemes, whereby the genotyping costs are more than offset by reductions in phenotyping
investment.

Incentives/compliance drivers for uptake. A driver for an increased focus on breeding to
reduce GHG emissions might come through audited supply chain systems. Auditing is required,
because of the antagonisms and costs discussed above, so that free-riders benefiting from the supply
chain story might otherwise skimp on compliance.

Interestingly, choice of breeding males by commercial farmers is potentially easier to audit than
many other GHG mitigating technologies and certainly more than any sort of actual farm GHG
emissions audit. This is because detailed databases already exist containing a substantial proportion
of breeding sector animals. If breeders were to record the commercial farm buyers of breeding
males, and/or semen, and submit these to an auditing body, then the ongoing genetic trend of the
commercial farm for genetic merit for GHG emissions intensity could be predicted accurately.
Occasional, or random checking, via DNA verification or genomic relationship predictions, could
be deployed at low cost to ensure accuracy of the system, and miss-reporting of sire purchases. The
steps required to develop such a system are quite feasible when compared with what will be required
to deploy and incentivise many other GHG mitigating farm technologies.

There are opportunities to link such GHG reduction genetic programmes with national
positioning programmes connected to product markets, such as Origin Green. Origin Green is an
Irish national sustainability programme implemented by Board Bia, the Irish Food Board and
supported by Government and private companies.

Origin Green is ostensibly a marketing effort, but the differentiation comes from the supply chain
(Shelman, 2016). The programme so far has seen 90,000 farms audited and carbon footprinted. At
manufacturing level, over 470 food and drink manufacturers, which represent almost 95% of their
total food and drink exports, have registered to take part in Origin Green. The opportunity therefore,
is for Irish producers to be incentivised to use GHG reduction indexes as part of a commitment to
Origin Green, striving for a subsequent value-increase for product off those properties.

CASE STUDY TWO: THE OMEGA LAMB PROJECT

Worldwide, there is a large (>$20 billion) and rapidly growing market for omega-3 and omega-
3-enhanced products, and a static or declining source of omega-3 from marine fish oils, prompting
concerns of shortages. Alternative sources of omega-3s are necessary to meet demand, particularly
in continental countries, like China, where there are large populations that do not eat fish regularly.
The European Food Safety Authority recommends a dietary intake of 250mg of EPA plus DHA
(eicosapentaenoic acid; C20:5n-3, docosahexaenoic acid; C22:6n-3), a day. The estimated average
daily intake of EPA and DHA in China for example, is just 49mg. This deficiency has prompted
the Chinese Nutrition Society to review its dietary guidelines in order to increase the nation’s intake
of DHA and EPA fatty acids. Asaresult, there is now a substantial volume of research investigating
the enhancement of omega-3 levels in beef, lamb, pork and chicken using alternative feeds and feed-
lot systems. These feed systems use fish, algal or ALA (alpha-linolenic acid; C18:3n-3) rich seed
supplements to enrich the omega-3 composition and, recently, small volumes of omega-3 enhanced
beef, pork and chicken products have become available in markets.

The Omega Lamb project, led by red meat processing company, Alliance Group and sheep
breeding company, Headwaters, was initiated in 2011, with a view to developing a naturally
differentiated lamb product. The aim of the project has been to develop value-added lamb products,
high in omega-3 and also incorporating other meat quality attributes and environmental-
management philosophies. In the early years of the programme, this involved analysing over 300
sire lines and 20 forage lines for their impact on fatty acid composition.
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Enhanced omega-3 levels in lamb have been achieved through a combination of selective
breeding - using assessment of correlated traits related to intramuscular fat levels - and diet - using
a chicory-red clover finishing system. This is the basis for the development of what is now a fully
commercial pipeline of products. High-health lamb products are being marketed for their health
attributes and have been endorsed as high quality by chefs and independent consumer taste panel
analyses. These products are currently being sold for a premium in high-end New Zealand
restaurants and in Hong Kong. This season, in the first year to market, product from 30,000 lambs
has been processed, with the target of processing 60,000 lambs in year two. From here, key
challenges for the programme are associated with quality control and scaling to a larger volume of
product.

A key driver for the success of the Omega Lamb Project has been the early involvement of people
representing all parts of the value chain. This included scientists, livestock breeders, commercial
farmers meat processors and marketers. Early consumer studies in three markets, the United
Kingdom, Germany and China, were also important in informing where the value opportunities lay.
This big picture and value-chain commitment has been challenging to manage, but has been critical
to the programme’s success, throughout the research and development phases and now the
commercialisation phase.

CHALLENGES OF MARKET-DRIVEN BREEDING PROGRAMMES

There are many examples of market-driven breeding programmes, some of which have had
limited success. Green-wash, is a term used to describe products taken to market and sold under an
undeserved environmental banner. As we stated earlier, consumers have become cynical and will
question the positioning of products by companies. Products and companies that are seen as
inauthentic will be quickly brought-down via social media. One of the challenges with connecting
breeding programmes to market is to ensure that there is legitimacy behind market claims, for
example claims of superior quality. In breeding terms, such legitimacy will come from a concerted
and multi-year strategic investment into understanding traits and the time taken in selection to make
a measurable difference. When such programmes have failed, a factor has been that the expectations
of progress have not been managed from breeder to marketer and marketers have gone out too early
with product claims. Additional challenges include those of scaling breeding programmes to
produce enough product for profitability, managing quality throughout the value chain and when
demand is created in-market, managing year-round supply and or consumer/retailer expectations
around product availability.

There are successful programmes that are managing, or in the process of managing these
challenges, some additional examples include the Ora King programme (premium eating quality
salmon) and Lanaco (wool-based air filtration face-masks). In these programmes, as in the Omega
Project, success is underpinned by a willingness to collaborate by geneticists and industry players
throughout the value chain.

CAPABILITY

Scientists need to have a genuine interest in solving industry challenges in order to engage
successfully with industry. This requires a deep understanding of company and industry drivers. It
is hard to develop this in a purely academic environment and scientists should be encouraged to
spend considerable time outside of that environment, to the point of spending periods of time
embedded in companies or industry organisations. Such time is invaluable for developing
relationships and understanding why things are never as simple as they seem in terms of
implementation of longer-term research and development strategies.
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Performance drivers for scientists within academic environments are often in conflict with such
an approach and science organisations need to strive to develop new, or align existing performance
measures with such an approach.

Finally, in the experience of these authors, there is tremendous satisfaction at playing a role
bringing science and industry together. Itis our view that this can be done in a way which maintains
scientific valour and integrity and most importantly, makes a considerable impact in taking
industries forward in a changing food environment.
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SUMMARY

Emerging inherited diseases can cause numerous issues for producers, including productivity
loss, profit loss and animal welfare problems. Under-reporting of emerging inherited diseases can
result in difficulties associated with identifying and managing these diseases. The development of
a research centre between the University of Sydney and Elizabeth Macarthur Agricultural Institute,
NSW Department of Primary Industries is a current collaborative effort to encourage the
submission of suspected inherited disease cases. Previous collaboration has resulted in the ongoing
investigation of 10 inherited diseases using SNP-based homozygosity mapping and next
generation sequencing to identify positional candidate genes and causal mutations. The long-term
aim is to formally develop a research centre that allows independent investigation of emerging
inherited diseases in livestock that builds upon current joint research.

INTRODUCTION

Emerging inherited diseases within Australian livestock can often go unreported, either
because they are misdiagnosed as non-inherited diseases or are not reported due to concerns of
profit loss and reputation damage. Not reporting suspected inherited disease cases can lead to a
loss of valuable sample resources and a lost opportunity to characterise the phenotype(s), thus
causing a delay in investigating or monitoring these diseases. Without the assurance of a robust
genotyping test to identify heterozygous individuals, the management of autosomal recessive
inherited diseases can become problematic, especially if detailed pedigrees are unknown for at-risk
populations (Man et al. 2007).

The under-reporting of suspected recessive inherited diseases can contribute to the inadvertent
dissemination of deleterious alleles throughout populations. If a deleterious allele can be traced to
a common ancestor within a prominent sire line, all offspring are at risk of being heterozygous for
the deleterious allele and only a DNA test will be able to accurately identify true heterozygous
animals. Emerging inherited disease monitoring and the implementation of management programs
to avoid carrier by carrier matings are important for reducing the number of affected progeny born,
as well as mitigating any production and economic losses. The importance of these management
programs has been shown in the case of brachygnathia, cardiomegaly and renal hypoplasia
syndrome in Merino sheep (Shariflou et al. 2013), where breeding programs have reduced the
number of affected progeny born (Shariflou, personal communication).

Researchers at the University of Sydney and the Elizabeth Macarthur Agricultural Institute,
NSW Department of Primary Industries (EMAI) each have a longstanding history in investigating
inherited diseases in Australian livestock and have recently started to collaborate on numerous
research projects. So far, 10 inherited diseases are being investigated and are likely to be inherited
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via a recessive mode of inheritance: congenital mandibular prognathia (CMP) in Droughtmaster
cattle, pulmonary hypoplasia with anasarca (PHA) in Persian sheep, Niemann-Pick type C disease
(NPC) in Angus cattle, congenital blindness (CB) in white Shorthorn cattle, cervicothoracic
vertebral subluxation (CVS) in Merino sheep, a new variant of cardiomyopathy woolly haircoat
syndrome (CWH) in Hereford cattle, new variants of ichthyosis fetalis (IF) in Hereford and
Shorthorn cattle, suspected cases of congenital contractural arachnodactyly (CCA) in Murray Grey
cattle, ovine dermatosparaxis (OD) in Merino sheep as well as the previously reported
brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS) in Merino sheep (Shariflou
et al. 2013).

A SNP-chip based homozygosity mapping approach and next generation sequencing is
described with an aim to identify positional candidate genes, identify causal mutations and develop
diagnostic DNA tests. The long term aim resulting from these collaborations is to develop an
independent centre where producers and veterinarians can report and submit samples of suspected
inherited disease cases. The centre will follow a similar approach to previous studies conducted
and will benefit the Australian livestock industries through increased awareness and acceptance of
reporting.

MATERIALS AND METHODS

In current collaborative research projects, SNP genotyping was performed by the Animal
Genetics Laboratory (University of Queensland, Gatton, Australia) and Australian Genome
Research Facility (Westmead, Australia) (Table 1). Sliding windows of 25, 50 and 100 SNPs were
used to identify runs of homozygosity (ROH) for all affected animals using the bovine UMD3.1
genome assembly and the ovine Oarv1.0 genome assembly. ROH were analysed using PLINK
(Purcell et al. 2007) and were considered to be regions of interest if these regions were shared by
all of the affected animals and not with any of the carrier and control animals. These regions were
scanned for positional candidate genes based on gene function.

Table 1. Number of affected and carrier DNA samples sent for SNP chip genotyping and
regions of homozygosity, including species specific OMIA ID

Disease OMIA ID! Breed Affected SNP Region of interest
[Carrier  chip

Cervicothoracic 000077-9940  Merino 14/2 SNP50°>  OAR10

vertebral sublaxation

Pulmonary hypoplasia 000493-9940 Persian 5/5 SNP502 0OAR1,3,4,6,7,9,17,

with anasarca 25,26

Cardiomyopathy and 000161-9913 Poll Hereford 2/0 SNP803 BTA1,4,6,12,15,24,

woolly haircoat 25

syndrome

Congenital blindness - Shorthorn 2/3 SNP803 BTA5,14,16,22,24

Congenital contractural ~ 001511-9913  Murray Grey 5/5 SNP80®  BTA21

arachnodactyly

Congenital mandibular - Droughtmaster ~ 9/4 SNP80°  BTA26

prognathia

Ichthyosis fetalis 000547-9913  Hereford 1/3 SNP80®  multiple

Niemann-Pick disease - Angus 212 SNP803 BTA3,4,16,24,29
OMIA http://omia.angis.org.au, - indicates no species specific OMIA ID. 2SNP50 = Illumina®

OvineSNP50 Genotyping BeadChip (CA, USA). 3SNP80 = GeneSeek® Genomic Profiler Bovine HD Chip
80K chip (Neogen, NE, USA).
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Sanger sequencing of select candidate genes was commenced but was cost and labour
intensive. Next generation sequencing (NGS) of affected animals for CMP, CVS, PHA and
BCRHS using the Illumina HiSeq™ X Ten sequencing platform was performed by the Kinghorn
Centre for Clinical Genomics (Garvan Institute of Medical Research, Darlinghurst, Australia)
through the Ramaciotti Centre for Genomics (University of New South Wales, Sydney, Australia)
with 150bp paired-end reads at 30X coverage (Table 2). This NGS data has been aligned to either
the bosTau8 or oviAri3 reference genome assemblies and will be analysed for genetic variants.
Samples of affected animals for IF, CWH and OD are undergoing sequencing using an in-house
Illumina HiSeq® 3000 sequencing platform in Switzerland (Table 2).

Table 2. Number of affected DNA samples for next generation sequencing

Disease Breed Affected Expected % of sequences with
coverage mean Q>30
Brachygnathia, cardiomegaly and renal ~ Merino 1 30X 85.84

hypoplasia syndrome

Cardiomyopathy and woolly haircoat Poll Hereford 2 20X In Droaress
syndrome prog
Cervicothoracic vertebral sublaxation Merino 2 30X 92.16
Congenital mandibular prognathia Droughtmaster 2 30X 86.58
Ichthyosis fetalis Hereford 1 20X In progress
Ichthyosis fetalis Shorthorn 1 20X In progress
Ovine dermatosparaxis Merino 2 20X In progress
Pulmonary hypoplasia with anasarca Persian 2 30X 90.17

RESULTS AND DISCUSSION

Homozygosity mapping has successfully revealed and/or excluded positional candidate genes
for all of the inherited diseases currently being investigated (Table 1; Shariflou et al. 2013;
Tammen et al. 2016). The known mutation for CCA in Angus cattle was confirmed to be present
in the Murray Grey cattle with suspected CCA. Validation of a genetic variant in a positional
candidate gene for NPC is ongoing. Partial Sanger sequencing of positional candidate genes for
CVS, PHA, CMP and CWH did not reveal any disease-causing mutations and affected animals
were therefore re-sequenced using NGS. Previous mapping of BCRHS did not identify a clear
positional candidate gene and an affected animal sample was submitted for NGS. Known
candidate genes for CWH and CB were excluded and alternate candidate genes need to be
investigated within the regions of interest identified (Table 1). Strong candidate genes exist for IF
and OD, as these diseases have been previously characterised in different breeds (Charlier et al.
2008; Zhou et al. 2012). The affected animals tested negative for the known disease causing
mutations and were re-sequenced due to suspected genetic heterogeneity.

Preliminary quality control analysis of the NGS data is positive with per base sequence quality
determined by a Phred score of Q>30 ranging from 85.84% to 92.16% (Table 2) with no over-
represented sequences identified. After aligning data to the bosTau8 or oviAri3 genome
assemblies, allelic variations including SNPs, indels and structural variants will be identified in the
regions of interest previously identified, with a focus on positional candidate genes identified by
homozygosity mapping.

The results from these studies indicate that SNP genotyping and homozygosity mapping
methods are highly effective in identifying positional candidate genes for a range of disorders even
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if sample sizes are small and phenotypes are poorly defined. Genome wide SNP genotyping and
homozygosity mapping approaches have successfully identified candidate genes and causal
mutations in a range of recessive inherited diseases in cattle, including ichthyosis fetalis in
Chianina cattle (Charlier et al. 2008). The inclusion of NGS data to identify allelic variations will
allow for several runs of homozygosity identified through homozygosity mapping to be further
investigated.

CENTRE CONCEPT

The methodology framework and results described in the current research projects between the
University of Sydney and EMAI demonstrates the success of the working relationship between
both groups. The concept of an independent research centre geared towards the molecular
characterisation of emerging inherited diseases in livestock could provide a central point of contact
for veterinarians, breeders, producers and breed societies. It has the potential to increase
confidential reporting of suspected cases and provide research services with the aim to rapidly
develop low-cost diagnostic tests based on frameworks that are already implemented at both
institutions. The availability of diagnostic DNA tests will allow for informed breeding decisions to
be made to avoid potentially devastating profit loss and animal welfare issues.

The centre will aim to publish validated results which will increase awareness for the role of
emerging inherited diseases within Australian livestock populations. The future development of
the centre will be focussed on developing a stream-lined research and diagnostic service that may
involve additional research and industry groups. The key driving factor behind successfully
developing an independent centre will be the collaborative relationships and shared resources
between numerous research groups to encourage greater surveillance of emerging inherited disease
in livestock across NSW and nation-wide.
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SUMMARY

One of the barriers to the adoption of Australian Breeding Values (ABVS) is not having
evidence that high genetic merit dairy cows actually contribute more to farm profit in practice.
Using historical financial data collected as part of the Dairy Farm Monitor (DFM) Project, and
historical cow production, health and mating records, a method was developed to compare the
estimated contribution to farm profit of cows of differing genetic merit. High genetic merit cows
contributed between $150 and $235 per cow more to farm profit each year without compromising
their productive life, or incurring higher breeding or mastitis treatment costs.

INTRODUCTION

Although the Australian dairy industry is making genetic progress, the rate of actual genetic
gain, $8/year (=0.1 genetic standard deviations) increase in the Balanced Performance Index (BPI),
is less than half of what is theoretically feasible. Under optimal conditions, genetic gain is
projected to increase between 0.21 and 0.5 genetic standard deviations per year for progeny-testing
and genomic selection respectively (Schaeffer 2006). The ImProving Herds project was
established with the goal of improving farm profit through demonstrating the value of genetics and
herd improvement in the dairy industry, a key goal recognised in the national Herd Improvement
2020 Strategy. Dairy Australia recommended that increased focus be placed on case studies and
regionally specific extension activities to increase knowledge, trust and use of genetic tools in the
dairy industry. To incorporate this suggestion, the ImProving Herds project is centred around 34
focus farms.

An across herd study of Irish dairy herds (n= 1131) found a 1 unit increase in the Economic
Breeding Index was associated with a €1.94 (= AU$2.76) increase in net margin per cow, after
adjustment for year, stocking rate, herd size and purchased feed (Ramsbottom et al. 2012). This
value was very close to the €2 increase in net margin per cow predicted. The Australian dairy
industry is not suited to an across herd economic analysis due to climatic variability, diverse
feeding and management practices and variability in milk payment systems which exacerbate
between herd variation in economic performance. To control for this variability, we elected to
perform a within herd analysis, with focus farms from the ImProving Herds project as case studies.

The aims of this study were to 1) develop a method to calculate the contribution an individual
cow makes to farm profit over her lifetime, and 2) investigate the relationship between cow
genetic merit, profit and performance at the individual farm level.

MATERIALS AND METHODS

Two historical and independent databases were used for this study of 3 Victorian dairy farms:
1) the DFM database; the DFM project is a joint initiative between Agriculture Victoria and Dairy
Australia which annually collects and analyses detailed financial and farm production data from
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dairy farms, and 2) DataGene; the national database of cow production, pedigree and ABV
records. Within-herd long term averages over the 2008 to 2016 financial years, inclusive, were
calculated for farm financial data, adjusted to present day values, and herd production data. All
herds had cow lactation, health and mating records and at least 2/3 of cows had ABVs. To be
included in this analysis, a cow’s entire productive life had to fall within the 2008 to 2016
financial years, inclusive.

The individual contribution that each cow made to farm profit over her lifetime (Cow$) was
calculated using the equation:

COW$ = $milk + $calf + $cull - ($rear + $feed + $mastitis + $repro + $herd)

Lifetime milk income ($mi) was calculated by multiplying total milk solids (MS) by average milk
price ($/kg MS). Income from calf sales ($car), and costs of mastitis treatment ($masitis) and animal
mating ($wepro) Were calculated by summing the number of incidences of each event and
multiplying by the dollar value, in $ per cow, of one occurrence of that event. A cow’s salvage
value ($cun) was assumed to be the average within-herd cull cow price unless she was recorded as
dead, then $cui was $0. If more than 12 months had passed since the cow was last seen in the herd
she was assumed to have been sold. The initial investment in rearing the cow to the point of
entering the milking herd ($rear) Was assumed to be $1606 (Byrne et al. 2016). Feed costs were
calculated by multiplying the within-herd average cost of feed consumed ($/Megajoule of
metabolisable energy, $/MJ ME) by each cow’s energy requirements. Cow energy requirements
were calculated using the equations in CSIRO (2007). They accounted for cow age and breed,
lactation and pregnancy records and herd level information about distance walked each day, farm
topography, liveweight and condition score loss during lactation. Dairy and general herd health
costs ($nera) Were assumed to be proportional to the cow’s productive life. Day 1 was taken as the
date of first calving. To account for discounting over time, all elements of the profit equation were
calculated in 365 day periods, a 5% discount rate applied and then summed together.

Cow ABVs are breed specific. The 3 herds had Holstein (Herd C), Jersey (Herd A) and mixed
Jersey and Holstein (Herd B) cows. DataGene presents breed specific genetic evaluations (with
different bases for each breed), so the original solutions were obtained (from multi-breed models)
and rescaled using the Holstein ABV parameters, enabling a within-herd, but across breed analysis
to be used. The BPI is the Australia dairy industry’s main index. It was developed using a bio-
economic model to balance improvements in longevity, health, type, fertility and production to
maximise farm profit (Byrne et al. 2016). For this study, within each herd each cow was classified
into two sub-herds, either low or high BPI based on whether she was below or above the median
BPI for her contemporary group; herd and year of first calving. A linear model weighted by cow
productive life (in days) was used to test for differences in annualized physical and financial
measures of cow performance in the low and high BPI sub-herds. This analysis was performed
separately for each herd. The results below are presented as the estimate of the difference between
the two sub-herds within each of the 3 herds from the weighted linear model.

RESULTS AND DISCUSSION

In all 3 herds, splitting the herd based on median BPI resulted in significant (p<0.05) differences in
ABYV between the high and low BPI sub-herds (Table 1). The difference in BPI between the two sub-
herds ranged from $78 to $116. All high BPI sub-herds had significantly (p<0.001) higher BPI, milk
production and survival ABVs than the below BPI sub-herds (Table 1). Two out of three high BPI
sub-herds also had significantly higher cell count ABVs and lower fertility ABVs.

Cows in the high BPI sub-herds produced significantly (p<0.05) more litres of milk, and kilograms
of fat and protein each year than their low BPI counterparts (Table 2). All high BPI sub-herds tended
to have cows with a longer productive life, but this difference was only significant (p<0.05) for 1 herd.
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Table 1 Estimated difference (s.e) in ABVs between high and low BPI sub-herds from
weighted linear model. Significance of p-value (NS >0.05,* = <0.05, ** = <0.01, *** = <0.001)

Herd BPI Protein Milk Fat  Cell count Fertility Survival
A 78 (5™ 10(1)™ 269 (7)™ 17 (2™ 3N o@WN 20
B 94 (6)™ 13(1)™ 376 (66)™" 18(2)™ 6()" 1@ 20
C 116 (4)™ 14 ()™ 340 (45" 21(2™ 3" S () N (0)

Table 2 Estimated difference (s.e) in average physical parameters between cows in high and
low BPI sub-herds from weighted linear model. Significance of p-value (NS>0.05,* = <0.05,
** = <0.01, *** = <0.001)

Calving Lactation

Herd Milk Fat Prot _Productive interval _length No. calves
(Liyr)  (kglyr) (kglyr) life (months) (days) (days) (calveslyr)
A 434 (154) 26(6) 19(5) 4 (3) -11 (10)  1(10) 0.0 (0.0
el Fkk Hkk NS NS NS NS
B 411 (131) 20(5) 19(4) 5(3) 22(16) 19(14) 0.0 (0.0
w* wrx ok NS NS NS NS
C 265(125) 27(4) 19(4) 4(2) 34(10) 25(8) -0.1 (0.0)

All high BPI sub-herds were significantly (p<0.01) more profitable, with the average difference
ranging from $150 to $235 per cow/year (Table 3). The main source of this difference was greater
yearly milk income, with cows in high BPI sub-herds generating on average between $185 and $258
more income from milk sales each year. Although feed costs were higher in the high BPI sub-herds,
the extra cost of feed ranged from $30 to $42, which was more than compensated for by additional
milk income. Increases to milk income were achieved without decreasing ,and in one case
significantly (p<0.05) increasing, the average productive life of the high BPI sub-herds (Table 2) and
without significantly (p>0.05) increasing mastitis costs (Table 3). This finding goes some way to
dispel the widely-held belief that high producing animals break down earlier and are more prone to
mastitis. Although cows in high BPI sub-herd C had significantly (p<0.001) longer calving intervals
and fewer calves per year (Table 2), they also had significantly longer lactations (p<0.01) and a
tendency (p=0.10) for lower Al costs each year.

Table 3 Estimated difference (s.e) in the contribution each cow makes to profit (Cow$) and
Cow$ components between high and low BPI sub-herds from weighted linear model.
Significance of p-value (NS >0.05,* = <0.05, ** = <0.01, *** = <0.001)

Income ($/yr) Costs ($/yr)
Herd Cow$ Milk Calf Feed Al  Preg Mastitis Rearing
($/yr) test
A 178(50) 208 (51) -2(4) -42(16) 6(4) 0() -3(3) 52 (44)
Hkx ok NS * NS NS NS NS

B 150(49) 185(43) -7(4) -34(12) -4(4) 00 -3(3) 55(39)
*x s NS *x NS NS NS NS

C 235(40) 258(49) -10(2) -30(12) 6() 0(0) 1(3)  31(29)
e ok ok * NS NS NS

NS
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At the national level the regression of profit and BPI is expected to be a $1 increase in profit
for every unit increase in BPI (Byrne et al. 2016). In the three case study herds, the ratio between
Cow$ and BPI was higher than this at $2.28, $1.60, $2.03 for herds A, B, C respectively. This
differs from Ramsbottom et al. (2012) whose €1.94 (=AU$2.76) increase in net margin per cow
was very close to the expected increase of €2.00. A possible reason is that the Victorian herds in
our study are not representative of the national average, whereas Ramsbottom et al.’s (2012) larger
study of 1131 herds better captures the national variation in Irish dairy herds. An indication this
may be the case is that average feed cost for the herds in our study ranged from $0.016 to $0.022/
MJ ME whilst the national average purchased feed cost is $0.025 /MJ ME (Byrne et al. 2016).

The phenotypic records that were used to calculate Cow$ have also been used in cow ABV
estimation. An alternate approach that uses ABVs derived from parent average or genomic
prediction could also be used. A parent average analysis was conducted, with similar results
obtained. Differences in Cow$ between the sub-herds selected based on parent average BPI were
significant (p<0.05) in two herds and approached significance (p<0.1) in the third herd. In
choosing which set of results to present, the end goal of the ImProving Herds project needs to be
considered. The goal of the ImProving Herds project is to increase knowledge, trust and usage of
genetic tools, such as ABVs and the BPI index, in the Australian dairy industry. For the purposes
of demonstrating that ABVs “work” to farmers it is therefore most relevant to use the ABVs in the
format they appear in existing industry tools.

This analysis required in depth historical financial, pedigree, performance and management
information from the case study herds which is not available on all focus farms to such a high level
of detail. A simplified approach using regional historical financial information will enable a
similar analysis of the project’s 34 focus farms, and potentially other dairy farms, who have cow
ABVs and accurate lactation records. The transferability of the approach used here to other
livestock species will be determined by the availability of detailed phenotypes for key contributors
to farm profit and validated financial records.

CONCLUSION

Using an independent financial data source, the DFM project, it was successfully shown that
the assumption made at the national level about the positive relationship between cow genetic
merit and cow contribution to farm profit holds true at the individual farm level. Although high
genetic merit animals have higher feed costs, these are more than compensated for by greater milk
income. Furthermore, our analysis indicates that high BPI cows do not have a shorter productive
life, nor higher mastitis incidence or mating costs. These case studies provide the opportunity to
contribute to localised extension activities and help build the dairy industry’s trust, knowledge and
use of ABVs.
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THERE IS NOTHING ROUTINE ABOUT ROUTINE TESTING. A PERSPECTIVE
FROM THE UNIVERSITY OF QUEENSLAND’S ANIMAL GENETICS LABORATORY

R.E. Lyons® and S. Buttsworth*
The University of Queensland, School of Veterinary Sciences, Gatton, QLD 4343, Australia.

SUMMARY

The following article is a reflection on current trends and challenges in genetic testing across the
livestock sector, particularly the cattle industry, from the perspective of a significant genetic testing
laboratory based at The University of Queensland.

INTRODUCTION

Much has changed in genotyping technologies since The University of Queensland’s Animal
Genetics Laboratory (AGL) was first established in 1985. While cattle makes up the single largest
species tested at AGL, we also cater for sheep, alpaca, goat and pigs, as well as services and research
for the aquaculture industry, fisheries and wildlife ecology research groups. Below are insights into
the operations of a successful genetics laboratory.

AGL DOES MUCH MORE THAN SIMPLY GENOTYPE CATTLE.

AGL serves a very wide client base, ranging from research organisations to breed societies,
pastoral companies and small to medium-sized livestock producers. Additionally we provide support
to the Gatton-based research communities, state police services and others. Hence, it isa requirement
for AGL to be both nimble and adaptable. Australian farmers are a unique clientele operating a range
of diverse production systems in different terrains and producing cattle for various markets, all
whom have specialised requirements and expectations.

Therefore the range of services provided needs to be multi-faceted. While for some clients the
experience may be purely transactional (samples in, results reported), many others are looking for a
more personalised & ongoing service. AGL’s clients are country people that appreciate the ability
to discuss testing options and interpretations. In many cases AGL staff have built both rapport and
understanding of the herds of many clients, Genotyping results are often merely the beginning, or
continuation of, a long and prosperous relationship. In many cases, AGL retains critical herd-specific
knowledge that spans many years, and many property managers’ tenures.

GROWTH/MARKET TRENDS

The number of samples AGL receives has grown considerably (Figure 1). Looking at the last 5
years (2011-2016) alone, the growth in cattle samples, as measured by case numbers assigned per
annum, has averaged 13.4% per annum. This is actually an underestimate of testing volumes given
that in the last year or 2 there has been significant client-driven demand for retesting of animals
already in the system, and these are not captured in Figure 1.

It is also instructive to look at testing trends over this period. From 2012 - 2016 the number of
samples processed on microsatellites (MiP) has remained relatively stable at AGL, excluding a
larger than normal demand in 2012 (Figure 2). During this time there has been a rapid increase in
the use of genomics and SNP-base parentage (SEQ) requests. In the case of the GeneSeek Genomic
Profiler low-density BeadChip (GGPLD), usage was initially for research projects, but the steadily
increasing demand for the assay in 2015 and 2016 is primarily due to increased demand from
livestock producers.
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Figure 1. Cattle samples received per full year 1993 — 2016
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Figure 2. Count of parentage and genomic testing at AGL 2012-2016.

THE CSI EFFECT

The Crime Scene Investigation (CSI) effect is any way in which the exaggerated portrayal of
forensic science on crime television shows influences public perception (Cole and Dioso-Villa
2007). It is very relevant to those working in customer-facing roles within the scientific profession.

The CSI effect manifests itself in a multitude of ways at AGL but most commonly in regards to
unrealistic expectations of turnaround time or the amount and quality of sample that is required.
When parentage does not immediately resolve, it is often assumed that AGL can simply run it against
everything in the database to identify the correct parent. This not only assumes that the sire or dam
is ‘in the system”, but also that AGL has the resources to develop the equivalent of a National DNA
Data Bank for Australian Cattle and that sufficient markers are available to discriminate every
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individual. It is important to get the message out to all users and potential users of genetic and
genomic testing services that ‘real science’ does not happen this way.

PARENTAGE CHALLENGES

From the parentage viewpoint, northern herds tend to be more complex than southern herds. This
is due to a number of factors including sire-only parentage, larger overall herd and parent lists,
difficulty in providing complete sire lists and a greater chance of uncaptured parents. There are also
significant logistical challenges in providing resubmissions for samples that fail genotyping or
produce anomalous results.

Success rates of northern parentage verification (PV) analyses can still be maximised, despite
these aforementioned constraints, with open and frequent communication between AGL staff and
the client. The PV success rate of a large northern herd that used this tactic was considerably
improved over a 3 year period (Table 1).

Table 1. Parentage verification success rates for a large Northern herd

Analysis 1 Analysis 2 Analysis 3
Year 1 46% 71% 89%
Year 2 61% 89% 97%
Year 3 95% 97%

FROM MICROSATELLITES TO SNP

Much has been written about the promises of SNP-based parentage verification (SNP_PV) in
livestock and animal traceability across the supply chain (Heaton et al. 2002, VVan Eenennaam et al.
2007, Baruch and Weller 2008). However, costs associated with moving a breed from PV using MiP
to SNP_PV are substantial, as are the logistical challenges. Retaining unused samples (with greater
than 500,000 hair samples archived) at AGL has helped significantly reduce time spent sourcing
new samples for animals, especially when animals are deceased. Once the decision is made to
transition across to SNP_PV, experience shows us that very clear communications is essential to
avoid issue of incompatible profiles between sires, dams and progeny. For smaller breeds, where
there remains a lack of incentive to use genomics, then the change to SNP_PV is uneconomical and
PV using MiP will probably remain part of the AGL offerings for many years to come. However as
price per SNP test falls, the move to SNP will likely become attractive to even the smaller breeds.

CHALLENGES OF SNP REVOLUTION

The challenge in context of the Australian market has been trying to find the sweet spot of
sufficient markers for accurate parentage at a price deemed acceptable. In an industry as diverse as
the Australian cattle industry this has proven to be no simple task. AGL currently offers 2 SNP-
based parentage assays: SEQ1 iPLEX panels contained a total of 138 SNP including 95 ISAG core
plus 4 ISAG additional SNP, or SEQ2 consisted of 59 additional SNP for a combined total of 197
markers genotyped and total of 97 ISAG core SNP. These extra markers were developed to be
informative in Brahman and Tropical Composite breeds. As reported previously (Lyons et al, 2013),
we demonstrated that the ISAG-recommended core bovine SNP parentage panel is not sufficient to
provide accurate parentage verification in many common Australia production systems. Further, we
acknowledged that these panels were less than ideal. A number of publications over recent years has
highlighted the advantage of larger numbers of SNP for parentage (Strucken et al. 2014; McClure
et al., 2015), but these rarely take into account the economic reality of the market and current
technologies.
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PRICING CHALLENGES

Price expectations of the livestock industry do not necessarily align with commercial realities of
test prices. Unlike supermarkets or other commodity-based services, and perhaps unlike standard
R&D within research organisations, there is much more to be considered than the consumables’
cost. Significant challenges and considerations in development and implementation of testing need
to be both understood and appropriately costed. For any test performed at AGL, the samples will
pass through up to 6 hands from arrival to reporting and beyond. In simple terms, there is reception,
cataloguing, sample preparation, DNA extraction and QC, pre-PCR, post-PCR, data analysis and
reporting data in a multitude of different formats prone to change regularly. Standardisation of
reporting remains a challenge across the industry.. As already discussed, AGL prides itself on doing
more than simply churning out data. AGL liaises with clients regularly and has intimate knowledge
of herds and breeding regimes based on prior testing. The labour costs at AGL associated with pre-
and post-testing consultations and follow-up discussions with are significant.

Other factors often overlooked, but of critical importance to the feasibility of genetic diagnostic
labs include: patent and licensing considerations or costs, maintenance and depreciation costs for
equipment, newer technology upgrades necessary to remain competitive, the additional costs of
validation of novel platforms or assays, data and sample storage, informatics for interpretation of
genomic variation, volume discounting options and commercial risk mitigation.

THE FUTURE

Much has been written about the decreasing cost per marker for genotyping and/or sequencing.
The large number of high-throughput SNP genotyping technologies available are growing, but this
in itself offers many challenges. Capital investments previously made will largely dictate services
offered, and at AGL the reliability and reproducibility of the fixed Illumina Infinium platform has
been very successful. Minimizing turnaround times and throughput variability remain important
factors that have influenced AGL’s model of developing in-house facilities rather than outsourcing.
Genotype-By-Sequence (GBS) is often suggested as the way of the future, and certainly has a role
in R&D or where flexibility is required. However, one major challenge with GBS approaches,
especially for high-throughput genotyping facilities, is the considerable investment needed for
bioinformatics support to properly analyse, curate and store the massive amounts of sequence data
obtained from running GBS.

At the end of the day producer uptake of these technologies is not driven by cost-per-marker
statistics. Producers are seeking a reproducible, highly accurate and informative result that can be
translated into achieving their breeding objectives and/or a more saleable item. Reduced costs will
be welcomed, but only if there is no compromise to results, and to date that has been the challenge.
Attaining the ‘holy grail’ of 1 test per sample for everything you could need including Parentage,
Recessives, Trait markers, EBVs, and ultimately the ability to make early selection decisions, is
becoming a more realistic goal.
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SUMMARY

In sheep, genetic correlations between purebred and crossbred performance have not been
studied extensively. The availability of genomic data on both purebreds and crossbreds makes it
possible to estimate these genetic correlations for Merinos. Data of ~5000 purebred Merinos and ~
5000 crossbred Merinos (sired by White Suffolk, Poll Dorset or Border Leicester) was used and the
animals were genotyped with the Ovine 50K and phenotyped for three weight traits; weaning weight
(WWT), post-weaning weight (PWWT) and carcass weight (CWT). Results showed a significant
deviation from 1 for PWWT namely 0.61. While the correlation for WWT and CWT were not
significant at 0.96 and 0.69 respectively. For a Merino breeding programs where emphasize is on
increasing crossbred performance for PWWT (and CWT), purebred and crossbred performance
should be combined in the genetic evaluation to achieve a good response to selection.

INTRODUCTION

Routine genetic evaluation of sheep in Australia is generally based on purebred performance.
However, most lambs are produced as crossbreds For optimal ranking of breeding animals it is
important to know whether breeding values predicted based on purebred performance, are also good
predictors for crossbred performance. For example, a genetic correlation between purebred and
crossbred performance (ryc) of 0.8 (accurately estimated) will result in a loss in response of 20% in
crossbreds when selection is based on purebred performance (Bijma et al. 2014). Some studies have
identified moderate to high estimates for ryc in Australian sheep (Ingham et al. 2005, Banks et al.
2009, Brown et al. 2015). These studies were all based on terminal sires having both purebred and
crossbred offspring. The estimate of ry,. could in these cases be confounded with a potential
genotype-by-environment interaction effect. It has been hard to estimate ry. for Merinos as Merinos
rams are rarely mated to other breeds. However, since the availability of genomic data, new
opportunities arise as genetic parameters can be estimated even without structured family designs.
For example, ryc can be estimated through genomic relationships between purebred Merinos and
crosshreds where the dam is a Merino. Such data exists abundantly in the Sheep CRC information
Nucleus.

The aim of our study is to estimate ry for three weight traits, using genomic and phenotypic data
on purebred Merinos and crosses between sires from terminal and maternal breeds and Merino dams.

MATERIALS AND METHODS

Animals, phenotypic and genotypic data. Data was extracted from two research datasets
known as the Information Nucleus Flock (INF, (Van der Werf et al. 2010)) and the Sheep Genomics
Flock (SGF, (White et al. 2012)). The data consisted of purebred Merinos (~40%) and crosses of
terminal and maternal sires with Merino dams. Assigned genetic groups of base animals alongside
pedigree information was used to determine the breed proportion. The sum of all Merino strains
(Ultra/Superfine, Fine/Fine-medium, Medium/Strong, or undefined) was used to determine the
percentage of purebred Merino. For this study, the crossbred animals should be at least 45% Merino
and 45% from either Border Leicester (BL), Poll Dorset (PD) or White Suffolk (WS). The purebred
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Merino were >95% Merino. Animals were genotyped using the 50k Illumina-Ovine SNP chip and
48,371 SNPs were used. Further quality control included Mendelian inconsistencies, plotting of the
principal components to visually check breed assignment and removal of duplicate samples (off-
diagonal relationship >0.9). To avoid that the covariance between purebred and crossbred offspring
is confounded with some maternal effects, we randomly removed one of the offspring. In total the
dataset consisted of 9,126 animals with 5,066 purebred Merino, 1,489 BL x Merino, 1,407 PD x
Merino and 1,164 White Suffolk x Merino.

Recorded phenotypes for this study were weaning weight (WWT), post-weaning weight
(PWWT) and carcass weight (CWT). Table 1 shows the number of phenotypic records for the
Merino and their crosses with phenotypic information on the weight traits.

Table 1. Number of observation and phenotypic mean for purebred Merinos and their crosses.

Breed! N Mean N Mean N Mean

WWT? WWT PWWT® PWWT CWT* CWT
Merino 5066 2443 4623 38.67 1925 21.39
BL x Merino 1489 27.39 1095 44.24 729 22.07
PD x Merino 1407 28.47 739 45.85 1361 23.00
WS x Merino 1164 28.53 613 46.11 1128 22.89

!BL=Border Leicester, PD=Poll Dorset, WS=White Suffolk. 2WWT=weaning weight.
SPWWT=Post-weaning weight. “*CWT=carcass weight.

Statistical analysis. Fixed effects fitted were derived from previous studies using similar data
(Moghaddar et al. 2014) and were; birth type, rearing type, gender, age at measurement, breed and
contemporary group defines as flock, birth year and management group.

The relationship matrix was constructed using genotypes to derive the genomic relationship
matrix (Yang et al. 2010).

Linear mixed models were used to estimate the variance components and the data was fitted in
the program MTG2 (Lee et al. 2016). Depending on the trait different random effects were fitted.
The simplest model was chosen where the Likelihood Ratio Test showed no significant difference
between including an extra random effect or not (results not shown).

Model 1 for WWT: Y =Xb+Z,a+Z,m+e
Model 2 for PWWT: Y = Xb+Z,a+Z,m+Z,sf +e

Model 3for CWT: Y =Xb+Za+Z,sf +e

Where Y is the vector with phenotypes, b is a vector of fixed effects, a is a vector of random
additive genetic effects, m is the effect the dam, sf is a sire by flock interaction effects and e is a
vector of random residual effects.

Bivariate analyses was used for all three traits, where the traits were defined by being measured
either in purebred or crossbred animals, with the resulting correlation between additive genetic
effects representing a correlation between purebred and crossbred performance (ryc). Covariance
between maternal effects in the purebred and crossbred dataset was set to zero, as dams were not
allowed to have both crossbred and purebred offspring. Similarly, the covariance of the sire by flock
interaction for purebred and crossbred performance was set to zero.
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RESULTS

In Figure 1 the first two principle components (PC) are shown to indicate breed content of the
dataset. The first PC explained 25.6 % of the genetic variance and the 2" PC explained 19.7%. The
first PC separates the Merinos from BL and the second PC separates WS and PD.
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Figure 1. Plot of principal components (PC) Figure 2. The genetic correlation between
1 and 2 with the percentage of variance purebred (Merino) and crossbred
explained in brackets, where MR=Merino, performance for three weight traits. WWT=
BL=Border Leicester, PD=Poll Dorset, and Weaning weight, PWWT=Post-weaning
WS=White Suffolk. weight, and CWT=Carcass weight.

Table 2. Additive genetic variance (0': ), maternal (Gri ), sire by flock interaction (052f ) and

h? for each trait for purebred (PB) and crossbred (XB) performance.

ol op o h2

Trait* PB/XB comp? se® comp Se comp  se comp se
WWT PB 2.22 0.27 2.02 0.25 0.22 0.03

XB 2.42 0.44 353 0.37 0.19 0.03
PWWT PB 9.65 0.86 157 0.58 1.65 0.34 0.38 0.03

XB 7.79 1.69 244 1.10 3.30 0.73 0.28 0.06
CWT PB 2.65 0.41 0.60 0.20 0.38 0.05

XB 1.16 0.24 0.37 0.11 0.20 0.04

"WWT=weaning weight; PWWT=Post-weaning weight; CWT=carcass weight. 2Estimate of the
variance component or ratio.3Approximate standard error on the estimate.

The results of the bivariate analyses are shown in Table 2 and the genetic correlation between
purebred and crossbred performance (rpc) with a 95% confidence interval is shown in Figure 2. The
trait PWWT had the lowest rpc which was 0.61 and was significantly different from one, while WWT
was the highest (0.96). The trait CWT had a genetic correlation similar to PWWT (0.69), but due to
lower number of records, the standard error on the estimate is larger. Results by breed group (WS X
MR, BL X MR and PD X MR) showed similar trends (rpc high for WWT and more variable for
PWWT and CWT). In general, the r,. for WS X MR and MR where lower than PD X MR or BL X
MR, but due to the limited size of the data sets, standard errors were large (>0.20) and clear
conclusions could not be drawn (results not shown).
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DISCUSSION AND CONCLUSION

Results from the bivariate analysis show similar or slightly lower heritabilities based on genomic
relationships compared to previous studies (Daetwyler et al. 2012, Moghaddar et al. 2014) ranging
between 0.2 and 0.3. When the genetic correlation between purebred and crossbred performance
(roc) was lower (i.e. for PWWT and CWT), the genetic variance as well as the heritability was larger
in purebred animals than in crossbred animals. Brown et al (2015) found genetic correlations, which
were not significantly deviating from one for similar weight traits. Their results were based on
purebred Poll Dorset and their crosses. The current study focussed on a maternal contribution to
crossbred performance, while other studies have often focussed on the paternal contribution to
crossbred performance. A study by Moghaddar et al (2014) found a lower prediction accuracy for
crossbreds for the trait PWWT for a similar dataset (genotyped Merinos including their crossbreds),
lower than what was expected also after accounting for the number of haplotypes, i.e. twice the
number of crossbreds gave lower accuracy than purebreds. This result could be partly explained by
the rpc being lower than 1. The number of studies calculating ryc in sheep are limited. Other studies
have mainly focused on performance traits in pigs and poultry where results seem to be very diverse
in estimated ry. also due to a lack of power in the datasets used (personal communication Y.C.J.
Wientjes).

Generally the SE on the estimated genetic correlations were large in the current study. The SE
was larger than expected when using the same size of dataset, but with paternal half sib groups
(Falconer et al. 1996). This is likely a reflection of the smaller degree of relationship between the
dam contributions and sire contributions.

To conclude, both crossbred performance and purebred performance need to be included in the
estimation of the breeding values to increase crossbred performance of Merino crosses, especially
for PWWT and CWT. In a Merino breeding program where both wool and meat production are
selected for, the crossbred performance for production traits is relevant. If selection will be only
based on purebred performance, a reduced selection response of around 40% can be expected for
PWWT and CWT in the crossbreds. Therefore, genetic evaluation on traits such as PWWT and
CWT should be based on both purebred and crossbred performance.
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SUMMARY

Data from the Sheep Genetics database was used in investigation of the genetic relationships
between components of reproduction and traits which may be useful indirect selection criteria for
reproduction rate in Merino sheep. Pre-joining weight as well as fat and eye muscle depth were
favourably genetically correlated with all reproduction traits except ewe rearing ability, as were
more favourable scores for maternal behaviour, wrinkle and face cover. Correlations with pre-
joining condition score were only significant when unadjusted for live weight. Maternal behaviour
score was favourably correlated with all reproduction traits except ewe rearing ability but the
standard errors were large, and more data are required to improve the precision of estimates. These
results suggest that these traits could be recorded by breeders and included in the genetic evaluation
system to improve the accuracy of selection for reproduction rate in Merino sheep.

INTRODUCTION

The Sheep Genetics (SG) genetic evaluation system produces Australian Sheep Breeding Values
(ASBVs) for net reproduction rate with two trait definitions, number of lambs born or weaned per
ewe joined (nlb and nlw respectively). While this has worked adequately in the past there are a
number of key benefits from moving towards component trait analyses, including the ability to fit
different models to each trait, allowing targeted selection for components and optimal use of the
data available from industry.

As reproduction traits are lowly heritable, sex-linked and expressed later in life, the accuracy of
ASBVs, particularly in young animals, can be increased through the use of information on correlated
traits. To make use of such correlated information, accurate estimates of the genetic and phenotypic
correlations between key traits are required, many of which are not currently available in the
literature. Based on the estimates presented by Hatcher et al. (2015), Brown and Swan (2016),
Brown et al. (2015) and many earlier publications, important relationships exist between production
and reproduction traits which could contribute to the estimation of breeding values, and the
development of selection indexes.

The aim of this paper is to estimate the correlations between some key production traits and
reproduction traits in Merino sheep.

MATERIALS AND METHODS

Data. Pedigree and performance data were extracted from the Sheep Genetics MERINOSELECT
database (Brown et al. 2007). This database consists of pedigree and performance records submitted
by Australian and New Zealand Merino ram breeders, and is used for genetic evaluation purposes.
The database also contains information from the Sheep CRC Information Nucleus Flock (INF) and
the Resource Flock. From these data all animals with at least sire known, born 2000 and later, and
from flocks with a history of recording reproduction traits were included. Data were extracted for
all animals with early breech wrinkle (ebwr), late body wrinkle (Ibdwr), late face cover (Iface), post-
weaning fat and eye muscle depth (pfat and pemd) and yearling fat and eye muscle depth (yfat and
yemd). Annual ewe records were also extracted for pre-joining weight (pjwt), pre-joining condition
score (pjcs), number of lambs born and weaned per ewe joined (nlb and nlw), maternal behaviour
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of the ewe at lambing (mbs, 1 to 6, with 1 being best), ewe fertility (fert, dry or pregnant), litter size
defined as the number of lambs born per ewe lambing (Is) and ewe rearing ability defined as the
proportion of lambs weaned to lambs born per ewe lambing (era).

The pedigree was built using all ancestral information available. This resulted in pedigree files
comprising between 78,563 and 191,392 animals for the combined dataset depending on the trait
combination being analysed. A summary of the number of records available for each trait in each
data set is shown in Table 1. The number of animals with records for two traits ranged from 1479
for yfat and era to 20,847 for pjwt and nlb. At the sire level, this range corresponded to 226 common
sires for Iface and era to 891 for pjwt and nib.

Table 1: Summary of raw data used for each trait

Trait Records Animals Sires Flocks Mean SD  Min Max
pjwt 20,847 13,315 891 27 4997 9.21 24.00 105.50
pjcs 8,298 4,433 388 17 3.03 053 1.00 5.00
pfat 22,088 22,088 912 46 225 051 0.60 5.20
yfat 59,488 59,488 1,919 71 250 057 0.50 7.60
yemd 61,986 61,986 2,046 75 23.60 4.32 10.00 45.00
pemd 22,293 22,293 924 47 22.82 3.82 10.00 41.00
ebwr 85,779 85,779 1,509 55 227 099 1.00 5.00
Ibdwr 35,627 35,627 928 28 2.01 0.87 1.00 5.00
Iface 26,572 26,572 776 27 252 0.87 1.00 5.00
mbs 4,769 3,218 333 10 219 1.01 1.00 6.00
nlb 73,227 34,840 2,180 53 1.18 0.65 0.00 4.00
nlw 60,639 29,693 1,925 49 1.02 0.68 0.00 4.00
fert 73,227 34,840 2,180 53 0.87 0.33 0.00 1.00
Is 63,918 31,565 2,113 53 135 051 1.00 4.00
era 52,872 26,942 1,851 49 0.87 0.32 0.00 1.00

Models of analysis. Parameters were estimated in bivariate sire model analyses for each trait
combination using ASReml (Gilmour et al. 2009). For wrinkle, weight, and condition score traits
the fixed effects of contemporary group, birth type, rearing type, age of dam, and animal’s age at
measurement were fitted. For the body composition traits the fixed effects of contemporary group
and the regression on an animal’s live weight at measurement (linear and quadratic) were fitted.
Contemporary group was defined as flock, year of birth, sex, date of measurement and management
group subclass. For the reproduction traits the only effect fitted was the reproduction contemporary
group, based on combinations of flock and year of lambing, management group, conception method
(Al and Natural) and ewe age class (1, 2, and 3+ years). A random sire term for the direct genetic
effects was modelled for all traits, including ancestral sire pedigree relationships. A sire model was
chosen as the data structure did not support the estimation of all parameters using an animal model.
An additional random term for maternal permanent environment effects was included for ebwr and
pjwt. For pjcs, pjwt, mbs, and the reproduction traits repeated records were accounted for by
including an additional random term to model the permanent environment of the animal. Sire by
flock-year interactions were also fitted as an additional random term for all traits. Genetic groups
were specified by flock of origin and fitted as random effects (Swan et al. 2014). As genetic groups
did not significantly improve the fit of the model for mbs and the reproduction traits they were only
fitted for production traits. As pre-joining weight and condition score are related an additional pre-
joining condition score trait was created which included adjustment for weight at joining (pjcs2) by
fitting pjwt as an additional covariate in the model.
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RESULTS AND DISCUSSION

Large numbers of records were available for most traits (Table 1). The mean of 0.87 for era is
slightly higher than the value of 0.81 reported by Bunter et al. (2016) derived from three well-
recorded industry Merino flocks, suggesting that the lamb survival data may be biased upwards in
this study due to incomplete recording. Heritability estimates (Table 2) for most traits were
consistent with earlier publications based on MERINOSELECT data estimated predominantly using
animal models. The heritabilities for pjcs and fat depth were slightly lower than previously observed
as were those for most reproduction traits compared to the earlier estimates reported by Bunter et
al. (2016).

Table 2: Phenotypic variance (), heritability (h?), repeatability (r), permanent environment
due to dam (dam PE), and sire by flock interaction (s?) for each trait

Trait 6% h? r dam PE %

pjwt 3131(210) 039(0.11) 080(011) 0.10(011) 0.1L(0.11)
pics 0.12(0.01) 0.11(0.03) 0.22 (0.03) 0.07 (0.03)
pjcs2 0.10 (0.01) 0.11 (0.04) 0.22 (0.04) 0.06 (0.04)
pfat 0.22(0.04)  0.12 (0.04) . 0.03 (0.04)
yfat 0.28(0.02) 0.10(0.01) . . 0.03(0.01)
pemd 3.68(0.01) 0.21(0.02) . . 0.04(0.02)
yemd 3.98(0.01) 0.22(0.01) . . 0.03(0.01)
ebwr 0.64(0.01)  0.35(0.03) . 042(0.03) 0.05(0.03)
Ibdwr 0.40(0.01)  0.37 (0.05) . . 0.03(0.05)
Iface 0.50 (0.01)  0.35(0.01) . . 0.04(0.01)
mbs 0.81(0.01) 0.09(0.02) 0.22 (0.02) 0.05 (0.02)
nlb 0.33(0.01) 0.07(0.01) 0.16 (0.01) . 0.01(0.01)
nlw 0.38(0.01) 0.04(0.01) 0.12 (0.01) . 0.01(0.01)
fert 0.09(0.01) 0.06(0.01) 0.16 (0.01) . 0.02(0.01)
Is 0.21(0.01) 0.07(0.01) 0.16 (0.01) . 0.01(0.01)
era 0.09(0.01) 0.02(0.01) 0.11 (0.01) . 0.01(0.01)

Pre-joining weight and condition score were moderately correlated genetically (0.50+0.09) and
phenotypically (0.29+0.02). Pre-joining weight, early in life fat and eye muscle depth were
favourably correlated with all reproduction traits except ewe rearing ability (Table 3). These results
generally agree with the earlier work of Brown and Swan (2016). However, the inconsistent
correlations of body composition traits with ewe rearing ability are at odds with earlier work and
may be a reflection of the incomplete recording of lamb survival, as mentioned above. Further
studies with high quality data to study relationships with era are certainly warranted. Better scores
for wrinkle and face cover were generally favourably associated with reproduction traits. The lack
of a correlation between wrinkle and ewe rearing ability is inconsistent with results of Hatcher et al.
(2015) who estimated significant favourable relationships between these traits in both industry and
INF data. Correlations of pre-joining condition score with nlb, nlw or fert were only significant when
unadjusted for live weight. Walkom and Brown (2016) estimated the correlations between these
traits using just the INF data and found no significant relationship between condition score and
reproduction traits unless condition score was adjusted for previous reproduction status. These
results are also at odds with those observed for the fat and eye muscle depth traits which were highly
genetically correlated with condition score in these data (rg between 0.68 and 0.98 across the 4
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ultrasound traits) and demonstrated by earlier work of Walkom and Brown (2016). As the results
for condition score appear quite inconsistent across analyses and data sets more industry data are
clearly required to confirm the relationships between body composition and reproductive traits.
Maternal behaviour score was favourably correlated with all reproduction traits in absolute
terms, except for ewe rearing ability. However, standard errors were large and the number of ewes
recorded for mbs was relatively low, suggesting that more data are required to confirm these results.
While this study has not included other weight and wool traits, it is known that significant
relationships exist between live weight, scrotal circumference, fleece weight, fibre diameter, fibre
curvature and staple length with the reproductive traits and these should also be considered.

Table 3: Genetic correlations between reproduction traits, and production and visual traits

pjwt  pjcs pjcs2  ebwr Ibdwr  Iface pfat yfat pemd yemd mbs

nib 051 040 -001 -032 -046 -044 042 040 038 042 -0.16
(0.09) (0.16) (0.17) (0.09) (0.10) (0.12) (0.14) (0.10) (0.12) (0.09) (0.23)
nw 050 041 -0.04 -043 -050 -048 040 041 034 050 -0.17
(0.11) (0.19) (0.19) (0.10) (0.12) (0.14) (0.16) (0.13) (0.15) (0.11) (0.26)
fert 020 042 028 -031 -054 -009 059 034 045 037 -0.22
(0.11) (0.18) (0.18) (0.10) (0.11) (0.14) (0.15) (0.12) (0.13) (0.10) (0.26)
Is 056 027 -025 -022 -0.28 -052 015 032 022 032 -0.06
(0.08) (0.17) (0.17) (0.09) (0.10) (0.11) (0.15) (0.10) (0.13) (0.09) (0.22)
Era 007 014 001 -010 -009 004 -027 -000 -0.16 0.14 0.12
(0.15) (0.28) (0.27) (0.15) (0.18) (0.21) (0.24) (0.00) (0.21) (0.15) (0.33)

CONCLUSION

These results suggest that these traits could usefully be recorded more by breeders and included
in the genetic evaluation system to improve the accuracy of selection for reproduction rate in Merino
sheep. More high quality data are required for maternal behaviour score, condition score and ewe
rearing ability to confirm associations between these traits.
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SUMMARY

This paper reports body-site specific and overall tick counts as assessed during either spring or
autumn for Dorper, SA Mutton Merino (SAMM) and Namaqua Afrikaner (NA) ewes maintained on
natural pasture in an arid area. There seem to be a shift in the tick population challenging the hosts
from autumn to spring, posing the question whether tick count in spring is genetically the same trait
as tick count in autumn. The unimproved, fat tailed, indigenous NA breed had lower tick counts on
all body sites compared to the two commercial breeds, the exception being tick counts on the tail of
NA ewes. The other breeds have docked tails and could thus not be assessed for this site. All body-
site specific tick counts were heritable, both in autumn (range 0.26-0.42) and spring (range 0.15-
0.41). Ticks counts in autumn and spring were genetically very similar traits (rg>0.88). Overall and
body-site specific tick counts were heritable and should respond to selection.

INTRODUCTION

Sheep farming is very important in the South African agrarian landscape since it allows the
sustainable utilization of arid rural environments (Cloete et al. 2014). Sheep are parasitized by ticks
throughout the world, with many tick species being of veterinary and economic importance. Some
ticks introduce toxins that cause paralysis (Fourie et al. 1989); other species can be the cause of
severe tissue damage, which either results from their longer mouthparts or a tendency to form
clusters (Cloete et al. 2016). Ticks are also responsible for anemia and production losses (Norval et
al. 1988). Ticks are also responsible for direct damage, such as skin or hide damage, damage to
udders, teats and the scrotum of livestock (Norval 1983). A variety of factors such as host type, host
age or tick inter- and intraspecific interactions can affect the preferential feeding sites of ticks.

Host resistance to pathogens can be used as a component in integrated pest control programs
(Walker 2011). However, research on the genetics of tick resistance is very limited in sheep. Van
Marle-Koster et al. (2015) suggested that adapted, indigenous genetic resources have advantages
over imported breeds in their response to stressful conditions, including tick infestations.

The objectives of this paper were: 1) to determine whether the tick challenge of sheep differed
between seasons (autumn and spring); 2) to derive heritability estimates for body-site specific and
overall tick counts within seasons; 3) to estimate genetic and phenotypic correlations between body-
sites and overall tick counts; 4) to derive genetic correlations of tick counts in autumn with those in
spring to determine whether tick infestation in autumn and spring are genetically similar traits.

MATERIALS AND METHODS

The experiment was carried out at the Nortier Research Farm (32°02’S and 18°20’E) in the West
Coast Strandveld area of the Western Cape Province of South Africa, using a genetic resource
population described by Cloete et al. (2013; 2016). Ewes from the indigenous fat-tailed Namaqua
Afrikaner (NA) sheep breed and two commercial breeds, the Dorper and South African Mutton
Merino (SAMM), were compared under marginal, extensive conditions. The Dorper is the leading
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South African meat breed while the SAMM is the leading South African dual-purpose (meat and
wool) breed and both breeds contribute substantial numbers of weaning weight records to the small
stock improvement programme (Cloete et al. 2014). The NA, in contrast, is characterised by low
numbers and is maintained in a few conservation flocks (Qwabe et al. 2012). Previous studies
suggested that NA ewes were more resistant to ticks than the other breeds (Cloete et al. 2013; 2016).

The climate of the experimental site is Mediterranean, with 78 % of the total long-term annual
precipitation of 221 mm being recorded during winter (April-September). Dry, warm summers and
cool winters with an unpredictable and variable rainfall characterises the study area. The vegetation
is classified as Strandveld of the West Coast (Acocks 1988). The Dorper and the SAMM were tail
docked as lambs, while the fat tails of the indigenous NA were left intact. Docking was done with
rubber rings applied at the third palpable joint when the lambs were approximately three weeks old.

Ticks were counted in a detailed study involving species during autumn (May) and in spring
(September) of 2012 (Trial 1). Ewes (n=73) were cast and a total of 2425 ticks were removed from
these animals. The detached ticks were preserved in 70% ethanol and identified according to species.
Apart from this detailed study on tick species, ticks were also counted in Trial 2 on all available
ewes in the autumn of 2012, 2015 and 2016 as well as in the spring of all years from 2012-2016.
The total number of repeated records amounted to 914 records of 358 ewes in spring and 535 records
of 341 ewes in autumn. These counts were done without considering the tick species present on the
animals. Ticks were counted at three locations: the head and front legs (HFL), udder and hind legs
(UHL) and perineum, including the tail of NA ewes (PT) as was described by Cloete et al. (2013;
2016). These counts were also summed to obtain a total tick count for each animal (TOT). All ewes
were maintained in a single flock except for a six week mating period during which the breeds were
kept separate. Ewes were also randomly divided into smaller groups during lambing.

The frequencies at which the respective tick species occurred in Trial 1 was compared by Chiz-
procedures. Raw tick counts in Trial 2 were extremely variable (Table 1) and needed to be suitably
transformed. Individual counts were therefore transformed to square roots after 0.5 were added to
individual records to reduce the difference between counts to between 0 and 1 (Dickson and Sanford
2005). ASReml (Gilmour et al. 2015) was used to first identify significant fixed effects (ewe breed
and ewe age) then to derive genetic parameters by fitting four-trait models to all available data in
the autumn and spring. The same counts in autumn and spring were then analysed together in two-
trait analyses to derive genetic correlations between seasonal counts. Animal permanent
environmental effects were initially modeled together with animal additive effects. Based on Log
likelihood ratios, only direct animal effects were retained in the final analyses. The pedigree file
contained 2713 animals, the progeny of 40 sires and 596 dams. Ethical clearance was provided by
the Departmental Ethical Committee for Research on Animals (approval number R13/88).

RESULTS AND DISCUSSION

Trial 1: Ticks from the three major species differed in proportions in autumn and summer. When
expressed relative to the total number of ticks recovered, the contribution of Rhipicephalus evertsi
evertsi amounted to 0.38 in autumn and 0.44 in spring (Chi2=19.7; degrees of freedom=1; P<0.01).
R. gertrudae were recovered at a substantially higher proportion in autumn (0.52) than during spring
(0.19; Chi2=274.1; degrees of freedom=1; P<0.01). Corresponding proportions for Hyalomma
truncatum amounted to 0.11 and 0.37 respectively (Chi?=249.8; degrees of freedom=1; P<0.01).
These results suggested that the tick challenge during spring and autumn was different and
potentially needed different coping strategies by the host animals.

Trial 2: Raw tick counts on individual ewes were extremely variable with standard deviations
often exceeding the corresponding means (Table 1). The square root transformation normalised the
distributions in terms of skewness and kurtosis and reduced the observed coefficients of variation to
more manageable levels, ranging from 39.5% for TOT in autumn to 66% for HFL in spring.
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Table 1. Descriptive statistics for the raw and transformed tick counts analysed on ewes in
autumn (n=535) and spring (n=914), namely head-front leg tick count (HFL), udder-hind leg
tick count (UHL), perineum-tail tick count (PT) and total tick count (TOT)

Season Autumn Spring

. Raw mean * Transformed | Raw mean + Transformed
Trait s.d. Range mean + s.d. s.d. Range mean % s.d.
HFL 10.4+11.1 0-88 2.96 +1.46 51+74 0-54 1.98+1.46
UHL 11.7 +16.0 0-112 2.97+1.83 8.6+114 0-89 253+1.64
PT 6.7+7.6 0-50 2.37+1.26 6.8+7.4 0-61 2.39+1.27
TOT 28.8 £ 25.6 0-216 5.03+1.98 21.0+17.5 0-126 4.23+1.76

Backtransformed means for tick counts at the HFL and UHL sites of the commercial breeds
exceeded those recorded in their NA contemporaries by at least a factor of 2 (P<0.01), both during
autumn and spring (Table 2). NA ewes had higher (P<0.01) PT tick counts than the Dorper in both
seasons, as well as SAMM ewes during spring. Breed differences were previously reported for tick
count as well as for attachment site in sheep (Fourie and Kok 1995; Cloete et al. 2013; 2016). The
latter authors attributed the higher tick counts at the PT site in the NA to the fact that their tails were
left intact. Backtransformed means for TOT in the commercial breeds exceeded those of NA ewes
by between 43 and 148% (All P<0.01), suggesting a greater resistance in the indigenous breed.

Table 2. Least-squares means (+s.e.) depicting breed* differences between the breeds assessed
for head-front leg tick count (HFL), udder-hind leg tick count (UHL), perineum-tail tick count
(PT) and total tick count (TOT) recorded either in the autumn or spring with backtransformed
means in brackets

Season Trait

and N

breed HFL UHL PT TOT
Autumn *%* *%* *%x *%*

NA 204 2.15+0.09 (4.1) 2.15+0.10(4.1) 2.79+0.08(7.3) 4.21+0.10(17.3)
Dorper 238 2.96 +£0.08 (8.3) 3.33+0.09 (10.6) 1.95+0.07(3.3) 5.03+0.09(24.8)
SAMM 76 4.39+0.14(18.8) 3.88+£0.16 (14.5) 277+0.12(7.2) 6.59+0.16 (43.0)
Spl’lng *%* *%* ** *%*

NA 330 1.45+0.07 (1.6) 1.73+£0.09 (2.5) 2.88+0.07(7.8) 3.72+0.09(13.3)
Dorper 451 2.46 +0.06 (5.6) 3.15+0.08(9.4) 2.00+0.06(3.5) 4.69+0.08(21.5)
SAMM 133 1.98£0.11 (3.4) 3.32+0.15(10.5) 2.63+0.11(64) 4.82+0.15(22.7)

! Namaqua Afrikaner (NA), Dorper and South African Mutton Merino (SAMM)
** P<0.01

Significant genetic variation was detected for all body-site specific tick counts in four-trait
analyses conducted in autumn and spring (Table 3). Genetic parameters were quite similar across
seasons, except for PT tick counts, where the heritability was lower in spring. These results
compared well with previous heritability estimates of 0.26 for HFL, 0.53 for UHL, 0.19 for PT and
0.43 for TOT (Cloete et al. 2016). Grgva et al. (2014) accordingly reported heritability estimates of
0.37-0.52 for TOT in Norwegian lambs under conditions where another tick species, namely Ixodes
ricinus, prevails. HFL and UHL tick counts were highly correlated to TOT on the genetic level, as
would be expected for traits in a part-whole relationship. These results were also consistent with
those previously reported by Cloete et al. (2016). Genetic correlations between tick counts recorded
in autumn and spring approached, and in some cases exceeded, unity for body-site specific values
(Table 3). These preliminary results suggest that resistance to ticks in autumn and spring are
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genetically very similar traits. Phenotypic correlations among traits were similar in sign as genetic
correlations, but generally smaller in magnitude.

Table 3. (Co)variance ratios (£ s.e.) for head-front leg tick count (HFL), udder-hind leg tick
count (UHL), perineum-tail tick count (PT) and total tick count (TOT) recorded either in the
autumn or spring based on four-trait or two-trait analyses

. Trait
Component and trait AFL OAL PT ToT
(Co)variance ratios in autumn*
HFL 0.26 +0.07 0.61+0.15 0.17+0.18 0.88+0.08
UHL 0.20+0.05 0.39+0.06 -0.40+0.14 0.81+0.06
PT 0.04 +0.05 -0.19+0.05 0.30+0.06 0.18+0.14
TOT 0.68 + 0.05 0.68 + 0.03 0.32+0.04 0.42 +0.06
(Co)variance ratios in spring*
HFL 0.26 £0.04 0.28+0.11 0.10£0.16 0.64 £0.08
UHL 0.20+0.04 0.41+0.04 -0.23+0.14 0.85+0.04
PT 0.07 £0.04 -0.11+0.04 0.15+£0.04 0.17£0.15
TOT 0.56 + 0.03 0.74 £ 0.02 0.42 +0.03 0.34+0.04
Correlations between tick counts in autumn and spring
Genetic 0.89+0.09 1.01+£0.02 1.00 £ 0.08 1.01+0.04
Phenotypic 0.27 £0.05 0.48 £0.04 0.24 £0.04 0.45+0.04

* Heritability in bold on the diagonal, genetic correlations above the diagonal and phenotypic correlations
below the diagonal

CONCLUSIONS

The species composition of the tick challenge at the experimental site differed appreciably in
species composition between autumn and spring. Notwithstanding this result, appreciable genetic
variation in body site specific and total tick counts was present in both seasons. Moreover, genetic
correlations between autumn and spring tick counts suggested that these traits were likely to be
controlled by largely the same genes, a finding that needs to be verified in further studies.
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SUMMARY

Genomic selection uses genomic information to predict the breeding value of animals and can
achieve higher prediction accuracy than pedigree based selection. This study aimed to compare the
accuracy of genomic prediction using a medium-density (50k) SNP panel, as well as an imputed
high-density (600k) SNP panel, with and without including pre-selected SNPs from QTL regions
identified by regional heritability mapping (RHM). The proportion of variance explained by the pre-
selected SNPs combined in a genomic relationship matrix (GRM) was considerably smaller than
that explained by all SNPs from the 600k panel (25% of the genomic heritability). To obtain a better
estimate of the variance explained by the pre-selected SNPs, both GRMs from the pre-selected SNPs
( GRM) and their complementary SNPs from the 600k panel ( GRM ) were fitted in a single model.
The total heritability explained by both GRM, and GRM, when fitted together was similar to the
heritability explained by fitting all SNPs in a single GRM. The GRM, explained a smaller proportion
(18%) of the total heritability, whereas the GRM, explained 82%. Fitting either the 50k or the 600k
SNP panels resulted in similar prediction accuracy for parasite resistance (~0.37). However, when
both GRM, and GRM, were fitted together in the prediction model, genomic accuracy was increased
by 10%. These results indicate that accuracy of genomic prediction can be improved by including
QTL information explicitly in the prediction models.

INTRODUCTION

Traditional genetic improvement relies on the use of pedigree information and phenotypic
records of farm animals to estimate their breeding values. This has led to substantial genetic gain in
most livestock species, especially for the traits that are easy to measure. However, the process is
often inefficient for low-heritable, expensive or difficult to measure traits. An example is parasite
resistance, measured by indicator traits such as worm egg counts (WEC), which is an important
health issue that affects the sheep industry worldwide. Genomic selection offers an alternative to
conventional breeding programs and can increase the rate of genetic gain by using genomic
information to predict the breeding values of selection animals (Hayes et al., 2009).

In genomic selection, the genomic breeding values (GBV) for selection candidates are predicted
based on the estimates of marker effects across the whole genome. The accuracy of predicting
genomic breeding values depends on the heritability of the trait, the size of the reference population
and the level of relatedness between the reference population and selection candidates (Habier et al.,
2010). Moreover, the accuracy is highly influenced by the level of linkage disequilibrium between
the SNP markers and the QTL (quantitative trait loci) affecting the trait (Goddard 2009). Depending
on the genetic architecture of the trait, the chosen statistical method used to build the prediction
model will have a significant impact on prediction accuracy. Models that incorporate pre-selected
SNPs from QTL regions have been shown to improve the accuracy of genomic prediction (Brondum
et al. 2015).

The objective of this study was to compare the accuracy of genomic prediction based on a
medium-density (50k) SNP panel, high-density (600k) SNP panel, and including pre-selected SNPs
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from QTL regions identified by regional heritability mapping for parasite resistance in Australian
sheep.

MATERIALS AND METHODS

Animals. Parasite resistance, as measured by WEC, was investigated in a multi-breed sheep
population from the Sheep Cooperative Research Centre information nucleus flock (INF). A total of
7,539 animals with both genotype data and WEC phenotypes were included in this analysis. Various
breeds were represented in the population (Table 1) but with a significant proportion of Merino
sheep, and only this breed had a substantial proportion of purebred animals. The remaining breeds
were mainly represented by their crosses with Merino (van der Werf et al. 2010).

Table 1. Proportions of different breeds in the population

Breed BL COR COOP EF WD PD TEX AF PS MER

Proportion (%) 11.1 0.8 10 07 04 18 23 2 1.1 69.8
Border Leicester: BL, Corriedale: COR, Coopworth: COOP, East Friesian: EF, White
Dorper:WD, Poll Dorset: PD, Texel: TEX, Australian Finnsheep: AF, Prime Samm: PS,
Merino:MER

Genotypes. Animals were genotyped using the 50k Ovine marker panel (Illumina Inc.,
SanDiego, CA, USA). SNPs were removed if they had a minor allele frequency (MAF) < 1%, an
Illumina Gentrain score (GC) less than 0.6, a call rate less than 95%, or not in Hardy-Weinberg
equilibrium. Furthermore, positions of SNPs were obtained from the latest sheep genome
Ovis_aries_v3.1, and any SNP with unknown position was removed. After applying these quality
measures, 7,539 animals and 48,198 SNPs were retained. The imputation from the medium-density
panel to the high-density (HD) SNP panel was performed using the Fimpute algorithm (Sargolzaei
et al. 2014).

Cross-validation experimental design. Animals were randomly split into ten non-overlapping
subsets (i.e. each subset with ~ 753 animals). For each experiment, one of the ten subsets served as
a validation population and the remaining of the data served as the training population. The whole
process was repeated ten times so that each subset served once as the validation population.

Regional heritability mapping (RHM). RHM was performed ten times, once for each
validation set. The input to RHM consists of phenotype and genotype data (600k SNPs) on animals
in the combined nine training sets. Data on animals in the validation set was not included in the
RHM input. In RHM, each chromosome was divided into regions of pre-defined number of SNPs,
and the variance attributable to each region was estimated. Window size of 200 SNPs was used to
build genomic relationship matrix (GRM) and the window was shifted every 100 SNPs so that each
two adjacent windows overlap midway. The significance was evaluated by the likelihood ratio test
(LRT), comparing the RHM model which includes the regional effect with the base model composed
of mean, fixed effects and random animal and error terms, but without the regional effect. The base
model (1) and the RHM model (2) fitted to the data were as follows:

y=Xb+Za+e (1)
y=Xb+Za+Z,g+e (2)

where y is a vector of cube root transformed WEC records; b is a vector of fixed effects; a is a
vector of random additive genetic effects, g is a vector of random regional genetic effect estimated
from SNPs within each region (window), e is a vector of residuals which was assumed to be
distributed as ~N (0, I62), where a2 is the residual variance. X, Z and Z, are incidence matrices
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relating fixed, additive genetic and regional genetic effects to phenotypes. a was assumed to be
distributed as ~ N(0,A02), where A is the numerator relationship matrix (NRM) calculated from
deep pedigree records and a2 is the additive genetic variance explained by pedigree; and g was
assumed to be distributed as N (0, Go;), where G is the regional genomic relationship matrix
constructed from SNPs within each region, and o is the regional genomic variance. The fixed
effects included in the models were breed proportions, age of animals, age of dam, gender, rearing
type x birth type and contemporary groups (combination of flock site, birth year and management
group effects).

Selection of SNP markers. Genomic regions obtained from each of the ten-fold cross-validation
RHM analyses were ranked based on their LRT and significant regions were selected. For each fold,
the top five ranked regions across the ten-fold experiments were the same. SNPs located within the
top five ranked regions were used to build a GRM ( GRM,) and the proportion of the variance
explained by these pre-selected SNPs was estimated by replacing the NRM in model (1) by the GRM
obtained from the pre-selected SNPs. Variance was not only estimated using the GRM for the
selected SNPs, but also by using a complementary GRM ( GRM_) based on the remaining SNPs
from the 600k SNP panel. To obtain a better estimate of the variance explained by the selected SNPs,
both the GRM, and GRM, were fitted together in the same model.

Accuracy of genomic prediction. To evaluate the impact of the selected SNPs on prediction
accuracy, genomic predictions for the validation animals was calculated and correlated with the
phenotypes of the same animals. The GRM was fitted and the genomic best linear unbiased
prediction (GBLUP) analysis was performed. The prediction model that includes both GRM, and
GRM . was also evaluated. Genomic breeding values (GBV) were calculated following the ten-fold
cross-validation procedure as described above. Prediction accuracy was calculated as the correlation
between the predicted GBVs of the validation set and the adjusted phenotypes, which were corrected
for fixed effects, divided by the square root of the trait heritability. Furthermore, the regression
coefficient (slope) of the adjusted phenotypes on the GBVs was calculated to assess the bias of
genomic predictions.

RESULTS AND DISCUSION

The RHM results for ten-fold experiments are shown in the Manhattan plots in Figurel. The top
five ranked regions remained consistent across the ten-fold cross-validation experiments. These five
regions include three windows (107 -108 Mb, 110 -112 Mb, 117 -118 Mb) on OAR?2, three
overlapping windows between 28 to 36 Mb on OAR6, a window between 17 to 18 Mb on OAR18,
a window between 7.2 to 6.8 Mb on OAR20 and a window between 40 to 41 Mb on OAR24. 1600
SNPs located within these regions were selected to build a GRM and, the heritability explained by
the pre-selected SNPs was 0.05 compared to 0.19 explained by all the SNPs from the 600k panel.
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Figure 1. Manhattan plots of regional heritability mapping (RHM) results across the ten-fold cross-
validation experiments. The x-axis represents the number of windows and the y-axis represents the
corresponding likelihood ratio test (LRT) for each window.

Another way of testing the importance of the pre-selected SNPs was to investigate how much
heritability was lost when the pre-selected SNPs were excluded from the GRM. Fitting only GRM_,
containing all SNPs in the 600k panel minus the pre-selected SNPs from the target regions, resulted
in a similar heritability estimate as fitting all the SNPs. To assess the relative importance of the GRM
from the selected SNPs and the GRM from the remaining SNPs, both GRM,and GRM, were fitted
simultaneously in the same model. The proportion of variance explained when both GRM, and
GRM were fitted simultaneously was similar to the proportion of the genetic variance explained
by fitting all the SNPs from the 600k. The GRM from the selected SNPs explained 18% of the total
heritability, whereas 82% of the total heritability was explained by all the remaining SNPs (Table
2).

Table 2. The proportion of phenotypic variance (h?) explained for parasite resistance

Selection criteria GRM GRM, GRM logL
G (50Kk) 0.178 + 0.020 -10673
G(600Kk) 0.194 + 0.021 -10670

G(regions) 0.050 + 0.009 -10682
GRMc 0.188+0.021 -10673
G(Regions)+GRMc 0.034+0.008  0.152+0.021 -10638

G (50k): GRM from the 50k SNP panel, G (600k): GRM from the 600k SNP panel, G (regions):
GRM; from the pre-selected SNPs; GRMc: complementary GRM (GRMc)

Using any of the 50k and the 600k SNP panels resulted in a similar prediction accuracy for
parasite resistance (~0.37, Table 3). When the GRM, from the pre-selected SNPs was fitted alone,
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the prediction accuracy dropped by 18% compared to fitting all SNPs from the 600k panel. However,
when both GRM,and GRM, were fitted together, higher prediction accuracy was observed than
fitting all the SNPs in a single GRM. This is likely because a model with two components of genetic
effects allows effects of the pre-selected SNPs to have larger variance than all the remaining SNPs
in the panel, thus putting more weight on the pre-selected SNPs from the QTL regions. Moreover,
the slopes of all models were not significantly different from 1, which indicates no significant bias
in the predictions. It should however be noted that the RHM regions are not independent since they
were the same across all 10-fold repeats and this can of course favourably influence the prediction
accuracy. While suboptimal for a fair comparison of accuracy of prediction this lack of
independence is not unexpected nor undesirable in practice since QTLs should have a real biological
effect on a trait and are expected to be consistently identifiable in different datasets with similar
power. If the RHM regions changed with each subset of the data, there would be greater cause for
concern.

Table 3. Cross-validation prediction accuracy for parasite resistance averaged over the ten
validation sets, and slope for the regression of adjusted phenotypes on the predicted breeding
values

Selection criteria Accuracy  SE(accuracy) Slope  SE(slope)
G (50k) 0.368 0.036 0.915 0.197
G(600k) 0.374 0.036 0.916 0.193
G(regions) 0.307 0.035 0.841 0.219
G(Regions)+GRMc 0.411 0.036 0.848 0.164
CONCLUSION

The results in this study show that there is little advantage of using the imputed high density SNP
panel over the medium-density panel for genomic prediction with this trait. However, by
incorporating information from QTL regions explicitly into the genomic prediction model,
prediction accuracy of parasite resistance increased by 10% based on the current SNP panel density.
These results suggest that QTL information should be beneficial in genomic prediction, not just for
parasite resistance but also for other economically important traits in sheep.
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SUMMARY

The purpose of this study was to investigate genome wide association of genetic markers with
birth weight (BWT) and the interaction of significant marker effects with birth type (BT) in Merino
lambs. Data used in this study consisted of 6,463 birth weight records of lambs generated from 349
sires and 4,896 dams of Merino sheep, which were genotyped using the Illumina Ovine SNP50
BeadChip (Illumina Inc., San Diego, CA, USA). After quality control 48,599 SNPs were included
in the association study. We detected 11 and 15 genome-wide significant SNPs for birth weight in
singles and twins, respectively, and 17 genome-wide significant SNPs were found when using all
data. OAR6_41936490.1 and OARG6_41877997.1 were the most significant SNPs for single and
twin birth weight, respectively. Among 17 significant SNPs detected by GWAS there were 9 that
had a significant SNP by BT interaction, indicating that gene by BT interaction contributed to BWT
variation.

INTRODUCTION

Birth type (BT) constitutes an environment that influences gene expression related to particular
traits in sheep. In a previous study, Dakhlan et al. (2017) found significant genotype by environment
interaction effects for birth weight (BWT) and weaning weight in Merino lambs. Twin BT is a poorer
environment for BWT compared to single BT. With information on molecular genotypes it is now
also possible to assess the interaction between environment and genotype at the individual gene
level.

Genome Wide Association Studies (GWAS) have been widely used to identify genes that are
associated with body weight in some animal species, including sheep. Jonas et al. (2010) detected a
quantitative trait locus (QTL) on ovine (Ovies aries) chromosome 21 (OAR21) in Awassi-Merino
backcross and Al-Mamun et al. (2015) identified 39 SNPs associated with body weight in Merinos,
including a major QTL region on OARG.

Birth type is one of many factors that influence growth performance of sheep and given there is
a BT by growth interaction, it may be possible to differentiate between gene effects associated with
BWT in single and twin BT of lambs. The purpose of this study was to investigate genotype by BT
interaction at the gene level by investigating QTL associated with BWT of lambs and identify
whether effects of significant markers differ between single and twin BT of lambs.

MATERIAL AND METHODS
Phenotypes for association study. Birth weight data for this study were obtained from the
Information Nucleus (IN) program of the CRC for Sheep Industry Innovation in Australia. Details
on this program and its design are described by Van der Werf et al. (2010). Birth weight records
were available from 6,463 Merino lambs generated from 349 sires and 4,896 dams. These lambs
were distributed over 2 BT classes: 3087 lambs were born as single and 3376 lambs were born as
twins. The lambs were raised in 8 different flocks (521-2,483 lambs per flock) in up to 4 management
groups per flock per year, and they were born between 2007 and 2012 (969-1,678 lambs per year).
Mixed model analysis with ASReml software (Gilmour et al., 2009) was used to generate
predicted birth weight and the residual effects were used in a genome wide association study. The
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fixed effects in the models were birth year (2 classes), sex (2 classes), age of dam as covariate and
contemporary group. As random effects in an animal model, genetic group, animal, dam, and
interaction between sire and flock were fitted. There were 135 genetic groups defined. A pedigree
file consisting of 17,664 animals from 11 generations was used to determine additive genetic
relationships among animals and account for them in the analysis. It was assumed that dams were
unrelated as limited pedigree information was available on the dams.
Genotyping and association study. Animals used in this study were genotyped using the Illumina
Ovine SNP50 BeadChip (Illumina Inc., San Diego, CA, USA), and after quality control we included
48,599 SNPs. Gene annotation was done using the latest sheep genome Ovis_aries_v4.0 sequence
to identify and explore candidate genes. For the association study birth weight residuals were
regressed on each of the SNP genotypes individually, one at a time, using a linear model. Three
analyses were undertaken with the first using all data of birth weight residuals (6,463 records), and
then two analysis, one for using only records for single birth type (3,087 records) and one for twin
birth type (3,376 records).

The significance threshold value (P<2.06x107 = 0.01/48,599) was set for genome-wide
significance by applying the Bonferroni correction. To investigate gene by BT interaction for
significant SNPs effect, a SNP by BT interaction term was fitted in the model used for all data.

RESULTS AND DISCUSSION

Genome-wide association study. Genome-wide significant SNPs were detected for birth weight in
the combined data as well as in the data for single and twin birth types separately (Table 1). There
were 11 significant SNPs (Bonferroni-corrected genome-wide association, P<1.03x10) for birth
weight in the single BT data set, and they were all within one region on OAR6 between 41.00 and
42.09 Mb. The most significant SNP was OAR6_41936490.1 (P = 8.45 x 10°%).

There were 15 significant SNPs for birth weight in the twin BT data, all but one in the same
region on OARG as in the single BT dataset. The most significant SNP was OAR6_41877997.1 (P
= 3.02 x 107%%). Riggio et al. (2013) reported that OAR6_41558126.1, OAR6_41768532.1 and
OARG6_40855809.1 are associated with body weight in Scottish Blackface lambs. There were 10
significant SNPs found in this study that are the same as those SNPs found by Al-Mamun et al.
(2015), who used post weaning weight data with a smaller (1,781 lambs) subset of the data used in
this study.

According to Ovis aries reference genome assembly (Oar_v4.0) there were 12 genes within 17
significant SNPs that span the region between 40.45 and 42.53 Mb on OAR®6, those genes are
LOC105608045, LOC106991210, TRNAS-GGA (transfer RNA serine (anticodon GGA)),
LOC105611897, LOC105615458, LOC106991209, TRNAW-CCA (transfer RNA tryptophan
(anticodon CCA)) and LOC101104829 (60S ribosomal protein L10a pseudogene) which are both
associated with body weight in Merino sheep (Al-Mamun et al., 2014), KCNIP4 (Kv channel
interacting protein 4) which is associated with weaning weight in cattle (Buzanskas et al., 2014) and
body weight aged 12 weeks in chicken (Gu et al., 2011), LOC105611900, ADGRAS3 (adhesion G
protein-coupled receptor A3) which is associated with birth weight in pig (Wang et al., 2016), and
LOC101103396 (cytosolic beta-glucosidase). No information regarding the function of genes of
LOC105608045 ~ LOC106991210, LOC105611897, LOC105615458, LOC106991209,
LOC105611900, and LOC101103396 have been reported in the literature. There were 10 genes (not
including LOC106991210 and LOC105608045) for single BT and 11 genes (not including
LOC105608045) for twin BT that span the same region.

Gene by birth type interaction. Among 17 significant SNPs detected by GWAS there were 9 SNPs

that showed a significant interaction with BT (Table 1). Lambs born as a single have heavier BWT
than those born as twins, indicating that a single BT provides a better environment compared to a
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twin BT environment. The most significant interaction was found for OARG6_41003295.1, where the
allele substitution effect was -0.10 kg in singles whereas it was -0.05 kg in twins. Similar effects
differences were found for other SNPs (Table 2). These result is supported by our previous study
where it was found that the genetic correlation between breeding values for BWT expressed in
singles and twins is less than one (Dakhlan et al. 2017), indicating that BWT expressed in two
different BT environments is genetically not the same trait.

Table 1. SNPs that have significant association on OARG for single and twin birth weight and
with birth weight using total data

SNP name Position (bp) (Zl-lvglal:ae) (singF;;V;I':'Jedata) (twﬁ-\g':'ugata)

OARG6_40449774.1™ 40449774 3.01x10°%

OARG6_40724811 X.1™ 40724812 1.82x10°% 1.09x10%
OAR6_40855809.1" 40855809 2.56x101 2.39x10°7
OARG6_41003295.1* 41003295 4.96x101° 2.47x1013 1.71x100°
$17946.1* 41384761 4.61x10718 2.04x101 1.37x10%8
OARG6_41476497.1* 41476497 8.21x10°Y 1.05x10%° 1.42x10°%
OARG6_41494878.1* 41494878 6.26x107 1.46x1010 9.76x10%
OAR6_41558126.1* 41558126 1.63x1015 8.88x10%° 5.74x10%
OAR6_41583796.1* 41583796 8.47x1015 3.45x10° 5.67x107
OAR6_41709987.1* 41709987 1.03x10 1.12x10% 1.20x107
OAR6_41768532.1" 41768532 8.83x10Y 4.57x1008 2.82x1010
OAR6_41850329.1" 41850329 3.96x1010 1.12x107
OARG6_41877997.1" 41877997 2.75x101° 2.13x10%8 3.02x1013
OARG6_41936490.1* 41936490 4.90x102% 8.45x1015 7.26x1012
OARG6_42094768.1* 42094768 2.97x10Y 2.29x101 1.62x10%
OARG6_42247197.1"™ 42247197 2.24x10°77 6.42x10°%7
OARG6_42528741.1" 42528741 5.02x10%

Note: *Interaction significance is based on o = 5%, ns = not significant interaction

CONCLUSION

In this study 11 and 15 genome-wide significant SNPs were detected for single and twin birth
weight, and 17 genome-wide significant SNPs were associated with birth weight when using all data
of birth weight. Twelve genes spanning the region between 40.45 and 42.53 Mb on OARG6 cause
birth weight variation but 9 SNPs showed a significant interaction with birth type, indicating that
the genes associated with these SNPS may have a different gene action in the two birth type
environments.

Table 2. SNP effects of single and twin birth type and interaction P-value on birth weight
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SNP effect

SNP name - - Interaction P-value
Single BT Twin BT

OAR6_40449774.1 -0.09 -0.04 5.01E-02
OAR6_40724811 X.1 -0.09 -0.06 3.23E-01
OARG6_40855809.1 0.08 0.06 4.14E-01
OAR6_41003295.1 -0.10 -0.05 6.84E-05*
§17946.1 -0.10 -0.05 3.07E-02*
OAR6_41476497.1 -0.10 -0.05 3.61E-02*
OAR6_41494878.1 0.10 0.05 3.55E-02*
OAR6_41558126.1 0.08 0.05 4.40E-02*
OAR6_41583796.1 -0.11 -0.06 3.81E-02*
OAR6_41709987.1 -0.11 -0.06 3.58E-02*
OAR6_41768532.1 0.09 0.06 1.91E-01
OAR6_41850329.1 0.09 0.07 4.54E-01
OAR6_41877997.1 -0.08 -0.06 2.99E-01
OAR6_41936490.1 0.12 0.06 2.21E-02*
OARG6_42094768.1 -0.11 -0.06 4.16E-02*
OARG6_42247197.1 -0.05 -0.05 3.32E-01
OARG6_42528741.1 -0.08 -0.03 3.91E-01

Note: *Interaction significance is based on o = 5%
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SUMMARY

In French sheep breeding programs, several mutations affecting ovulation rate have been
discovered. For mutations located on the X chromosome, the optimal management of such genes is
still a challenge because nucleus flocks are small compared to Australian or New Zealand ram
breeding flocks. A deterministic model was developed, and using sequential quadratic programming
methodology, the combination of mating types that maximized the profit across a range of genotype
costs was determined. Results show that even if losses of genetic gain were quite high compared to
the gain without the major gene, the optimal use of an ovulation rate mutation located on the X
chromosome was beneficial. At the current costs, the optimal strategy that gave the maximal profit
was based on four different mating types. A strategy based on only the use of carrier females mated
to non-carrier males gave similar results to the optimal strategy in terms of profit and genetic gain.
This strategy could be adopted by French breeding programs where this kind of mutation segregates.

INTRODUCTION

The number of lambs produced per female has a large impact on profitability in meat oriented
sheep production. Several mutations affecting ovulation rate, and thus number of lambs, have been
identified. For example, Booroola (Piper and Bindon 1982; Davis et al. 1982), BMP15-Inverdale
(Davis et al. 1982) or BMP15-Grivette (Demars et al. 2013), and GDF9-Cambridge (Hanrahan et
al. 2004). Most often, these polymorphisms have a positive effect on heterozygous carrier
productivity. However, in homozygous ewes, these polymorphisms lead to sterility or excessive
prolificacy and high rates of neonatal lamb mortality. Therefore homozygous females are
undesirable for commercial production.

Several strategies can be implemented to manage these mutations, as outlined by Amer et al.
(1998) for mutations carried by the X chromosome (i.e. Inverdale gene) and Raoul et al. (2017) for
mutations carried by an autosomal chromosome: the proportion of each parental genotype is defined
according to the sex and matings organised. These balance high frequency of heterozygous females
with genetic gain. Increasing the frequency of heterozygotes leads to a change in the proportion of
available candidates which affects the overall selection differential of parents and consequently
genetic gain. Amer et al. (1998) assessed two strategies to manage the Inverdale gene and found that
depending on the strategy implemented, the loss of genetic gain was either 24%, or less than 5%
compared to the gain without major gene. In the case of an autosomal polymorphism, strategies that
enhance either genetic gain or heterozygous female frequency gave equal profit (Raoul et al. 2017)
and were affected by the genotyping cost per animal.

In the French meat sheep production context, the average number of ewes per nucleus flock is
about 300. With such limited flock sizes implementing a strategy which comprises a small
proportion of a given mating type (less than 10%) is difficult. It is not practical at a single flock
level, but could be organized via specialization of several nucleus flocks in which different flocks
focus on a specific mating. This is difficult to co-ordinate, so for practical reason, French breeders
would much prefer strategies based on at most two mating types. Strategies outlined for autosomal
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mutation management have already been discussed for French breeding programs (Raoul et al.
2017). The aim of this study is, for the case of a mutation carried by the X chromosome, to determine
the combination of mating types that provide the maximal profit (optimal strategy) according to
various genotyping costs. This optimal strategy will be compared with more practical strategies in
terms of profit and genetic gain.

MATERIALS AND METHODS

A nucleus population representative of a typical French breeding program based on natural
mating was modelled. A maternal production trait expressed once per year during female’s
reproductive life was considered as the only selected trait (e.g. milk production estimated through
lamb weight at 30 days). Each year, 8000 ewes were mated to 200 rams. Because homozygous
carrier females were not used for reproduction, 2 genotypes, non-carriers and carriers were
respectively considered for males ([+] and [m]) and females ([++] and [m+]) leading to 4 mating
types: 1) Q@ [++] x & [+], 2) Q[++] x & [m], 3) @ [m+] x & [+] and 4) @ [m+] x &' [m]. As the flock
management was assumed to be in a steady-state, the proportion of each mating type across time
was constant. The newborn candidates were divided into categories according to their parental
genotypes (i.e. 4 matings), their sex and their own genotype (2 genotypes for males and 3 genotypes
for females). Generations were overlapping and the maximum reproductive life was 6 years for
males and females, with a maximum parity of 5 (i.e., from 2 to 6 years of age), leading to a
replacement proportion close to 24%.

At each generation, new parents were selected within sex*genotype categories by truncation
selection on EBVS: 4 truncation thresholds (2 per parental genotype) were determined across the
candidate EBV distributions. For example, [++] female replacement were selected from progeny of
mating types 1 and 3. Considering dam parity, these female were selected across 10 EBVs
distributions. Whatever their parental genotype or dam’s age, we selected females whose EBV was
above the unique truncation threshold. Given those thresholds, selection differential and genetic
contribution to the next generation (i.e. probability of gene origin) were calculated for each candidate
category. Evolution of genetic values of parents and their progeny across time for the maternal trait
was derived using the gene flow methodology proposed by Hill (1974): a transition matrix
representing the gene flow from categories at year t to categories at year t+1 was built from genetic
contributions to newborns and accounting for ageing of parents.

Discounted revenues and costs were computed for each cycle (year). The revenues were
proportional to the number of lambs sold per year which was equal to the number of live lambs
produced minus the number selected for replacement, and the number of live lambs produced by
ewes transferred to a commercial flocks. The costs included genotyping costs made at the nucleus
level and proportional breeding costs per ewe (nucleus and transferred ewes). It was assumed that
50% of newborn females would still be available after parent selection, and these surplus females
would be transferred to a commercial flock where they could be retained for up to 5 parities. These
female were not genotyped and only females from mating types 1, 2 and 3 were transferred. It was
assumed that independently of their genotype, the selected maternal trait was related to the cost per
ewe, because the trait was determined based on milk production, with higher production levels
reducing feed costs per lamb. The overall profit was computed as the sum of discounted revenues
minus costs over a long-term time horizon (year 5 to year 30). This overall profit was assessed for
the following sets of parameters: number of lambs produced = 1.5 for non-carrier females, and +0.5
additional lambs for heterozygous females. Given the fertility, the lamb viability (higher for lambs
born from non-carrier), the number of lambs weaned per ewe joined for non-carrier and carrier ewes
were 1.22 and 1.44 respectively. The income per lamb sold was assumed to be constant and the
production cost per lamb depended on the dam’s genetic value for the selected trait and genotype.
Three genotyping costs were tested: no cost, 10 and 20 € per genotyped animal.
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For a given genotyping cost, the relative proportion of mating types that gave the maximum
profit (the optimal strategy) was determined using an algorithm based on sequential quadratic
programming methodology. The gain in the absence of the major gene and two simplified strategies
was also assessed based on 1 mating only, @ [m] x & [++] (S1, corresponding to the “self-sustaining
scheme” outlined by Amer (1998)) or 2 mating types, @ [++] x & [m] and @ [m+] x & [+], (named
S2). The proportion of each mating types of these strategies is shown in Table 1.

Table 1: Proportion (%) of each mating type of alternative strategies assessed for the
management of an ovulation rate mutation® located on the X chromosome.

Mating type QLI P[HIxJm]  P[mxA[+]  Q[mt]x d[m]
Gain without major gene 100 0 0 0
S1 0 0 100 0
S2 0 60 40 0

Biallelic locus (X chromosome) influencing the number of lambs per female (1.5 for [++] and 2.0 for [m+]).

RESULTS AND DISCUSSION

Table 2 gives the proportion of each mating type in the nucleus that maximizes profit according to
the genotyping cost. Results show that when genotyping costs were not included (cost=0), the best
strategy was to bred only carriers females and mate them to non-carrier males.

Table 2: Percentage of each mating type in the optimal strategy to manage an ovulation
rate mutation® located on the X chromosome, according to three genotyping costs (€).

Mating type
genotyping costs  O[++xI[+]  Q[++xd[m]  Q[m+xI[+] Q[m+]x J[m]
optimal 0 0 0 100 0
strategy 10 21 49 12 18
20 39 57 0 4

IBiallelic locus (X chromosome) influencing the number of lambs per female (1.5 for [++] and 2.0 for [m+]).

For a genotyping cost equal to 10 €, the optimal strategies combined the 4 mating types. The
main mating type was non-carrier females mated to carrier males (49% of all matings). In this
strategy 30% of the nucleus females were carriers. For a genotyping cost equal to 20, the proportion
of non-carrier females mated to carrier males reached 57%. The proportion of carrier females in the
nucleus reduced to 4% which corresponded to the minimum requirement to replace carrier males
and produced heterozygous females transferred to commercial flocks.

Table 3 shows the genetic gain achieved by the nucleus for all strategies assessed, the genotyping
requirements, the frequencies of heterozygous females (nucleus and transferred) and the profit.
Apart from the heterozygous frequencies, all results are expressed relative to values obtained for the
optimal strategy when there was no genotype cost (=100 in the first row of Table 3).

Results show that when genotyping costs were not included, the optimal strategy maximized the
heterozygous female frequency in the nucleus. In this case, a proportion of m+ females were selected
for the nucleus, whereas all ++ females were available for transfer. This lead to a reduction in the
heterozygous frequency of transferred females to 24%. When genotyping costs were included, the
strategy maximized the heterozygous frequency of transferred females. In this case, mating type 2
(R[++]x J[m]) which produces m+ females without genotyping was used, allowing production of
heterozygous females to be transferred to a commercial flock. For a moderate genotyping cost (10€),
the number of genotyping remained at a significant level and allowed implementation of a strategy
providing a substantial genetic gain. For a high genotyping cost, the number of genotypes was very
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low and limited to genotyping male progeny of the mating Q[m+]x &[m] only, implemented to
replace male carriers. Even if this mating produced homozygous carrier females which were culled,
it allowed a higher genetic value of carrier males and a higher genetic gain compared to the use of
the mating Q[++]x d[m] This strategy maintained the high proportion of heterozygous females
transferred to a commercial flock and limited losses in genetic gain.

Table 3: Genetic gain, genotyping needs, heterozygous female frequencies and profit of various
strategies according to the genotyping costs (€).

Geno. Genetic Genotyping Het. freq Het. freq
Costs gain! requirements? (nucleus) (transferred) Profit®
0 100.0 100 1.00 0.24 100.0
Optimal strategy 10 100.4 27 0.29 1.00 79.1
20 85.1 4 0.04 1.00 74.6
Gain without
major gene - 1254 0 0.00 0.00 72.5
S1# 0 100.0 100 1.00 0.20 100.0
10 100.0 100 1.00 0.20 77.1
20 100.0 100 1.00 0.20 54.2
S2° 0 103.5 59 0.40 1.00 85.8
10 103.5 59 0.40 1.00 72.4
20 103.5 59 0.40 1.00 58.9

1 100=genetic gain obtained for the optimal strategy at null genotyping costs

2 100=number of genotype for the optimal strategy at null genotyping costs

3 100= profit obtained for the optimal strategy at null genotyping costs

4 Simplified strategy based on one mating type @ [m] x & [++]

5 Simplified strategy based on two mating types @ [++] x & [m] and @ [m+] x & [+]

The genetic gains for the S1 and S2 strategies were similar to those obtained for optimal
strategies, and losses of genetic gain ranged from 22 to 25%, compared to gain without the major
gene, similar to the results obtained by Amer et al. (1998). Profit obtained for S1 was higher than
S2 except at the high genotyping cost. In this case, simple management of the mutation gave lower
profit than its eradication. Given the current genotyping cost, approximately 10 €, S1 is a strategy
which could be considered for French breeding programs. This strategy has quite high genotyping
requirements (two genotyped animals per selected replacement) but results in profitability similar
to the optimal strategy and a high productivity in the nucleus flocks. The use of a tool combining
parentage assignment and mutation genotyping, which is available in France, would decrease the
genotyping cost and make application the S1 strategy more attractive.
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SUMMARY

Theoretical approaches used to calculate economic weights for feed intake and greenhouse gas
emissions intensity that can be used to augment existing selection indexes are outlined. The
approaches are discussed. Evaluation of these traits and their index weightings in a way that makes
them independent of other traits already in the breeding objective is highly desirable to industry
practitioners wishing to minimise disruption to current systems. However, this requires both
biological and statistical concerns associated with definition of residual traits to be overcome.

INTRODUCTION

While collecting records, and undertaking genetic/genomic evaluations of merit for feed intake
and greenhouse gas (GHG) emissions traits is costly, estimated breeding values for these traits are
of growing interest for inclusion in national selection indexes, because of their current and potential
high relative economic importance (Archer et al. 1997; Wall et al. 2010).

Substantial investment has been dedicated towards recording of phenotypes, but the specific
options for explicitly defining the estimated breeding value traits and applying weighting to them
remains contentious. The complexity of the issues is exacerbated by the fact that existing selection
criteria and estimated breeding values are already linked to both the amount of feed consumed and
the amount of GHG emissions by animals in a commercial farm system. This means that double
counting must be avoided, either through the choice of novel estimated breeding value trait
definitions, or through adjustments to the weightings applied to existing traits in the index.

This paper introduces the options for implementation of selection criteria for novel traits
addressing GHG emissions and feed efficiency into selection indexes and discusses their strengths
and weaknesses.

EXISTING SELECTION CRITERIA

Existing selection indexes for farmed ruminant livestock commonly affect GHG emissions
intensity, defined as the amount of GHG emitted from the farm system per unit of product generated.
Methods have recently been developed to show how output-increasing traits dilute the “fixed” GHG
emissions that do not increase in proportion to the extra output. For example higher output per
animal without any increase in animal rearing and maintenance feed requirements improves the
biological efficiency of the farm system (Wall et al. 2010). This concept has been formalised
recently into a methodological framework that can be applied across multiple livestock species
(Amer et al. 2017). It can be expected that the relative importance of existing traits in selection
indexes based on farm profitability will be different to their relative importance based on GHG
emissions intensity. Thus, there is an opportunity to divert the selection direction slightly away from
selection solely for farm profitability, so as to achieve greater than current gains in GHG emissions
intensity (Quinton et al, 2017). For example, increasing breeding female survival improves GHG
emissions intensity through a reduction in feed and associated emissions for rearing of replacements.
In contrast, the trait maternal milk production in meat production systems, while desired by farmers,
typically does not increase market output, and is less feed efficient than converting feed into meat
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directly by the growing meat animal. Thus, weightings on emissions intensity traits do not fully
align with farm profitability weightings. Because traits that improve GHG emissions intensity tend
in most cases to also increase farm profitability, trade-offs from profitability weighting to emissions
intensity weighting will in most cases be very efficient, in that significant improvements in
emissions intensity gains may be achieved with only small reductions in profitability gains. These
gains can be achieved with confidence because of the strong association between production
efficiency (through both genetic and non-genetic means) and GHG emission intensity.

Existing selection indexes also typically account for correlated increases in feed intake
associated with genetic changes in traits which are not direct measures of feed intake. Examples
include the reductions in the economic values for milk component yields and young animal carcase
output to account for well-known associations of these traits with feed intake. Mature breeding
female weight is also often used as a proxy to predict the higher maintenance feed intake, and higher
rearing feed costs associated with larger mature size individuals. While these proxy associations
only account for a proportion of genetic variation in feed intake and production system efficiency,
the proportion that they do account for is achieved with considerable prediction accuracy, because
live weight and dairy system milk traits are typically evaluated with considerable accuracy, in a very
large proportion of selection candidates and at modest recording expense.

DEFINITION OF NEW SELECTION CRITERIA

New measurement technologies may soon make it possible to record the feed intake and
greenhouse gas emissions of animals on a sufficient scale for either conventional or genomic
prediction of estimated breeding values, such that these traits can be included in selection indexes.
It is important to consider though that many selection candidates are likely to be evaluated with only
very modest accuracy. Even with genomic selection approaches, the accuracy of prediction of these
novel selection criteria will at best be modest. This is due to the small size of training populations,
and the risk of selection candidates having insufficient numbers of phenotyped close relatives in the
training population.

Classical selection criteria typically predict fractional components of feed efficiency and GHG
emissions intensity with high accuracy. Examples include milk yield and growth rate. It is well
known that animals that produce more milk, or which grow faster, will on average require more feed
than their contemporaries. The accuracy of novel selection criteria to predict the whole genetic
variation is typically much lower (see Figure 1).

Total genetic variation in novel metric

Low accuracy

Variation predicted by
existing selection criteria

Figure 1. Partitioning of variation in a novel metric into the component predicted at high accuracy
by existing selection criteria, and the component predicted at lower accuracy by phenotypes for the
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novel metric.

Therefore, care must be taken to maximise the efficiency of prediction of the full breeding objective,
while maintaining clarity and transparency of the index to users in industry. There are three options.
Firstly, it is possible to adjust the phenotype for the novel metric so that the estimated breeding value
predicts only variation that is not already predicted by existing selection criteria. The second and
third options involve a more substantial rebuild of the existing selection index. These options are
discussed further below.

OPTION 1. RESIDUAL TRAIT DEFINITION

Residual feed intake is a classic example of implementation of option one. From a breeding
objective perspective, this approach is very elegant, as no adjustment is required to existing selection
criteria and the weightings that are applied to them in the existing breeding objective. The economic
value for feed intake also does not require any major rework. The cost of an extra unit of feed is the
same, irrespective of whether it is an extra unit of total feed intake, or an extra unit of feed required
after accounting for the feed intake expected to be associated with maintenance, growth and/or milk
production (i.e. other traits in the index). Furthermore, it is likely that feed intake is a different
genetic trait (i.e. correlations less than one) across different life stages of the animal, but the selection
criterion breeding value is likely to be based on phenotypes measured at only one life stage (e.g.
feed intake measured in young males for a small test window, used to predict feed intake in both
growing and mature females, with the mature females split into both dry and lactating states). It is
reasonable to hypothesise that the residual feed intake trait will be more highly genetically correlated
across different life stages than total feed intake, but this will be hard to prove definitively in practice.
Never-the-less, some estimation of these correlations is required for appropriate selection index
construction, irrespective of the option taken.

It is important to note that many quantitative geneticists and biologists have reservations about
the definition and use of residual traits, particularly for feed intake. The arguments put forward are
beyond the scope of this paper, but relate to both statistical properties of the resulting traits, and
potential detrimental biological consequences for fitness traits resulting from selection for a narrow
definition of the trait.

OPTION 2. GROSS TRAIT DEFINITION — USE OF CORRELATED PREDICTORS

An alternative to option one is to accommodate the novel metric in the breeding objective without
any adjustments. For example, a gross methane estimated breeding value might be included with a
negative economic value associated with methane output. Similarly, a breeding value for total feed
intake could be included in the breeding objective, either with or without the gross methane trait.
Because output traits such as growth rate, body size and milk production are highly genetically
correlated with both feed intake and GHG emissions associated with methane output, then these
output traits should in principle be included as correlated predictor traits in the genetic evaluation of
the methane or total feed intake breeding values.

The only advantage of this approach is that the need to define an estimated breeding value for a
residual or adjusted trait is circumvented. There are many disadvantages. Any accounting for feed
costs or associated emissions in the existing trait economic values must be removed. This will result
cosmetically in much larger economic weightings for output-increasing genetic traits. The extent to
which existing selection criteria are useful as correlated predictors of feed intake and gross methane
emissions will differ substantially for animals in different life stages. For example, milk yield
potential will be an important predictor of total feed intake in lactating cows, but much less so in
young growing animals. The reverse would be expected for body weight traits recorded in young
animals. This makes the process of estimating breeding values quite arduous, whereby complex
multi-trait predictions are required with many parameters. Many of these parameters will not be well
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estimated. While the same parameters are likely required in option one, in that case they are more
likely to be applied in the definition of the breeding objective, than in the computation of the
estimated breeding values. Finally, for GHG traits, finding the balance of weighting on gross
methane, gross feed intake and conventional traits that achieves a quantified and understood
improvement in emissions intensity will be highly complex. For example, milk yield would be
penalised heavily in an index including gross methane because of the strong association between
milk production and GHG emissions in a lactating dairy cow, and it is well known that gain in milk
production per cow is a substantial contributor to gains in GHG emissions intensity on dairy farms.

OPTION 3. GROSS TRAIT DEFINITION — IGNORING CORRELATED PREDICTORS

Option two is potentially complex to deploy, and so it might be tempting to completely ignore
the fact that existing selection criteria are useful predictors of a component of the genetic variation
in a target trait of interest. This would circumvent the problem stated above in terms of the implied
complexity for the genetic evaluation system. For the situation of total feed intake as a trait with an
economic value in the selection index, some weighting penalty should be left on existing selection
criteria to account for their association with feed intake. Otherwise, it is likely that animals with low
accuracy estimated breeding values for feed intake would have excessive weighting placed on
output- and feed intake-increasing traits. However, the optimal amount of weighting would depend
on the information sources available for both production traits and feed intake for each animal. Thus,
such an implementation would likely be inefficient for many animals.

DISCUSSION AND CONCLUSION

Many quantitative geneticists are currently considering how novel selection criteria for feed
intake and GHG emissions could be included in selection indexes. Two groupings exist. Firstly,
there are researchers focused on development of the new traits, who view the options in terms of
their biological interpretation. Secondly, there are practitioners who see the novel traits as a complex
extension of systems and processes already in place and accepted by industry users. This paper has
presented some options for deployment, and discussed their advantages and disadvantages. In
general, option one, whereby the novel phenotypes are evaluated in a way that makes them
independent of other traits already in the breeding objective is highly desirable to industry
practitioners wishing to minimise disruption to current systems. However, this requires both
biological and statistical concerns associated with definition of residual traits to be overcome.
Failure to do so is likely to delay industry deployment, and so the challenge to overcome the
objections will need to be addressed by those advocating for inclusion of the new information in
industry selection indexes.

REFERENCES

Amer, P, Quinton, C, Hely, F. and Cromie, A. (2017) Animal In submission

Archer, J.A., Arthur, P.F., Herd, R.M., Parnell, P.F. and Pitchford, W.S. (1997) J Anim Sci, 75:2024-
2032

Quinton, C.D., Hely, F.S., Amer, P.R., Byrne, T. and Cromie, A.R. (2017) Animal In submission

Wall, E., Simm, G. and Moran, D. (2010) Animal, 4(3):366-376.

56



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:57-60
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COW REFERENCE POPULATION
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2La Trobe University, Agribio, 5 Ring Road, Bundoora, VIC 3083, Australia

SUMMARY

In recent years there has been increasing interest internationally in estimating breeding values
for traits that can reduce farm costs, such as health traits in livestock. One of the limitations in
developing breeding values for health traits in Australia has been lack of data. In this study, we
have estimated reliabilities of genomic breeding values for health traits when only clinical records
on health disorders are used that are collected from a genomic reference population (Ginfo).
Reliabilities for bulls with daughters in the reference population are 27%, and 25% for mastitis and
an “all-disease” trait, respectively. For bulls with no daughters in the reference population,
reliabilities are 4% and 12% for mastitis and the “all-disease” trait, respectively. In contrast,
reliabilities for reproductive disorders and metabolic diseases were much lower (<15%). Mastitis
and “all-diseases” have higher incidences and also higher heritability estimates than the other
diseases, which is likely to be the reason for higher reliability estimates. Although estimates are
still regarded as low, they are in line with expectations for a newly-recorded trait. Investigation
into the improvement of reliabilities through the use of predictor traits through multi-trait analysis
is the next step for this research.

INTRODUCTION

In the past, genetic selection for milk production was the main focus for the driver of dairy
farm profitability. While making great genetic gains in milk production, an unfavourable
relationship between production and disease resistance has become apparent (Pryce et al. 1997;
Rauw et al. 1998; Koecket al. 2012). Dairy cow health will continue to deteriorate if disease traits,
or their predictors, are not included in breeding objectives. Healthy cows are more productive,
easier to manage, require less intervention, have improved animal welfare and contribute to
profitability by reducing production costs.

Health and fertility traits generally have low heritability estimates (<5%) compared to
production traits (>30%) (Egger-Danner et al.2015). However, there is sufficient genetic variation
to still make selection feasible for low heritable traits, and this has been evident in the dairy
industry with the improvements made with selecting directly on fertility (Pryce et al. 2014).

Traits like health and fertility have large impacts on the dairy industry but sometimes data
availability is low. One option is to obtain records from a dedicated reference population of
genotyped cows with phenotypes of interest. This has already started in Australia with the
establishment of the first 100 Genomic Information Nucleus herds (Ginfo). Ginfo was a large-
scale genotyping project (103 herds and 32,386 cows) to increase the size of the Australian dairy
reference population to improve the reliability of Australian genomic breeding values.

The objectives of this study were to estimate ‘clinical’ genomic health breeding values for the
major disease traits such as mastitis, reproductive disorders, lameness, metabolic disorders and an
overall “all-disease” trait using the health data collected from the Ginfo herds and secondly to
determine the reliability of those estimated breeding values.
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MATERIALS AND METHODS

Health data and genotypes. A total of 487,503 electronic health records were accessed from
90 (of 103) Ginfo herds. Genotypes were available on 15,632 cows that also had health records.
Genotypes of 2,984 bulls with daughter health records were also obtained from DataGene.

Disease categories. The major disease traits (mastitis, reproductive disorders, lameness, and
metabolic disorders) were converted into binary traits. Each disease was coded with a 0 or 1 for
every cow-lactation record, where 1 corresponds to a cow having a particular disease at any time
in a lactation period and 0 if it does not have that disease. For the “all-diseases” category, if a cow
has any record of any disease event, it was coded 1, or otherwise 0 as healthy.

Genomic analysis. The reference dataset contained 11,458 genotyped Holstein cows (out of
the total 15,632). The validation dataset contained 494 genotyped bulls, with 6,989 daughters that
had health records (n = 22,276) but were not genotyped themselves, so not included in the
reference set. Bulls with less than 5 daughters were excluded from the analysis.

For the estimation of genomic breeding values the following linear mixed animal model was
used:

y =i + HYS + Parity + MOC+ B1Agecalving + B2Agecalving?+ CowlD + GRM + e,

where y= observable health traits (binary trait 0 or 1), i = trait mean, HYS = Herd-Year-Season
contemporary group, Parity = 4 levels of parity (1, 2, 3, > 4), MOC = month of calving 1 to 12,
Agecalving = age at calving from 18 months to 220 months (calving date — birth date) fitted as a
covariate and 2" order polynomial, CowlD = random permanent environmental cow effect to
account for repeated measures, GRM = random term for the genetic markers (SNPs), and e =
random error term. The model was fitted using ASReml Version 4 (Gilmour et al., 2015).

Reliability of genomic prediction. Two methods were used to estimate the reliability of
genomic prediction;

_PEV

2

1
1. Theoretical (expected) reliability (R) = % ,

where, the prediction error variance (PEV) = squared standard error of the direct genetic value
(DGV) for each animal in the dataset, and o is the additive genomic variance, obtained from the
REML estimate.

2. Empirical (observed) reliability using cross-validation
=r(DGV, DTD)?

Cross-validation was performed by predicting DGVs for the 494 genotyped bulls that had
daughters with health records but were not genotyped. Reliability was then estimated as a simple
Pearson’s squared correlation between the direct genomic breeding value (DGV) and the corrected
phenotypes (residuals) which were used to calculate the daughter trait deviations (DTD) for each
bull. The reliability was adjusted by dividing it by the average reliability of DTDs (h?*average
effective number of daughters for the genotyped bulls) (Haile-Mariam et al., 2012).
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RESULTS AND DISCUSSION
A summary of the number of records used in the genomic analysis for each health trait is

reported in Table 1 for Holsteins.

Table 1. Summary of the number of cow-lactations, cases of disease (n) recorded for each
health trait (MAST = mastitis, REPRO = reproductive disorders, LAME = lameness,

METAB = metabolic diseases, ALL DIS = “all-diseases”) and heritability estimates (ﬁ2
+standard errors) for Holsteins using all parity records

Traits n h2+S.E
Cow-Lac 33,000
MAST 3,735 0.03 £ 0.004
REPRO 2,498 0.01 £ 0.002
LAME 248 0.00+£0.00
METAB 241 0.002 =+ 0.002
ALL DIS 6,085 0.02 £ 0.004

Mastitis and the all disease category had the largest number of records followed by reproduction,
lameness and metabolic disorder categories. The same patterns were also evident with the
reliabilities of genomic predictions with the highest being mastitis and the all disease category,
followed by reproductive and metabolic disorders (Table 2).

Table 2. Average expected reliabilities (R) of genomic breeding values for cows and bulls
with daughters in the reference dataset and bulls in the validation dataset (V) and Cross-
validation accuracy and reliability (r?) for each health trait (MAST = mastitis, REPRO =
reproductive disorders, LAME = lameness, METAB = metabolic diseases, ALL DIS = all
diseases)

Expected Reliability Cross-Validation

Traits Bulls* Cows Bulls_Vv* Accuracy r?
MAST 0.33 0.23 0.18 0.12 0.04
REPRO 0.15 0.09 0.05 0.02 0.004
METAB 0.04 0.01 -0.01 -0.01 0.003
ALLDIS 0.31 0.20 0.16 0.18 0.12

*Bulls with daughters in the reference set (n= 948); ~Bulls with no daughters in the reference set (n= 494)

The prediction error variance and cross-validation methods produce similar reliability
estimates. The reliabilities are low but are comparatively higher for mastitis and the all disease
category (Table 2). Bulls generally had higher reliabilities than cows, due to bulls having greater
than 5 daughters in the data.

The lower reliability for metabolic disease is associated with fewer records in comparison to
mastitis and the all disease trait. Further, mastitis and the “all-diseases” trait had higher
heritabilities and incidences than the other disease traits (Table 2), possibly an indication of why
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their reliabilities are higher. There is still potential for improving these traits’ reliabilities by two
means: 1) by including DTDs in the reference set for the 948 genotyped bulls, and 2) by
incorporating predictor traits, for example inclusion of both mastitis and SCC data is expected to
improve the reliabilities of GEBVs for mastitis.

The reliability estimate for lameness was unsatisfactory to report (R=0) due to the low number
of records associated with this trait, and zero heritability. However, there may be merit in
recording different types of lameness (e.g. laminitis, etc.) and developing new ways of recording,
such as using a phone app. We expect that collection of more data and distinguishing between
types of lameness may help to develop genomic breeding values for this trait.

CONCLUSIONS

Overall the results from this study are in line with expected reliabilities for new traits with
comparatively small amounts of data and provide a good foundation for further improvement of
reliabilities for health traits. It is encouraging that reasonable reliabilities were achieved for
diseases such as mastitis and the all disease trait. Having more health event data being identified
and made available to the dairy industry, and further investigation in combining predictor traits,
will assist in providing genomic breeding values with greater reliability.
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SUMMARY

Genetic trends are presented for the estimated feed intake of young Angus animals at pasture
and in the feedlot, and of Angus cows at pasture for a self-replacing, 100d-finished production
system. Increases in feed intake over time, both at pasture and in the feedlot, are estimated to have
accompanied genetic gains in productivity traits in Angus cattle. The estimated increases are both
in feed requirement and residual feed intake, with the latter being smaller in magnitude. The need
for industry to record feed intake to facilitate selection for feed efficiency and, in the absence of
this, for stocking rate to be managed in commercial herds to offset increases in feed intake, are
factors briefly discussed in connection with industry realising benefits from genetic improvement.

INTRODUCTION

Feed intake has a major influence on beef production profitability, but it is difficult to measure
in the grazing animal and consequently it is not easily included in genetic evaluation. In Australia,
there is a protocol (eg. Exton 2001) for industry recording of residual or ‘net’ feed intake (ie. feed
intake at the same liveweight and gain). The high cost of measuring feed intake has so far limited
its recording. This paper examines genetic trends since 1985 in the estimated feed requirement and
residual feed intake of young Angus cattle at pasture and in the feedlot, and in the feed
requirement of Angus cows at pasture. Some implications for whether benefits from genetic gain
are being realised in industry are briefly discussed.

METHODS

Breeding objectives. Breeding objectives for net return per cow were derived with BreedObject
(Barwick et al. 2005) for pasture finished, 100d feedlot finished (self-replacing cow herd at
pasture, steers finished at 640kg at 22m), and 220d feedlot finished animals. Results are presented
only for the 100d-fed system, as patterns in results for other systems were similar. Traits in the
breeding objective were sale weight, dressing %, saleable meat %, rump fat depth, marbling score,
feedlot entry weight, weaning weight (direct & maternal), mature cow weight, cow weaning rate,
residual feed intake-pasture, residual feed intake-feedlot, and cow condition score. The general
form of the economic value for traits is Areturns — A feed requirement cost — A non-feed
management cost. The feed requirement associated with a unit change in each objective trait was
estimated using the equation systems described by Freer et al. (2007).

Genetic trends in productivity traits. EBVs for the breeding objective traits were predicted from
the January 2017 BREEDPLAN EBVs of 1,895,481 Angus animals born from 1985 through to
2015, and summarised by year of birth. Predictions used the relation g§ = {i G11™'G12, where g and
fiare EBVs for breeding objective traits and from BREEDPLAN, and Gu and G2 are genetic
covariances among BREEDPLAN EBVs and between these and the objective traits, respectively.
Genetic parameters employed were derived from industry and literature estimates and are those
used for developing Angus indexes in Australia. The trends in Figure 1 are for selected objective
traits of those listed above for the young animal or cow.

* AGBU is a joint venture of NSW Department of Primary Industries and University of New England
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Genetic trends in feed intake. Genetic trends in feed intake were obtained as index trends by
restricting the prices received and costs incurred in the breeding objective to zero except those for
feed. Feed requirement and residual feed intake trends were obtained by omitting or retaining the
residual trait in the objective. In principle, total feed intake is the sum of feed requirement and the
residual trait. Because these components can be correlated, feed intake trends were derived with
both components in the objective. The trends in Figure 2 are in terms of the estimated total feed
intake (excluding any period of surplus feed) per animal (young animal, cow or cow/calf unit) for
that segment of the production system (cow herd, backgrounding at pasture or feedlot finishing).

RESULTS AND DISCUSSION
Figure 1 demonstrates estimated genetic trends occurring in selected objective traits of Angus.
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Figure 1. Genetic trends in breeding objective traits for the young animal or cow in Angus
cattle for a self-replacing cow herd with steers 100-d feedlot finished after backgrounding.
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Figure 2. Genetic trends in the estimated feed intake of Angus cattle for a self-replacing cow
herd with steers 100-d feedlot finished after backgrounding. The trends are in terms of total
feed (excluding any period of surplus feed) for that production system component (cow plus
calf to weaning, backgrounding or feedlot finishing).
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Figure 2 shows the gains in productivity traits in Figure 1 have been accompanied by increases in
estimated feed intake, involving both the animals’ requirement for production and its residual. In
the 100d-fed system, feed intake is estimated to have increased both at pasture and in the feedlot.
In the 30 years between 1985 and 2015 the increase in the intake of cows at pasture (about 3000
MJ, Figure 2g) and the cow and calf unit at pasture (about 5000 MJ; calves at pasture from
weaning at 7m until feedlot entry at 18.5m), means the expected DSE rating of Angus cows has
also increased.

The estimated increases in feed intake (Figure 2), in particular residual feed intake, illustrate the
need for industry recording of feed intake so feed efficiency can be improved along with
productivity. Selection indexes derived for industry in the past with BreedObject (Barwick and
Henzell 2005), that have increased over time (not presented), take account of the cost of the
increased feed requirement but residual feed intake has only recently been included (released
2016). Figures 2¢ and 2d show residual feed intakes of Angus are increasing rather than decreasing
(decreases are needed to increase feed efficiency), reflecting the existence of underlying low
positive genetic correlations between feed requirement and residual feed traits. Given this
correlation not recording feed intake to estimate residual feed intake EBVs and continued selection
for increased growth and mature size will allow beef feed efficiency to continue to decrease.

The results also suggest that animal genetic improvement and pasture stocking rate
management need to be considered jointly. In an earlier illustration (Barwick et al. 2011) it was
shown that genetic improvement was likely to have the extra benefit of improving pasture
utilisation when stocking rates are low. At high stocking rates, it was shown that benefits from
genetic improvement may not be realised unless stocking rate is reduced or other feed is provided.
Without this management change, there is environmental decline from the point of view of the
animal, as individual feed demands have increased. This situation could also be occurring in other
production systems and other grazing species. Graham et al. (2015) drew attention to the
possibility of other forms of environmental decline limiting benefits from genetic improvement
being realised.

Though data are scarce, it is commonly held that industry pasture utilisation rates are low.
Anecdotal evidence from industry suggests this may be changing, though it is not clear if this is
only at particular times of the year and in lower-rainfall seasons. The beef industry needs more
recording of feed intake so feed efficiency can be improved. In the absence of efficiency
improvement, when pasture utilisation is high, it is critical for benefits to be realised from genetic
improvement that commercial producers are aware of the trends in feed intake that accompany
genetically higher-performing animals. It may also help for industry selection indexes to be
derived at two or more levels of feed availability/cost (eg. supplementary feed; $100/tonne vs
$300/tonne).
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SUMMARY

Portable accumulation chambers (PAC) enable enteric gas emissions of sheep to be measured
under field conditions. Feed intake is highly correlated with methane emission and should be
accounted for in models for parameter estimation of methane emissions, but it cannot be measured
in the field. In this study, different linear mixed models were fitted to methane and carbon dioxide
emissions and oxygen consumption to investigate the consequences of not adjusting for feed intake,
as well as adjusting for effects that indirectly account for feed intake, such as live weight, carbon
dioxide or oxygen. The significance of permanent environmental effects was also tested. The results
demonstrate that feed intake accounts for a considerable amount of the variance in methane
emissions. In this animal house experiment, where sheep were fed at 1.5 x maintenance, much of
the variation in feed intake appeared to be related to non-genetic effects of the animal. Consequently,
fitting a permanent environmental effect yielded similar heritability estimates to those of models
that adjusted for feed intake. Repeated measures of greenhouse gas emission in PAC require more
complex models including permanent environmental effects to produce acceptable estimates.

INTRODUCTION

Enteric methane emissions are strongly correlated with feed intake. Criticism has been raised,
that, without appropriate measures of production, selection to genetically reduce methane emissions
could lead to decreased production because of decreased feed intake (Arthur et al. 2009). One
approach is therefore to adjust methane emissions for feed intake. Technologies to measure methane
and other enteric gas emissions of sheep include respiration chambers (RC) and portable
accumulation chambers (PAC). The advantage of PAC is that they can be used in the field; the
disadvantage is that under field conditions, it is not possible to measure feed intake.

The aim of this study was quantify the differences in variance components and heritability
estimates for enteric gas emissions and oxygen consumption from models with and without
adjustment for feed intake, or proxies for feed intake that can easily be measured. In addition, the
outcomes of fitting permanent environmental effects were explored.

MATERIALS AND METHODS

Data. Enteric gas emission traits were measured on 512 Information Nucleus Flock (INF)
follower ewes at Armidale, New South Wales. The ewes were born between August 2007 and
October 2013. Data were collected in an indoor facility using PAC with two measurement protocols
that differed in time off feed prior to measurement. Protocol PACO measured animals immediately
off feed and PAC1 kept animals 1 hr off feed prior to measurement. Methane, CO, and O, (ml/min),
live weights (kg) and feed intake (g) were recorded. Measurements from the two PAC protocols
were highly correlated, with genetic correlations ranging from 0.75 to 1.00. Therefore, records for
PACO and PAC1 were regarded as repeat measures, resulting in two PAC measurements per animal.
Ewes were tested from mid-April 2015 to mid-March 2016.

Feed was offered in the mornings at 1.5 x maintenance requirements and feed intake recorded
from 8 am on the day prior to PAC measurements to 8 am on the day of measurement (FIDP) and
from 8 am on the measurement day until the time the animal entered the PAC (FIOD).
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Statistical analysis. Variance components and heritabilities for gas emission traits were estimated
using ASReml (Gilmour et al. 2009). An extensive back-pedigree with 13 genetic groups was used.
Univariate mixed animal repeatability models were run to estimate parameters. Fixed effects
included test batch, birth year, measurement date, measurement protocol, testing run (RUN, 7 levels,
with 4 for PACO and 3 for PAC1), and PAC (from 1 to 12). Ten models were tested for CO, and O,
and twelve models for CHa. For each gas trait, the first model fitted all significant fixed effects, but
not direct or indirect adjustment for feed intake (Model no adj). Other models fitted either feed
intake (FIOD and FIDP and their interaction with RUN) as Model FI, live weight (Model LWT),
feed intake and live weight (Model FI+LWT), CO, (Model CO;) or O, (Model O). Only significant
fixed effects and interactions were retained in the final models. All models were fitted with and
without permanent environmental effect (PE). Random effects included animal ID to estimate the
genetic variance and a permanent environmental effect, fitted as an identity matrix of the animal ID.

RESULTS AND DISCUSSION

Basic features of the dataset and the distribution of their raw phenotypes are shown in Table 1.
Table 2 shows the variance components and resulting heritability estimates for CHs, CO2 and O;
from the different models, with and without adjustment for feed intake or a substitute (LWT, CO;
or O2) without and with permanent environmental effect (+PE). For all traits, the phenotypic
variances decreased after fitting FI, LWT, FI and LWT or CO; or O, as might be expected. For
CHj,, feed intake accounted for the most variation, whereas O, accounted for most of the variation
in CO. and vice versa. As a consequence of the reduction in phenotypic variances, genetic and
environmental variances were also reduced, with environmental variance being less affected than
genetic variance.

Table 1. Mean (+sd: standard deviation), minimum (Min) and maximum (Max) of methane
(CHa), carbon dioxide (CO3) and oxygen (Oz) (in ml/min)

Mean (+ sd)) Min Max
CHs 36.27+9.35 497 75.31
CO2  422.30 + 82.56 207.40 734.90
o)) -451.60 +77.43 -732.50  -257.80

The change in heritability estimates also reflects the substantial amount of variance related to the
covariates fitted. Previously reported heritabilities for CH, from field measurements of sheep in
PAC ranged from 0.05 — 0.19 (Robinson et al. 2014a; Goopy et al. 2016). As might be expected,
the results from this controlled animal house study were higher than published estimates from field
measurements. Results from the different models in this study support the conclusion of Robinson
et al. (2014b), that a substantial proportion of the variation in CH4 emissions is related to variation
in feed intake. In fact, economic modelling of breeding objectives suggests that methane
measurements can be used as a proxy for feed intake, and that the resulting improvements in feed
efficiency will often be more valuable than the reductions in greenhouse gas emissions (Robinson
and Oddy 2016).

Robinson et al. (2014b) highlighted the importance of PE effects in regards to CH4 emission
traits. They noted significant effects of twins being reared as singles and hypothesised about other
causes, such as diet, rumen volume and their impacts on short or long-term variation in rumen
microbial composition. In our study, the effect of fitting a permanent environmental effect was tested
for all models (+PE). As assessed by likelihood ratio tests, the significance of PE was not associated
with a particular trait, but appeared to depend on the covariates that were fitted. The more variance
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could be captured by the covariate, i.e. Fl and also CO; for O, emissions, the less variance was due
to the PE effect. Interestingly, fitting a permanent environmental effect in model no adj yielded
similar heritability estimates for CHs, CO> and O, to those from model FI. The repeated measures
in this dataset allowed both permanent environmental effects and measurement errors to be
estimated. Another approach would be to explore the measurements from PACO and PACL in a
bivariate analysis as correlated traits.

Table 2. Genetic (Va), residual (Ve), phenotypic (Ve) and permanent environmental (Vee)
variance component (including significance), log likelihood (Logl) for each model with and
without permanent environmental effect and heritability estimates (h?) for CH4, CO2
emission and Oz consumption

CH4
Ve Ve Ve Vpe Logl h?
no adj 45.25 27.10 72.35 -- -2697.32 0.63 (0.03)
no adj + PE 25.77 26.88 70.62 17.98 -2696.89 0.36 (0.14)
LWT 36.64 27.32 63.97 -- -2666.19 0.57 (0.03)
LWT + PE 9.54 26.88 61.70 25.28** -2660.79 0.15(0.13)
CO2 20.62 17.64 38.26 -- -2416.55 0.54 (0.03)
CO2 + PE 15.06 17.52 37.85 5.27 -2415.14 0.40(0.13)
02 17.54 18.34 35.88 -- -2404.53 0.49 (0.03)
02+ PE 12.70 18.20 35.56 4.66 -2403.16 0.36 (0.13)
Fl 5.09 14.32 19.41 -- -2974.91 0.26 (0.04)
FI + PE 3.78 14.22 19.35 1.35%** -2173.48 0.20(0.11)
LWT+FI 4.35 14.17 18.53 -- -2158.48 0.23(0.04)
LWT+FI+PE 2.98 14.06 18.48 1.44 -2157.50 0.16 (0.10)
CO2
Ve Ve Vp Vpe Logl h?
no adj 2805.21 1750.00 4555.20 -- -4866.12 0.62 (0.03)
no adj + PE 1554.93 1734.66 4455.60 1156.03* -4863.86 0.35(0.14)
LWT 1775.60 1772.57 3548.20 -- -4793.18 0.50 (0.03)
LWT + PE 63.73 1734.82 3424.70 1626.17***  -4783.88 0.02 (0.12)
02 48.67 584.76 633.44 -- -3990.31 0.08 (0.04)
02+ PE 15.66 577.65 633.13 39.83 -3988.94 0.02 (0.08)
Fl 765.72 1309.08 2074.80 -- -4578.01 0.37(0.04)
FI + PE 232.22 1288.01 2044.80 524.61* -4574.84 0.11(0.12)
LWT+FI 670.32 1262.78 1933.10 -- -4547.54 0.35(0.04)
LWT+FI+PE 224.89 1243.27 1911.00 442 .86* -4544.,99 0.12(0.12)
02
Ve Ve Vp Vpe Logl h?
no adj 1985.11 1099.85 3085.00 -- -4666.59 0.64 (0.03)
no adj + PE 1366.19 1093.60 3028.40 568.65 -4665.34 0.44 (0.15)
LWT 1200.57 1113.36 2313.90 -- -4583.37 0.52 (0.03)
LWT + PE 50.39 1092.20 2227.00 1084.39***  -4574.16 0.02 (0.12)
CO2 182.16 543.77 725.93 -- -4058.93 0.19 (0.04)
CO2 + PE 93.33 535.94 722.72 93.33 -4057.45 0.13(0.10)
Fl 621.80 887.77 1509.60 -- -4420.35 0.41(0.04)
Fl + PE 212.64 876.54 1482.50 393.31** -4417.26 0.14 (0.13)
LWT+FI 543.05 851.49 1394.50 -- -4686.23 0.39 (0.04)
LWT+FI+PE 116.01 837.05 1369.90 416.81*** -4382.35 0.08 (0.12)

Significance of log likelihood ratio test: P < 0.05 *;P < 0.01 **, P < 0.001***
Despite relatively small numbers of animals (total of 512), the PE was more often significant
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than not. Live weight, is of course highly heritable, and when it was accounted for in Model LWT,
the estimate of genetic variation was small for CO;, but there was still variation due to PE effects.
One possible explanation is that in some animals both CO; production and O, consumption have a
different relationship with live weight, and, to a lesser extent, feed intake. What this might be is yet
to be determined, but could include learned behaviour such as stress responses that might contribute
to additional PE variation in O, consumption and CO, emissions.

Robinson et al. (2016) noted that the repeatability of methane measurements diminishes over
time, falling from an average of 0.48 for measurements in the same week to 0.20 for the average of
6 repeated measurements on the same animals from 2009-2014. This suggests that some of the
variation attributed to PE effects could in fact be temporary and (perhaps to a greater extent than
genetic effects) relate to factors affecting the animal during the particular month each batch of sheep
spent in the animal house.

CONCLUSION

Ideally feed intake is accounted for in models for genetic parameter estimation of CH, emission,
however feed intake measures are difficult to obtain in the field. Repeated measures of enteric gas
emission in sheep provide an opportunity to estimate both measurement errors and non-genetic
animal environmental effects. The latter were usually significant and accounted for some variation
in feed intake and other factors that, in models ignoring the PE effect, would be included in estimates
of the genetic variance and result in inflated estimates of heritability.
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SUMMARY

The aim of this study was to develop a future-scenarios selection tool to assist farmers in
making selection decisions, that combines the current national dairy selection index, known as the
Balanced Performance Index (BPI) with a proposed heat tolerance (HT) genomic estimated
breeding value (GEBV). Heat tolerance GEBV was estimated for 12,062 genotyped cows and
10,981 bulls, using an established genomic-prediction equation. Publicly available future daily
average temperature and humidity data were used to calculate mean daily temperature-humidity
index for each dairy herd. One way to ascertain heat tolerance is the rate of decline in milk
production traits to rising heat loads, this definition was the basis of the heat tolerance breeding
values (BV_HT). An economic estimate of an individual cow’s BV_HT was calculated by
multiplying HT GEBVs for milk, fat and protein yields by their respective economic values that
are used in the BPI. This was scaled for each region by multiplying BV_HT by the heat load,
which is the temperature-humidity index (THI) units exceeding the threshold per year at a
particular location. BV_HT were incorporated into the BPI as: BPI_HT = BPI+ BV_HT; where
BPI_HT is the ‘augmented BPI’ breeding value including HT. A web-based application was
developed enabling farmers to predict the future heat load of a herd and take steps to aim at
genetic improvement in future generations by selecting bulls and cows that rank high for the
‘augmented BPI’.

INTRODUCTION

It is widely recognised that heat stress has significant impacts on the performance of dairy
cows. When heat stressed, animals consume less feed, followed by a decline in milk yield (St-
Pierre et al., 2003). In Australia, it is projected that major dairying regions will experience an
increase in daily average temperatures as well as more frequent heat waves (CSIRO and BoM,
2015). Therefore, there is a need for the industry to develop strategies to mitigate the impacts of a
warming climate on animal performance.

Apart from providing cooling devices and managing diets for cows on hot days, selection for
more heat tolerant animals is an approach worthy of investigation. In this regard, Nguyen et al.
(2016) developed genomic estimated breeding values (GEBVs) for heat tolerance (HT) for
Australian Holsteins and Jerseys, which is the rate of decline in milk production traits to rising
heat loads. The study found that using high-density single-nucleotide polymorphism (SNP)
genotypes, HT GEBV can be predicted with an accuracy ranging between 0.42-0.61. The HT
GEBV has unfavourable correlations with production traits, but a favourable correlation with
fertility. In addition, the HT GEBVs were validated through an experiment where genomically
predicted heat-susceptible and predicted heat-tolerant animals show a significant difference in milk
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yield losses, and rectal and intra-vaginal temperatures when experiencing a mild simulated heat
wave (Garner et al., 2016). A breeding value for HT is planned to be released to the dairy industry
in the near future.

Given the complexity in the relationships between HT and other traits in the current selection
indices, one relevant question is how farmers can balance the selection for HT with their existing
priorities. Farmers in regions where heat stress is more of an issue may prioritise selection for HT
to a greater extent than those in cooler climates. In the present study, we developed a future-
scenarios selection tool that enables farmers to make informed decisions so as to balance the
selection of current economic drivers traits in the BPI with HT simultaneously by varying the
weight applied to HT_BV for individual farms by heat load.

MATERIALS AND METHODS

Projected future climate data. The Commonwealth Scientific and Industrial Research
Organisation (CSIRO) and the Bureau of Meteorology (BoM) have provided details of projected
future climate-change scenarios in Australia over the 21st century (CSIRO and BoM, 2015).
Appropriate climate projection models used in the present study were selected following the
advice of CSIRO climate scientists. We chose medium and high emission scenarios (RCP4.5 and
RCP8.5 (carbon dioxide level of 540 x10® pumol/mol by 2100) and RCP8.5 (carbon dioxide
concentration of 940 x 10° umol/mol by 2100) as examples.

On the basis of the selected models, projected average daily temperature and humidity for
weather stations (namely weather station data) were downloaded from the ‘Climate Change in
Australia’ website (http://www.climatechangeinaustralia.gov.au/, 01 March 2016). In addition,
gridded average daily temperature and humidity data (namely gridded data) were also obtained
directly from the Climate Research and Services, CSIRO Oceans and Atmosphere (Aspendale,
Victoria). We used data from the nearest grid (<1 km distance to weather station) to patch missing
weather-station data. Weather data were matched to the nearest postcode provided the distance
between the weather station and centroid of the postcode was no more than 60 km.

Daily average THI was calculated for each day from 2020 to 2035, as per Nguyen et al. (2016).
According to Hayes et al. (2003), averaged THI of the test day and 1, 2, 3 and 4 days before the
test day of exceeding 60 could result in a decline in milk yield. Therefore, we defined heat load of
a given year as the total of five-consecutive-day-average THI units exceeding 60 in that year,
which is referred to as THI hereafter.

HT and BPI breeding values. In order to calculate the future profitability of a herd with and
without selection for HT, and under different climate-change scenarios, the current genetic merit
of a herd is required, as well as the genetic merit of the bulls on offer. So as to have a reasonably
large group of cows and bulls that would span many herds and many bull-selection possibilities,
HT GEBVs of genotyped cows and bulls were predicted using the equation developed by Nguyen
et al. (2016) for all genotyped cows and bulls. BPIs for both cows and bulls of the February 2016
release were obtained from DataGene (formally Australian Dairy Herd Improvement Scheme).

The heat-tolerance breeding value (BV_HT) in dollars (so it can be readily combined with the
BPI) was expressed as:

BV_HT = (EW,,GEBVht,, + EW;GEBVht;+ EW,GEBVht,) HL,

where BV_HT is the breeding value of heat tolerance in monetary term; EW,,, = —0.10, EW; =
1.79, EW, = 6.92 are economic weight of milk, fat and protein respectively, which are currently
used in the BPI (Byrne et al., 2016); GEBVht,,, GEBVht; and GEBVht,, are genomic breeding
values of heat tolerance in relation to milk, fat and protein respectively; HL is the total number of
THI units exceeding 60 in a year.

We combined BPI and BV_HT for each animal as follows:
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BPI_HT = BPI+ BV_HT,

Where BPI_HT is the ‘augmented BPI’ breeding value with heat tolerance included; and
BV_HT is breeding value of heat tolerance.

Data visualisation. The application HOTdAIRy v.01 developed in R (R Core Team 2015),
using the ‘shiny’ package (Chang et al., 2016) in RStudio (RStudio Team, 2015). We obtained the
postal area shape file from the Australian Bureau of Statistics for postcode boundaries
(http://lwww.abs.gov.au/, 01 March 2016).

RESULTS AND DISCUSSION

We successfully obtained daily average temperature and humidity for 58 weather stations in
Australia. Of these, we were able to match 57 stations with 1861 postcodes covering 3836 herds
(85.4% of the total number of Australian dairy herds). The average number of days per year with
THI exceeding the threshold of 60 were 313, 235, 242, 176, 164, 120, 121 in Queensland, New
South Wales, Western Australia, South Australia, Northern Victoria, Gippsland and Western
Victoria, respectively. The average number of THI units exceeding the threshold (THI > = 60) per
year ranged from 2,587 (Gippsland) to 2,676 (Western Victoria), 3,240 (Northern Victoria), 3,445
(South Australia), 4,338 (Western Australia) and 6,019 (Queensland), indicating that all major
dairying regions will be affected by excessive heat load, but at different levels.

For demonstration purposes, we have included only information from genotyped cows that
currently belong to the Genomic Information Nucleus (Ginfo) herds, and genomic bulls, in our
tool. We successfully estimated HT GEBV for 12,062 genotyped cows (10,680 Holsteins and
1,382 Jerseys from 80 Ginfo herds), and 10,981 genomic bulls (9,306 Holsteins and 1,675
Jerseys). The BV_HT significantly varied according to the level of heat load. For example, if the
heat load of year 2025 was applied, BV_HT among the 10,981 bulls analysed ranged between
AUS$-29 to A$21 per cow (mean set at zero) under the conditions in Johanna, Victoria, but the
range of BV_HT changes to AU$-174 to AU$126 per cow at the conditions in Rockhampton,
Queensland. The correlation between BPI and BPI_HT for bulls was, therefore, higher (0.99) if
the heat load in Johanna was applied, than it was under Rockhampton (0.95) conditions. Figure 1
shows an example scatter plot of BPI vs BPI_HT for the bulls under the conditions in
Rockhamton.

*|BPI_HT

BPI

Figure 1. An example scatter plot between BP1_HT and BPI for 10,981 bulls (FFFF = Holsteins
and JJJJ = Jerseys) under the conditions in Rockhamton.

A typical workflow in  the web-based application HOTdAIRy  v.01
(https://tnshinyr.shinyapps.io/app12) begins with providing inputs, including a herd postcode, a
herd ID, a future year (2020, 2025, 2030 or 2035) and a greenhouse gas-emission scenario. The
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outputs include the amount of heat load calculated based on the inputs, scatter plots between
BPI_HT and BPI for cows and bulls, and relevant tables which can be sorted and downloaded. The
ranked cow and heifer list can then be used to make selection decisions on which animal to keep in
the herd, and which to cull, on the basis of predicted performance with the projected future heat
load. The highest-ranked bulls maximising the profit under the given projected future climate
conditions on the farm.

One special characteristic of HT is that its breeding value depends on the amount of heat load
animals are expected to experience. Heat load varies between regions and our approach was to use
heat load as a weight for the trait, i.e. in regions with high heat load, emphasis on selection for HT
is higher and vice versa. That means BV_HT for an animal depends on the herd locality. In the
study, we were able to use projected climate data from CSIRO and BoM (2015) to determine
levels of heat load for most dairying regions in Australia, which also serves as a weight for HT in
the ‘augmented BPI’ index. This method of inclusion of a new trait opens opportunities for the
inclusion of other traits of this nature in the index.

Our demo version of future-scenarios selection tool is currently a standalone web-based
application. However, it is also flexible in terms of incorporation into other existing tools that
farmers are currently using. Once possible option is to integrate it into the Good Bulls app
(http://ww.datagene.com.au/); thereby, BPI_HT breeding values and ranking can be viewed
along with BPI, HWI and TWI.

In summary, we have created a practical future-scenarios selection tool that can be used by
dairy farmers and breeders to make informed decisions in selecting for HT and BPI, that is
customised to their dairy region and includes options for various future climate-change scenarios.
The tool will become particularly relevant given the continuing increase in average temperature
and frequency of heat-wave events. Our study is the first attempt to incorporate HT into selection
indices for dairy cattle. It is important because profitability and animal welfare can be improved
simultaneously through identifying animals that are able to cope with current and future climate
change in a way that is consistent with the impact of HT on local farm profitability.

ACKNOWLEDGEMENTS

We thank the Department of Agriculture and Water Resources (Canberra, Australia) for
funding this work, Dairy Futures Cooperative Research Centre for overall support, and DataGene
(Melbourne, Australia) for providing breeding values for BPI. Special thanks go to Dr John Clark
of the Climate Research and Services, CSIRO Oceans and Atmosphere (Aspendale, Victoria) for
advice on selection of climate models and for sharing gridded projected future-climate data.

REFERENCES

Byrne T. J,, Santos B. F. S., Amer P. R., Martin-Collado D., Pryce J. E., and Axford M. (2016). J
Dairy Sci 99:8146-8167.

Chang W., Cheng J., Allaire J. J.,, Xie Y., and McPherson J. (2016). http://CRAN.R-
project.org/package=shiny.

CSIRO and BoM (2015). CSIRO and Bureau of Meteorology, Australia.

Garner J. B., Douglas M., Williams R. S. O., Wales W. J., Nguyen T. T. T., and Hayes B. J.
(2016). Nature Scientific Reports 6:1-8.

Hayes B. J., Carrick M., Bowman P., and Goddard M. E. (2003) J Dairy Sci 86:3736-3744.

Nguyen T. T. T., Bowman P., Haile-Mariam M., Pryce J. E., and Hayes B. J. (2016). J Dairy Sci
99:2849-2862.

RStudio Team. 2015. http://www.rstudio.com/.

St-Pierre N. R., Cobanov B., and Schnitkey G. (2003). J Dairy Sci 86:52-77.

72



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:73-80

CAN WE FRAME AND UNDERSTAND CROSS-VALIDATION RESULTS IN ANIMAL
BREEDING?

A. Legarral, A. Reverter?

1 UMR 1388 GenPhySE, INRA, Castanet Tolosan, France
2 CSIRO Agriculture and Food, 306 Carmody Rd., St. Lucia, QLD 4067, Australia

SUMMARY

Performance of genomic selection is typically evaluated by cross-validation. In this work we
review and point out some problems and features of the cross-validation metrics. Then we propose
a semiparametric alternative using statistics derived from the “Method R”.

INTRODUCTION

Genomic prediction of breeding values via genomic BLUP (GBLUP) is expensive and requires
initial and continuous investments in genotyping. State of the art theory so far does not yield
convincing a priori estimates of the increased accuracy of genomic prediction vs. pedigree-based
predictions. Thus, cross-validation has been extensively used (e.g. Legarra et al. 2008; VanRaden
et al. 2009; Mantysaari et al. 2010; Christensen et al. 2012). The theory of cross-validation is
poorly understood in the context of heavily related and selected data (but see (Gianola and Schén,
2016)). For instance, how to evaluate accuracy for maternal traits is very unclear. Here we provide
a brief review of this topic and suggest some options.

CROSS-VALIDATION BIAS AND ACCURACY

What cross-validation? Forecasters such as pedigree-BLUP and GBLUP may behave differently
according to what the “forecasted” target is. Breeders have a difficult task, namely, to forecast the
best reproducers in order to select them. In this, they are different from machine learners, whose
objective is (from our perspective) to forecast present phenomena. Thus, it is rather obvious that
for breeders the best method is such that allows taking the best selection decisions, that it is, the
method that best predicts future performance of an individual knowing its genetic background.

We will call this forward cross-validation. Its features are three-fold: (1) It needs the definition
of a cut-off date; (2) It needs the construction of “Full” and “Reduced” data sets (Mantysaari et al.
2010; Olson et al. 2011); and (3) In its crudest form, it does not provide any form of randomisation
and therefore a point estimate of goodness of prediction is obtained, without any associated
measure of uncertainty.

In contrast, the classical random folding k-fold cross-validation in its most classic form splits
randomly the data into k distinct sets and predicts one set from the remaining k-1 sets. Its key
features include: (1) Extremely simple to implement; (2) Provides estimates of standard error of
metrics of cross-validation; (3) Not realistic in an animal breeding setting and the ranking of
methods is not suitable for practical purposes; and (4) Tends to overfit (case of leave-one-out)

Some more esoteric forms of cross-validation exist. Legarra et al. (2008) split folds “across”
or “within” families, obtaining very different results. But this is undoable (and little useful) for
regular animal breeding data. The k-means for cross-validation (Saatchi et al. 2011) separates
individuals into “most distinct” folds, and the i-th fold is predicted from the remaining k-1 folds.
This does not answer the breeder’s question, which most often wants to predict from close, not
from far animals.

Which metrics? To assess the predictive ability of the different forecasters, animal breeders are
highly formatted by Henderson’s BLUP, which in turn was highly dependent upon dairy cattle
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genetic improvement. Metrics commonly used come from linear regression, named in this paper
predictive abilities, are:

. _ AN . __ Cov(u,), L cov(u,in)
Bias: by = E(u — 1); Slope: b, = ar@ Accuracy: r = ertover®

Dispersion

® 0 Genetic gain

FRV

Sometimes mean squared error is used (MSE = b2 + o2(1 + r?/b? — 2r2/b,)). Properties of
BLUP in absence of selection are no bias, slope of 1, and maximum accuracy. Henderson defined
this at the individual level on a

frequentist basis (over conceptual

¥ repetitions). Bias=0 and slope=1

® & ® ensure fair comparisons across

® ° old and young animals. This is

important if the scheme mixes

Young animals proven and young animals, like

Bad accuracy dairy cattle. It seems less relevant

Old animals in schemes were reproducers are

Good accuracy culled quickly (pigs, chicken)

with beef species falling someone

TIME in the middle, we believe.

Deviations may exist if there is

selection, because bias and slope
are related to genetic gain and

Figure 1 Typical scenario for retrospective analysis.
dispersion (see Figure 1).

What is it meant by classical bias? Animal breeders probably agree to Henderson’s (1973)
sentence “most users would, | think, be reluctant deliberately to bias comparisons between
different groups, for example to underevaluate young sires as compared to older ones”. Here we

have an operational definition of bias. In formal terms this implies that at a given point in time:

[Henderson] __ 15 2 ’ ’
bo - (1 ugroupl -1 ugroupz) - (1 ugroupl -1 ugroupz)

_ 155 ! 155 !
- (1 Ugroupr — 1 ugroupl) - (1 Ugroupz — 1 ugroupz)

This definition has practical implications: if the candidates are chosen across groups, selection

decisions are optimal if there is no bias. Thus, it is expected that bY*"*”**™ = 0. There may be

several definitions of groups: (1) Different conditions (grazing vs. indoor fed cattle). This case
should be addressed by the model used for evaluation; (2) Within country, different amounts of
information that cumulate in time (progeny-tested vs. genomic bulls). This case is strongly
affected by within-country genetic trend (see below); (3) Same amount of information, but
different origins (US vs. FR). This case is most affected by wrong estimates of the difference in
genetic level across countries (Bonaiti et al. 1993; Powell and Wiggans 1994).

The Interbull definition. Interbull uses retrospective tests (Boichard et al. 1995; Mantysaari et al.
2010) that compare EBV’s before and after progeny testing.

b([)lnterbull] — 1,ﬁt _ 1’ﬁt—1
If progeny testing gives exact EBVSs, then @, = u, and b™*™”*"l = 1'u — 1'@i,_, .Note that

I but if groupl is “very old” proven bulls and #, = u, and group2 is

genomic bulls (then becoming proven bulls) then pl*endersonl — plmterbull] ‘This may he rather

obvious, but it only holds for progeny testing data.

[Henderson] [Interbull
b * b
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What happens under selection? Assume that we want to compare selection candidates with
“proven” animals. If there is no selection, then 1'ug.4yp1 = 1'Ugroyp, and there is actually no

need to make the test. Alas, if there is selection then

b([)Henderson] _ (1’ﬁgroup1 roupz) (1 groupl — groupz) = n(ﬁ - A)

in other words, unbiasedness requires a correct (unbiased!) estimate of the realized genetic trend.

What is overdispersion, a.k.a {Interbull, genomic} bias? Is it affected by selection?

Dairy cattle breeders are much concerned by overdispersion of genomic proofs. If there is too
much dispersion of &g, ,m;c, the retained candidates will have unfairly high 2., ;.. This could
be staten more formally as “the mean of the EBVs of the selected candidates should be equal to the
mean of the TBVs”. If selection is by truncation and under multivariate normality, the true mean
after selection is ur = (1'u)/n + ira,, but this mean is (implicitly) predicted before selection as
ug = ('w)/n+ ioy.

For ur = pg to hold, we need the first unbiasedness condition (b, above), plus a second
condition, oy = ra,. But this condition only holds if Cov(u, @) = Var (@), which amounts to the
regression coefficient to be 1:

Cov(u, i)
L7 Var(d)

This is the Interbull official, and most put forward, test of unbiasedness and nowadays more
often called as “bias”. It is easy to see why b; = 1 may not hold, namely, because selection
modifies variances in rather unpredictable manners. The expected Cov(u, ) = Var(ii) holds
under quite restrictive conditions (Henderson 1982).

Evaluations can easily be biased. Unbiasedness of current genetic evaluations is more wishful
thinking than an established fact. Unbiasedness exist only if several conditions hold:

e  The model is correct (linear model, effects, heritabilities. ..)

e The selection process is described by the data

e  Multivariate normality
Thus, there are many reasons why there is wrong estimate of the genetic trend and thus there will
be bias:

e  Collinearity of contemporary groups and genetic trend (this is the usual case)

e  Genetic groups in the model

e  Heritability is wrong (or changes with time)

e Analysis are single trait whereas selection is multiple trait

e  Selection decisions not based on data.

In addition, genetic gain can be estimated one generation forward (but no more) unless an
explicit selection model is included. In other words, retrospective analysis cannot be done deleting
two generations of records. This would need explicit introduction of the selection process.

Why some species/traits seem biased where others do not? Basically, if there is no selection
then automatically b, = 0 holds (i.e., all possible sets of candidates have 0 average value), and
most likely b; = 1 holds, because selection does not change variances, and if a decent estimator of

genetic variance is used, then genetic parameters are such that b, = C:;L?g) 1 by construction,

in particular in a BLUP context. So, bias is expected to increase more with higher genetic gains.

An example is pigs. Christensen et al. (Christensen et al. 2012) found slopes below 1 ( ~0.9)
for a heritable, selected trait (daily gain), whereas Xiang et al. (Xiang et al. 2016) found
regressions nearly one for hard-to-select trait litter size.
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In Lacaune dairy sheep (Baloche et al. 2014), we can put together the following. Figure 1
shows the regression slopes vs. the expected genetic gain or the expected loss of genetic variance
based on Robertson

(1977) . In theory,

1 the reduction in

1.0
I

10

0.7
0.7

not seem to be the
case. A possible
solution may be to
reestimate this
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ variance in each
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 12 -

cycle of selection.

Vitezica et al.
Figure 2 Slope b4 vs. expected reduction in genetic variance (left) or (2011) compared by

genetic gain (right) by trait in Lacaune dairy sheep. simulation  several

predictors in
selected populations in a SSGBLUP context. Statistic b, generally indicated bias, that was higher
with less heritability. High heritability increases the selection differential and reduces variances,
but it also gives more information. Interestingly, the only method which provided unbiased b, =
0.99 resulted in strong bias b, = 1.384,,. Thus, both bias should be checked.
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What do we mean by accuracy? In animal breeding textbooks, accuracy (r, with reliability r2) is
presented twice: first, as a component of 4; = iro,, (S0, a populational parameter) and, second, as
a measure of uncertainty of @ (an individual parameter). However, when selecting from real
populations, EBVs are correlated across individuals, so the individual accuracies may be
meaningless. In other words: it is pointless to obtain r; = 0.70 and r; = 0.70 if r(2;, @) = 0.69.

C - . . C A L
Cross-validation accuracies are computed as correlations r? = L”)A They indicate our
Var(w)Var(il)

ability to rank individuals within a cohort. The fact that these accuracies are computed regardless
of the correlated structure of both u and i has unclear implications. In fact, it can be shown that,

(diag(€?2)-c22)
 (dwg(©-6)
reliability. This reliability takes into account the “classical” reliability contained in the diagonal
terms but also the relationships a priori (in G) and a posteriori (in €?2) across individuals. If the
evaluation method cannot rank correctly within the validation sample, then diagonal and off-
diagonal values of €22 are similar and reliability drops down. This is a desirable behaviour.

Selection also affects observed cross-validation accuracy (Edel et al., 2012; Bijma 2012). If the

cross-validation test uses elite animals, accuracies are underestimated. In other words, it is easy to
rank all animals, but more difficult to rank elite animals. The reduction is such that

if Hendersonian conditions hold, E(r)? =1 is the expectation of the observed

2
o
2 —1 _ _ 2 UYunselected
Tselected = 1 (1 runselected) o2 .
Uselected

ISSUES OF CROSS-VALIDATION METRICS
The accuracy of cross-validation metrics. After an experiment has been carried out, the breeder
wants to know if the genomic accuracy is really different from the parents average accuracy. A
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simple method is to use the theoretical standard error of the estimates; for b, and b, these are from
classical regression theory. For the correlation, this is a bit more convoluted, but an option is to use

Fisher’s z-transform: z = %lng has approximate s.e. 1/vn — 3 where n is the number of data

points used. From this a confidence interval can be worked out. For instance, in the Basco-
Bearnaise breed genomic predictions of 87 rams were 0.06 more accurate than parent averages
(Legarra et al. 2014); this implies a rather symmetric 95% confidence interval of [—0.15,0.27].

There is a source of bias and two sources of randomness in cross-validation metrics. The
source of bias is that individuals are related both at the stage of prediction (parent average and
genomic) and later, at the stage of validation (moment at which they have data; except for the case
of progeny-tested animals for which proofs can be assumed uncorrelated). This has been discussed
above. The two sources of randomness are: (1) Sampling of the reference population, (2) Sampling
of the validation population. Fisher’s z-transform and Hotelling-Williams test include both.
However, they do not consider that individuals are related, and therefore the accuracy is likely to
be overestimated. Again, a theoretical equation can be worked out to estimate Var(r).

(Re)Sampling of the validation population. A more practical approach involves using
(re)sampling techniques. In k-fold cross-validation this is immediate but, as discussed before, the
setting is not realistic. In (Méntysaari and Koivula 2012; Legarra et al. 2014; Cuyabano et al.
2015), sampling of the validation population was addressed by bootstrapping, i.e. sampling n
individuals with replacement from the original n individuals in the validation data set. This method
main virtue is that it avoids strong influence of outliers in the validation data set. It also allows
formal comparisons of accuracies. Its main drawback is that it does not addresses the sampling of
the reference population.

(Re)sampling of the reference population. Recently, (Mikshowsky et al. 2016) bootstrapped,
not the validation, but the reference population. This also provides distribution of metrics.
However, it may be argued that, in a dairy cattle reference population, including a sire twice (what
the bootstrapping actually does) is like including it once, because the accuracy of the sire pseudo-
phenotype is close to 1 in dairy cattle. Thus, including it twice will not change much the solution
for the sire — or the contribution of the sire to SNPs solutions. Therefore, randomness comes from
removing sires more than by overrepresenting sires. In that sense, Mikshowsky et al. (2016)
bootstrap corresponds to Tukey’s jackknife with
more than one data point removed.
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Figure 3 Genomic accuracy and family size.
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set composed of few families with a large number of candidates within families. In the limit, if
there is one big family, pedigree prediction has 0 accuracy, whereas if there are n families with 1
offspring each, pedigree and genomic predictions should behave similarly.

This is supported by Figure 3 in which we plot the genomic vs pedigree accuracy for milk yield
for five dairy sheep and two dairy cattle breeds in France, as a function of family size. Clearly, the
larger the family size, the larger the benefit because genomic selection allows distinguishing sibs.
This raises several questions: (1) Do comparisons reflect “genetic architecture” or merely data
structure in the validation? (2) Do selection schemes that select across families get less benefit
from genomic selection? (3) Is Holstein gaining a lot from genomic selection because it has higher
LD than other breeds or just as an artefact of its family structure?

Which variables to use on the metrics? In the dairy industry, sires do not have phenotypes, so
that comparisons are between (G)EBV’s and the “true” progeny proofs or deregressed proofs. In
other species, it is more common to compare (G)EBV’s to “true” phenotypes, say y, using an
approximation r = Corr(GEBV,y)/h where h? is the heritability (Legarra et al. 2008). This is
unsatisfactory, for conceptual and practical reasons:

e The equation above for r assumes uncorrelated individuals and GEBV’s

e Records y are typically pre-corrected to y* = y — Xb, and the results are sensitive to
precorrection. It is unclear what happens if there are contemporary groups in b that are not
present in the training data.

o If the whole data set is used for precorrection, then a relationship structure is fit (e.g.
pedigree relationships) as y* = (I — X(X'(ZAZo? + I62)1X)™)y where Ac? is assumed
to be “correct”. If the assumed relationship is biased or incorrect, so will be b and y*, and
the bias will be toward the assumed relationship. This may explain some puzzling results,
e.g. poor performance of genomic prediction in low heritable traits such as fertility (Hayes
et al. 2009).

e Even after precorrection, there will be a remaining covariance structure across pre-
corrected y*. This structure is notoriously hard to model (and rarely modelled). This may

. C GEBV,y*
explain phenomena such as S2CCEEYYD o

e Some precorrected y* are too clumsy (Ricard et al. 2013) to be believed or computed in
practice, for instance maternal effects.

CROSS-VALIDATION ACCURACIES FROM METHOD R
Description of the method. We propose to use the properties of method R to construct metrics of

cross-validation. Reverter et al. (1994) observed that the regression of EBVs obtained with
“whole” (w) data on EBVs estimated with “partial” (p) data, b,,,, = %(‘;u)p) is 1, and this
14
checks bias (in the sense b, before). The correlation of partial on whole (eq. 7-9 in their paper)
Ppw _ __Cov(pi) is a function of respective accuracies. Invoking exchangeability, both
Var(@y)Var(ip)
equations can be extended to multivariate forms, and expectations can be taken in both the
numerator and the denominator, resulting in:
by, = W, K "0, /u, K",
where K is a matrix of relationships, b,,,,, with an expected value of 1, and

Py = ToK1E,/ \/ﬁ;K-lﬁpa;VK-law
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‘uacc

2
L that is, proportional to the relative increase in average

2
accy,

with an expected value E(p,,,) =

reliabilities. As more data cumulates, # tends towards the true breeding values, thus u,, is more
accurate than ,. The empirical covariance #,, K~"u, measures the strength of the association
between the two, whereas i, K~'11,, measures the extent of shrinkage due to lack of information.
In other words, the theoretical prediction error covariances are replaced by empirical ones
(Thompson 2001). By combining cross-validation and theory from mixed models, we hope to
retain the best of both worlds: a measure of accuracy that corresponds to reality and that is little
affected by the existence of related, unbalanced data. Therefore, an algorithm to estimate accuracy
of (say) PBLUP and GBLUP is:

1. Compute EBV’s with all data (“whole”) using, say, GBLUP (which method should not be
critical if all animals have data or progeny)

Choose cutoff date

Create “partial” data: Set values after cutoff date to missing

Compute EBVs based on “partial” and GBLUP

apK~'a,,

o rwbd

1oti GBLUP _—_
Compute statistic by, 2KTa,

. ahK lu
6. Compute statistic pg 5/ = P
/ﬁ(vk-lﬁwﬁgk—lﬁp
Compute EBVs based on “partial” and PBLUP
. ap,K 'u
8. Compute statistic b7BLUP = 2%
’ upK~uy,
apK ',

/ﬁ(vk-lﬁwﬁgk—lﬁp

For forward cross-validation, the statistics should be computed for the focal individuals (i.e.,
candidates to selection). On exit, b55U" should be 1 (unbiased method) and is equivalent to b,
and pgurUf and p,5;UP describes the respective accuracies of GBLUP and PBLUP. An extra
statistic is bias u,,, = by = (1'K~'1,, — 1’K~'1,,) /n . Matrix K should be the “true” relationship
matrix across individuals but there should be no great difference in using either genomic or
pedigree relationships as far as they are correct. The procedure has several advantages: is
completely general (it can be used e.g. for maternal traits or random regression), it is semi-
automatic, and can, at least potentially, provide estimates of the accuracy of the cross-validation
metric. There are though many points that need to be addressed: robustness to misspecification, the
role of selection (and how to avoid biases in the estimates of the different b’s), how to sample
efficiently, etc.

9. Compute statistic p, 5% =

TEST WITH REAL LIFE DATA SETS

In beef cattle, we used genetic and phenotypic resources from Brahman cows (N = 995) and
bulls (N = 1,116) outlined in (Porto-Neto et al. 2015). The phenotype was yearling body weight. A
procedure “method R” as above was introduced to assess accuracy of GBLUP, and random (1000
replicates) splits of the data set in training and validation was used, as animals are quite unrelated
and belong to a single generation. We only present very briefly the results. The statistic b,,,, =
0.96 + 0.08 (in the whole population) showed that evaluation was nearly unbiased, whereas
Ppw = 0.67 £0.02 has a correlation of 0.81 with conventional cross-validation accuracy
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. C GEBV,y*
estimated as S CEEV.Y)

In dairy sheep, we used a large data set (Manech Tete Rousse) of 1,700,000 milk yield
performances, 500,000 animals in pedigree and 2,111 sires with 50K genotypes. Data was split at
2011 in training and validation. For all individuals, unbiasedness of (SSG)BLUP was checked
with results p,,,, = by = 0.20, = 5 (liters), b,,,, = b; = 0.996, so genetic evaluation is virtually
unbiased for b, (slope) but not for b, (genetic trend), which is unsurprising because the model
includes Unknown Parent Groups. Later, candidates to selection were compared, with p>7#:V? =
0.55 vs. pyi/F = 0.39, and both evaluations where notoriously biased (b7*#*UF = 0.77, bf*V? =
0.70), possibly due to selection not well accounted for. All these results agree well with previous
analysis (Legarra et al. 2014).
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A COMPARISON OF RELATEDNESS ESTIMATES FROM SNP CHIP GENOTYPES
AND FROM GENOTYPING-BY-SEQUENCING RESULTS

K.G. Dodds, J.C. McEwan, T.C. Van Stijn, R. Brauning and S.M. Clarke
AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand

SUMMARY

Estimates of genomic relatedness derived from either SNP chip (two different densities) or
genotyping-by-sequencing (GBS) resources were compared in a group of 95 sheep. The estimates
were highly correlated (r = 0.983-0.992 for relatedness between individuals) although GBS
estimates were slightly higher than chip-based estimates. These results provide evidence that GBS
is a useful technique for genomic studies.

INTRODUCTION

Genomic information is increasingly being used in animal breeding. Many livestock industries
have SNP chips available at a range of densities and at a cost where they are being used in breeding
programmes. The SNP chip results are used either directly or indirectly, often after imputation to a
higher density, to estimate genomic relatedness between animals in breeding programmes. An
alternative technology is to use genotyping-by-sequencing (GBS), based on sequencing a fraction
of the genome, possibly at low depth (to reduce costs). GBS can be applied in species without
extensive genomic resources (such as SNP chips and reference genome assemblies). Methods have
been developed to estimate relatedness using GBS results (Dodds et al. 2015). Here we compare
relatedness estimates in a sub-flock of 95 sheep genotyped using both genotyping technologies.

MATERIALS AND METHODS

Animals. A group of sheep that had previously been genotyped using SNP chips were chosen for
GBS genotyping to allow a comparison of methods. This group were a set of 89 male and female
progeny from a single cohort (born in 2014), 5 of their sires and a control sample; 80 of the progeny
had their sire in these data. Two of the sires were Primera, two were predominantly Texel, and the
other was predominantly Texel x Coopworth. The control animal was a Texel x Coopworth. The
dams were unrecorded, but were a maternal type (predominantly Romney).

SNP chip genotypes. The set of animals had been previously genotyped. All animals except for 12
of the progeny had been genotyped with the Illumina ovine HD beadchip (Kijas et al. 2014).
Although this chip assays over 600,000 SNPs, only 41,020 of those SNPs (referred to as 41Kk) are
used here, being those that are also on the Illumina ovine SNP50 beadchip and which passed quality
control (including being autosomal) on both chips using the criteria in Auvray et al. (2014). All
progeny had been genotyped with a custom Illumina BovineLDplusovine SNP chip which assays
5283 ovine SNPs; this study used 4015 (referred to as 4k) of those SNPs, being those that were also
on both the HD beadchip and the SNP50 beadchip, and which passed quality control. For some
animals, genotypes for these SNPs from a higher density chip were used as the 4k genotypes.

GBS genotypes. The animals were genotyped by GBS using the methods described by Dodds et al.
(2015) and based on the GBS protocol of Elshire et al. (2011). Briefly, DNA samples and a negative
control were digested with Pstl; a different barcode adaptor was added to each sample, along with a
common adapter. Samples were then combined and fragments in the range 150-500bp were selected
and single-end sequenced on one lane of an lllumina HiSeq2500 resulting in approximately 2 million
reads per sample. The resulting sequence reads were adapter-trimmed and then UNEAK (Lu et al.
2013) was used to detect variants (without the use of a reference genome) and report allele counts
for each variant and sample.
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Estimation of relatedness. Relatedness between each pair of individuals, and self-relatedness for
each individual were estimated by the methods of Dodds et al. (2015) which accounts for the read
depth in a genotype call. This included estimation from SNP chip genotypes, where the depth was
taken to be infinite. This is then equivalent to the first method of vanRaden (2008), except that only
SNPs with data for the individual or pair of individuals involved are used for that estimate (i.e.,
missing genotypes are not imputed). The allele frequencies used were taken as the sample allele
frequencies using allele counts. For chip data the allele counts were the usual counts (e.g. AA has 2
A alleles). All SNPs reported by UNEAK were used for the GBS-based analysis. Methods are
compared by correlation and by regressions of the differences on the means (Altman and Bland
1983) for each pair of methods. Standard errors for the regressions using pairs of individuals were
calculated using the number of individuals rather than the number of pairs as an approximate method
to account for the non-independence of the pairs.

RESULTS AND DISCUSSION

The GBS process resulted in calls for 68,293 SNPs with a mean read depth of 6.1. The 41k SNPs
had 407 with a minor allele frequencies (MAF) of 0 in these data, and these were removed before
further analysis. Summary statistics are shown in Table 1; for GBS, having at least one read at a
SNP is taken as a call. Call rates were high for the chip data, but lower for GBS due to the
randomness of the sequence reads. The MAFs were highest for the 4k chip, where SNPs were highly
selected to be informative, and lowest for GBS where SNPs were not pre-selected.

Table 1. Summary statistics for the different genotyping methods

Marker set Number of Mean call Mean minor Mean inbreeding Mean
SNPs used rate allele frequency estimate relatedness
41Kk chip 40,613 99.96% 0.289 -0.037 -0.012
4k chip 4,014 99.37% 0.367 -0.035 -0.010
GBS 68,293 86.73% 0.225 0.058 -0.003

Table 2. Summary statistics for relatedness comparisons including correlations of the estimates and
regressions of the differences (first marker type minus second marker type) on the means

Marker Relatedness  Number  Correlation ~ Mean difference Slope (SE)
comparison compared (n (SE)

41k — 4k Self 83 0.844 -0.002 (0.002) 0.093 (0.065)
41k - GBS Self 83 0.769 -0.095 (0.003)" 0.060 (0.080)
4k - GBS Self 95 0.662 -0.094 (0.003)" -0.068 (0.093)
41k — 4k Between 3403 0.992 -0.001 (0.002) -0.012 (0.014)
41k - GBS Between 3403 0.989 -0.008 (0.002)"* -0.055 (0.016)"
4k - GBS Between 4465 0.983 -0.007 (0.002)" -0.047 (0.019)"

* P<0.05, ™ P<0.01, " P<0.001

Comparisons of relatedness estimates are shown in Figure 1 and Tables 1 and 2. In general, the
estimates appear to be quite similar across methods. GBS produced higher (P<0.001) inbreeding
estimates and they were less consistent with the chip estimates than the two chip results were with
each other. The breeding design for the progeny set tends to involve breed crosses, so we would
expect inbreeding to be low (with low variation) in the flock. The differences in inbreeding between
GBS and chips appeared to be uniform over the observed range; the regression slopes for the
differences were not significant. One possible reason for GBS giving higher inbreeding estimates is
that the SNPs have not been pre-selected, and in particular are likely to include non-autosomal SNPs.
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This could elevate the results for males, as they would appear homozygous for X-linked and Y
chromosome markers. The inbreeding in the male progeny was higher than in the females, but by
only a small amount (0.005, SE = 0.006, NS). These regions would be expected to have around half
the average read depth (in males) and the method of estimating inbreeding adjusts for un-observed
heterozygosity with low depth (assuming autosomal markers), which would dampen any increase in
estimated inbreeding due to these regions.
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Figure 1. Comparison of relatedness estimates using different genotyping methods. Plots below
the diagonal are for self-relatedness of individuals and those above the diagonal are for
relatedness between all pairs of individuals. Diagonal labels show the method for the
horizontal axis in that column and vertical axis in that row. Lines of equality are also drawn.

The relatedness values were all highly correlated (Figure 1, Table 2). Once again, GBS produced
higher (P<0.01) values overall, but only by a small amount (0.007 or 0.008 on average). There was
also a significant (P<0.05) slope for these two comparisons, meaning that there was a larger
difference between GBS-based estimates and chip-based estimates for higher values of relatedness.
The relatedness estimates form three main groups. The group with higher values are mainly sire-
progeny pairs, but there are also pairs from within the progeny group, presumably full-sibs. The
middle group contains a pair of sires, while all other pairs are within the progeny group, presumably
half-sibs.
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The relatedness estimates average close to zero, a by-product of estimating allele frequencies
within the dataset, rather than having ancestral frequencies (Yang et al. 2010). As GBS SNPs were
not pre-selected, and the methods gave similar estimates, it suggests that there is not a large
ascertainment bias on the chips, in terms of estimating relatedness. It is also interesting to note that
the estimates appear to be similarly correlated for low values compared to high values of relatedness.
This suggests that the rankings of relatedness when the estimates are negative are still meaningful
(pairs with more negative values are less related than pairs with negative values close to zero).

One of the main reasons for estimating relatedness in agricultural species is to allow genomic
selection, for example these estimates can be used directly in a GBLUP model. Having the
relatedness estimates for the three methods correlate well suggests that they would perform similarly
for genomic prediction, but further work is needed to verify this. For example, it is generally
accepted that at least 10,000 SNPs are needed for genomic prediction, suggesting that the high
correlation (0.992) between the 4k and 41k sets seen here may not be enough to guarantee
satisfactory predictions from the 4k set. If GBS is to be adopted in resources were many individuals
have been genotyped with SNP chips, there will need to be an investigation on how to combine
relatedness estimates from different methods as has been required for combining pedigree and
genomic-based relatedness (Aguilar et al. 2010).

We have shown that there is good agreement between relatedness estimates from GBS and from
SNP chips, especially in terms of their correlation. There were some small differences in the mean
levels of relatedness, so that adjustments would be required if combining data using different
methods. It would be useful if this comparison could be extended to genomic relatedness estimation
across divergent breeds and also to examine different GBS protocols, i.e. different enzymes, to check
the robustness of these results. In summary, GBS is a promising method for genomic analyses using
relatedness estimates and can be rapidly deployed, even for species with poor genomic resources.
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SUMMARY

In this paper we examine, using simulation and an analytical method, the factors that control
the accuracy of genomic prediction when the effects of chromosome segments are not normally
distributed, for instance, because many chromosome segments do not contain a QTL. In this
situation non-linear methods of analysis give higher accuracy than GBLUP but the advantage is
small unless the distribution of chromosome segment effects departs markedly from a normal
distribution and the distribution assumed by the method of analysis also departs markedly from a
normal distribution. The effect of sample size on accuracy of non-linear methods is similar to that
with GBLUP but the advantage of non-linear methods over GBLUP increases with sample size
when accuracy is low.

INTRODUCTION

Before implementing genomic prediction of breeding values (genomic selection), it would be
useful to be able to predict the accuracy that might be achieved or at least to understand the factors
controlling accuracy so that the optimum combination could be used. If genomic estimated
breeding values (GEBVS) are estimated using GBLUP (Meuwissen et al 2001), there is good
theory to predict the accuracy (Daetwyler et al 2008, Goddard 2009). In this case, the accuracy or
correlation between EBV and true breeding value (r) is approximately given by MacLeod et al
(2014)

r? = 0c/(1+0 —h2r?) 1)
where ¢ = the proportion of genetic variance explained by markers
h? = heritability
0 = Nh%c/M.

N= number of records in the training population
M. = effective number of independent chromosome segments in the genome.

This is not an explicit formula for r? because r? appears on both sides of the equation. However,
we choose to present the formula in this way because it makes clear the way in which increasing
accuracy decreases the unexplained variance and so further increases accuracy. If the causal
variants or QTL have similar properties to the markers, then ¢ = M/(M + M) where M is the
number of markers. However, c is often less than this presumably because the QTL have lower
linkage disequilibrium (LD) with the markers than the markers do amongst themselves.

Estimation of breeding values using GBLUP, as above, is a Bayesian prediction if it is assumed
that the effects of the markers are all drawn from a normal distribution with mean zero and
constant variance. That is, a model in which the genomic relationships between the animals is
estimated from the markers (GBLUP) is equivalent to a model in which SNP effects are assumed
to be normally distributed (SNP-BLUP). Other assumptions about the distribution of marker
effects lead to other methods of estimation of which some have been called Bayes A, B, C or R.
Although BLUP is a linear estimate in the phenotypic values (y), these other Bayesian methods are
non-linear in y. These non-linear Bayesian methods give higher accuracy than BLUP in some
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cases (MacLeod e al 2014) but there is no theory that predicts how much more accurate and in
what circumstances. As well as the parameters that affect GBLUP accuracy, the accuracy of non-
linear methods could be affected by the true distribution of marker effects and the distribution
assumed by the method of analysis. The aim of this paper is illustrate how these parameters affect
the accuracy of non-linear Bayesian methods of predicting breeding value. We use simulation and
a simplified analytical model.

MATERIALS AND METHODS

Analytical method. Here we assume that the markers and QTL are identical and there are M.
independent QTL so that the accuracy of estimating a single QTL effect (r) is equal to the accuracy
with which the combined value of all QTL is estimated. This can then be calculated using
numerical integration. That is, > = V(§)/V(q) and V(@) = [ f(q)E(Glq)? dq , where q is the
effect of a QTL assumed to have a mean of zero, f(q) is the distribution of QTL effects, E(Glq) is
the expectation of the estimate of g (§) given q.

Simulation. We simulated a genome of length 1M in a population of N. = 1000 until it reached
mutation-drift equilibrium. At this point there were approximately 33,000 SNPs segregating of
which between 3 and 290 were designated as QTL and their effect sampled from a distribution that
was either exponential or gamma (shape parameter = 0.09) or t-distribution (degrees of freedom =
4.1 or 4.2). The scale of the effects was adjusted so that a fixed heritability was reached after
adding normally distributed environmental effects. The linkage disequilibrium among the markers
means that the effective number of chromosome segments (Me) is approximately 300. The
simulated data on 200 animals were analysed with BLUP, Bayes A, Bayes B (Meuwissen et al
2001) and Bayes R (Erbe et al 2012) and the correlation between true breeding value and EBV
calculated in an independent set of animals. Because the results depend to 0, the simulation
approximately corresponds to a genome of 30 M but with a sample size of 30 * 200 = 6000.

RESULTS AND DISCUSSION
Simulation results. Table 1 lists the accuracy achieved when h? = 0.5 and the all 33,000
markers were used so that all genetic variance is explained by the markers (c=1 in equation 1).

Table 1 Effect of distribution of QTL and distribution assumed by the method of analysis
on accuracy (%) of EBVs.

For Bayes R Sim. = simulation results, anal. = analytic approximation, all other results
are from simulation.

No. Distribution Method of analysis
QTL GBLUP  Bayes B Bayes R Bayes A
sim.  anal.

3 exponential 51 97 95 98 67

30 exponential 49 83 82 85 54

30 gamma 48 88 89 96 65

30 t (df = 4.105) 54 81 82 81 57

290  t(df =4.225) 52 57 55 61 51

When GBLUP is used, assuming a normal distribution of marker effects, the accuracy is nearly
the same (~0.5) regardless of the true distribution of QTL effects. Although there are 33,000 SNPs,
there are only about 300 effective independent chromosome segments. Therefore the last

86



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:85-88

distribution in table 1 with 290 QTL with effects drawn from a t distribution does not differ greatly
from a distribution in which all chromosome segments have an effect drawn from a normal
distribution. Consequently the Bayesian methods have little advantage over GBLUP. When there
are less than or equal to 30 QTL, many chromosome segments have zero effect and the
distribution differs more markedly from a normal distribution. In these cases Bayes B and Bayes R
have similar accuracy and an advantage over GBLUP. Bayes B and Bayes R assume a distribution
of marker effects in which some effects are zero and this agrees with the true distribution in the
first 4 cases in table 1. Bayes A assumes no effects are zero but all SNP effects follow a t-
distribution. The accuracy it achieves is in between that of GBLUP and Bayes B or R.

The accuracy of the non-linear methods (e.g. Bayes B and R) depends in part on the kurtosis of
the distribution of effects of chromosome segments. If many segments have zero effect (i.e. no
QTL in the segment) the kurtosis is increased. However, the kurtosis is not the only parameter of
the distribution that affects the accuracy of EBVs. In table 1 the gamma distribution with 30 QTL
and the exponential distribution with 3 QTL have similar kurtosis but the exponential distribution
leads to higher accuracy. This is because the gamma distribution with shape parameter of 0.094
has some large effects but also many very small effects that are hard to estimate accurately.

The results in table 1 can be summarised by

e the true distribution must differ greatly from a normal before non-linear methods have
an advantage over GBLUP,

e it is not worthwhile to use a non-linear method of analysis unless it assumes a
distribution of marker effects that differ greatly from a normal distribution.

Analytical method. Here we calculated the accuracy of estimating the effect of a single QTL
assuming that the method of analysis used the same distribution of QTL effects as used to generate
true QTL effects. Table 1 shows that the analytical method overestimates the accuracy found by
simulation. This is expected. The analytical method assumes there is only one marker per effective
chromosome segment, whereas in the simulation there are approximately 100. The GBLUP
analysis shrinks estimates of marker effects but the amount of shrinkage is not effected by the size
of the estimated effect. Consequently, the effect of a chromosome segment can be shared among
several markers with little loss of accuracy. But the non-linear methods shrinks apparently large
effects less than small effects (Figure 2) and so, if the effect of a single QTL is shared among
several markers, the effect is shrunk too much and this reduces the accuracy.

Apart from this over prediction of accuracy, the analytical method does predict the differences
in accuracy between distributions (Table 1) and, although not shown here, it also predicts the
effect of changing 0 reasonably well. In figure 1, we use the analytical method to examine the
effect of 0 on accuracy. The y-axis of the graph is T = r?/(1-r?). For GBLUP analysis this is almost
equal to 0 but differs from it due to the —h?? term in equation 1. This term corrects for the
reduction in error variance when estimating the effect of one marker due to the simultaneous
prediction of the effects of all other markers (Daetwyler et al 2008). Consequently, T is slightly
greater than 6 for GBLUP and this disparity increases slightly with 6. For the non-linear methods,
T increases faster than linear in 6 and the advantage over GBLUP increases with 0 at first and then
reaches a constant ratio.

In real data within one breed, the distribution of QTL effects may be most similar to the t-
distribution with 290 QTL in 300 effective chromosome segments corresponding to 8100 QTL in a
30M genome. This would explain why non-linear methods enjoy only a small advantage over
BLUP in many cases. The advantage of non-linear methods would be expected to increase if
multiple breeds were analysed or the population had a high effective population size e.g. in
humans.
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Figure 1. The effect of 0 on T =12 / (1-r?). The graphs show the effect of 0 on accuracy from the
analytical method for the exponential distribution of 30 QTL effects (T exp), the normal
distribution of 300 QTL effects (T blup) and the t-distribution with degrees of freedom = 4.225
of 290 QTL effects.
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Figure 2. Estimated QTL effect size vs true QTL effect size from the analytical method under the
exponential distribution of 30 QTL in 300 effective chromosomal segments (arbitary scale of
effect sizes).
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SUMMARY

To accompany the implementation of multi-trait Single Step Genomic BLUP (SS-GBLUP) in
the BREEDPLAN and OVIS genetic evaluation systems, an algorithm to approximate accuracy with
genomic information has been developed and is presented in this paper. Data from full terminal sire
OVIS and Brahman BREEDPLAN runs were processed using this new method. Results demonstrate
that the approximated accuracy of SS-GBLUP estimated breed values (EBVS) is highly correlated
(R? >0.96) with exact accuracies in several small example analyses for both beef and sheep. SS-
GBLUP EBV accuracies increase more for traits with a larger reference population and for traits
with higher heritabilities. Animals with low pedigree-only (ABLUP) EBV accuracies benefit more
from genomic information than animals with high ABLUP EBV accuracies.

INTRODUCTION

Single Step Genomic BLUP (SS-GBLUP, e.g. Legarra et al. 2014) was implemented in the
Australian sheep and beef cattle evaluation systems OVIS and BREEDPLAN during 2016,
simultaneously combining phenotypic, pedigree, and genomic information. Conceptually, SS-
GBLUP is compatible to the existing pedigree BLUP models and is relatively straightforward to
implement by replacing the traditional inverse pedigree relationship matrix (A) in the mixed model
equations (MME) with H* (Christensen and Lund, 2010):

1 a1, (0 0
=74 (g gl )

where G and Az are genomic and pedigree relationship matrices for genotyped animals,
respectively. This make modification of models and software to estimate breeding values (EBVS)
relative straightforward, although computational requirements can increase significantly.

Accuracies of EBVs are also an important output of genetic evaluation systems, and these have
traditionally been approximated using “effective progeny numbers” (EPN) as a basis which
accumulate information from animals’ own performance, progeny, parents, and from correlated
traits (Graser and Tier 1997). In this paper, we present a modification to this algorithm to account
for EPN from genomic information, allowing the calculation of accuracies for SS-GBLUP EBVs.
We also investigate the impact of genomic information on the improvement of accuracy of EBV for
real examples.

MATERIALS AND METHODS
Algorithms to derive “genomic EPN”. In order to ensure compatibility with the current accuracy
algorithm, information from the genomic relationship matrix needs to be expressed in the form of
an EPN for each animal. This “genomic EPN” must be accumulated with existing sources of EPN
to derive approximations of the total accuracy for multi-trait SS-GBLUP analyses. The steps
required are described below.

Step 1. Calculate a prediction error variance (PEV) using a series of single trait GBLUP pseudo-
analyses. For each trait, we construct the MME for genotyped animals with additive genetic effects

“AGBU is a joint venture of NSW Department of Primary Industries and the University of New England
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considered in the model, ignoring all the other fixed and random effects. The diagonal of the inverse
of the MME then represents the genomic PEV for the trait. Because the pedigree relationship matrix
A, for these animals has already been used to contribute accuracy from pedigree and performance
information, and also because a proportion of G is used to build H? in SS-GBLUP, an adjusted PEV
must be used to derive the contribution of genomic information to accuracy. This adjusted PEV for
the i animal is calculated as:

PEV} = wt * PEV; + (1 — wt)a?

where g2 is the additive variance, and wt is a tuning parameter (referred to as the “genomic PEV
weight” below) determined empirically by comparing approximate accuracies calculated across a
range of wt values from 0.1 to 1.0 with exact accuracies calculated by direct inversion of the SS-
GBLUP mixed model equations for a range of examples reported below.

After PEV* for each trait is calculated with appropriate values of wt, accuracy is calculated as:

acc = /1 — PEV; /9,02

where g;; is the diagonal of G for the i animal. This is assumed to be the gain in accuracy due to
genomic information for genotyped animals.

Step 2. Propagate genomic accuracy to un-genotyped ancestors and descendants so that the
impact of genomic information on close relatives is included. Propagation is performed upwards
first (to ancestors) and then downwards (to descendants). If an un-genotyped animal has its parents
and progeny genotyped, accuracy is calculated from the progeny, except for the case where only one
progeny and both parents are genotyped, in which accuracy is calculated from the parents. The
accuracy of un-genotyped parents with genotyped progeny is given by:

acc =acc X (1—0.5™)

where acc is the average accuracy over n genotyped progeny for the sire or dam. The accuracy of
the un-genotyped progeny is given by:

acc = /(acc?,, + acct,,)/4

Step 3. Accuracy for genotyped animals and progeny and parents of genotyped animals is
transformed to the equivalent number of effective progeny as:

EPN = § x acc®/(1 — acc?)

where § = (4 — h?)/h? and h? is the heritability of the trait.

Step 4. For each animal with genomic EPN derived from the above single trait analyses, multiple
trait EPN are derived by constructing multiple trait MME with additive genetic effects as follows:
1) Accumulating the residual matrices based on the common minimal EPN across traits based on
the phenotypes observed into a trait by trait matrix; 2) The additive genetic co-variance matrix is
added to the accumulated residual matrix; 3) Multiple trait PEV are then calculated by inverting this
matrix and then converted to EPN following the procedures above.

Step 5. Because EPN due to genomic information for each animal are confounded with EPN
arising from phenotypic own-performance information, the final step is to calculate the difference
between the genomic EPN of an animal and the EPN arising from its own phenotype, as calculated
from the current algorithm. Only when this difference is positive is the genomic EPN accumulated
with EPN from all other sources to derive the final accuracy.

Note that when calculating final EBV accuracies following the formula in equation above, rather
than using g;; for genotyped animals, we use 1g;; + (1 — A)a;;, following the specification of the
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H matrix used for SS-GBLUP, where 1 is a weighting factor for genomic and pedigree information
as described by McMillan and Swan (2017).

Selection of genomic PEV weight. Data from OVIS and BREEDPLAN runs were used to
investigating the genomic prediction error variance weight. Traits considered for sheep were intra-
muscular fat (IMF, h? = 0.56) and shear force at day 5 (SF5, h? = 0.32), with the data including
11,416 genotyped animals from terminal sire evaluation. Traits considered for beef were beef 600
day weight (FWD, h?= 0.49) and days to calving (DTC, h?= 0.08), with the data including 5,847
genotyped animals from the Brahman BREEDPLAN evaluation. These data were analysed
repeatedly with the new accuracy algorithm, fitting a range of genomic PEV weights from O to 1 in
increments of 0.1. The approximate accuracies derived were then compared to exact accuracies
calculated from PEVs derived by inversion of the mixed model coefficient matrix for each data set,
and varying the value of A used to construct the G matrix from 0 to 1 in increments of 0.1.
Application to industry data. The new SS-GBLUP accuracy algorithm was applied to data from
full sheep terminal sire evaluation and full Brahman BREEDPLAN runs. The numbers of genotyped
animals were 11,832 in sheep and 7,166 in beef data.

RESULTS AND DISCUSSION

Selection of the genomic PEV weight. Based on comparison of approximate accuracy calculated
over a series of genomic PEV weights to exact accuracy with a series of A values, results showed
that the means and standard deviations of true accuracies increased with A from 0 to 1. When A =
0.5, the value currently chosen to run SS-GBLUP analyses in OVIS and BREEDPLAN, the closest
genomic PEV weight for the new accuracy algorithm was 0.3 for all sheep and beef traits, based on
comparison of means and standard deviations. Across all four traits, high R-squared values (>0.95)
and regression coefficients (from 0.96 to 1.1) were observed for the regression of approximate
accuracies with genomic PEV weight = 0.3 on true accuracies with A = 0.5, indicating a genomic
PEV weight of 0.30 is appropriate to tune the genomic prediction error variances for the current
implementation of SS-GBLUP.
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Figure 1. Relationship between average accuracy for genotyped animals arising from the genomic
relationship matrix, number of genotyped animals recorded in the reference population, and heritability
(size of points) for different sheep and beef traits.
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The impact of genomic information on accuracy. The relationship between average accuracies
for genotyped animals arising from the genomic information, number of genotyped animals recorded
in the reference population, and heritability for sheep and beef traits are shown in Figure 1. The
average accuracies of genotyped animals as calculated in Step 1 above varied from 0.12 to 0.40 in
both sheep and beef across different traits. The accuracies were positively related to the number of
animals with records and heritability for each trait.

Figure 2 shows the distribution of average accuracy improvement for SS-GBLUP relative to
ABLUP for beef and sheep. For animals with low starting ABLUP accuracies (<30%), the SS-
GBLUP accuracy was on average 18% points higher for sheep (ranging from 11 to 24% points), and
on average 13% points higher for beef (ranging from 3 to 29% points). For medium starting
accuracies (30 to 50%), the improvements were 6% (2 to 8%) for sheep and 4 (1 to 9%) for beef,
while very little improvement in accuracy was observed for high starting accuracies (>50%). These
trends confirm expected benefits of accuracy from genomic information.
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Figure 2. Distribution across beef and sheep traits of improvement of SS-GBLUP accuracies over
ABLUP accuracies within bands of ABLUP accuracy from low (<30), medium (30 — 50) and high (>50).

CONCLUSIONS

An algorithm to approximate SS-GBLUP EBV accuracies was developed, and shown to be
consistent with exact accuracies in several small example analyses for beef and sheep. SS-GBLUP
EBV accuracies increase more for traits with a larger reference population (numbers of animals
phenotyped and genotyped), and for traits with higher heritabilities. Animals with low pedigree-only
(ABLUP) EBV accuracies gain more improvement in accuracy from genomic information than
animals with high ABLUP EBV accuracies.
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SUMMARY

We present a computationally efficient approach to GBLUP which approximates inverse
reference set matrix by optimally selecting the most informative animal cohort. The optimal
animal cohort, named core reference animals, are identified through a Partial Incomplete Cholesky
Decomposition (PICD) and selected such that the reconstruction error is at a specified user
percentage. Our application of PICD on the Australian Holstein and Jersey reference sets shows
that allowing a small error halves the effective size of reference set, resulting in significant gains in
performance with only minor differences between exact and approximate breeding values and
reliabilities (r > 0.99). Overall our results show that application of methods like PICD aimed at
eliminating redundancy within large reference sets, significant performance gains can be made
without sacrificing accuracy.

INTRODUCTION

Genomic evaluations are routinely used to evaluate the performance of dairy cattle world-wide.
These genomic evaluations impose a significant and ever increasing computational burden on the
evaluation organisations. This computational burden must be offset by the requirement to maintain
a meaningful animal reference set to ensure that accurate and reliable predictions are made for the
young animals entering the system. Up to now the focus has been on increasing the accuracy and
reliability of genomic evaluations with projects such as GINFO (Pryce et al, in press) succeeding
in increasing the overall reliability of the Australian genomic evaluations between 2 and 7 percent,
by doubling the number of animals in the reference set. The cost of doubling the size of the
reference set results in a dramatic increase in computational burden. GBLUP (Van Raden, 2008)
like algorithms can be solved for breeding values using gradient techniques highly efficiently,
however the reliability computation requires the explicit inverse of the genomic reference set
matrix which scales at cubic complexity. With reference sets continuing to grow, and now
including more than 35000 Australian dairy animals, more efficient solutions for genomic
evaluations are required.

The accuracy and reliability of a genomic breeding value for a young, non-reference animal, is
not based on the size of the reference set, but how related that animal is to the reference set.
Additionally, the genomic relationship structure within the reference set animals are not related to
the quality of their phenotypic information. Therefore simply adding animals to the reference set
based on the quality of their phenotype alone will not ensure more reliable predictions into the
future and is likely to make routine evaluations computationally infeasible.

In this paper we investigate the feasibility of a Partial Incomplete Cholseky Decomposition
PICD (Foster et al, 2009) to identify a smaller cohort of reference set animals, named core
reference set animals, which can be used to optimally represent the structure within full reference
set. PICD has been shown in kernel regression literature to provide a robust approximate solution
to a related model to GBLUP (Foster et al, 2009). In this paper we extend PICD for application to
the GBLUP model by accounting for the diagonal weighting of all reference set animals to ensure
that phenotype accuracy information is included in the evaluation of all animals. We show that
application of PICD with a small degree of error can significantly reduce computational time
without dramatically moving from the estimated breeding values or reliability from the full model.
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MATERIALS AND METHODS
The equations for the GBLUP breeding values @ and reliabilities rel are as follows (Van
Raden, 2008),

diag[G., (G,, + R)'G,
a diag[G]
where G,... is the genomic relationship matrix of the reference set animals, R is a diagonal matrix
of observation weights and G, is the genomic covariance matrix of all animals with the reference
set animals. The cost of a GBLUP model is in the evaluation of (G,,. + R)~* where the number of
required operations scales cubically, O(r3), as the number of reference set animals, r, increases.

Partial Incomplete Cholesky Decomposition (PICD) (Foster et al, 2009) is a variant of the
Cholesky decomposition which employs both row pivoting and a diagonal error tolerance to create
a rank-reduced decomposition. The purpose of PICD is to select from G,.. a reduced cohort of
animals, called core reference animals, which are representative of the entire population. This
cohort can then be used to reconstruct G,.,. by,

G.,.=L"L=LL,,
where k is the set of core reference animals, k < r, and L, is the Cholesky complement only
including the currently selected k animals.

The PICD algorithm identifies the core reference animal by performing single Cholesky
updates to L, , animal-by-animal in a stage-wise and greedy fashion where the next animal to be
added L, is selected such that it maximally reduces the reconstruction error. The reconstruction
error is a measurement of how well LTL, predicts G,,.. The addition of all r animals completely
reconstructs the full Cholesky complement with no error. Therefore the reconstruction error can be
measured as a percentage of complete reconstruction.

The algorithm requires as input the acceptable amount of error as a percentage, and from this
will create a Cholskey complement, L, of size (N, k) where k number of animals required to
approximate the original matrix at that error percentage. The advantage of using this approach to
others such as Singular Value Decomposition (SVD) is its ability to pick the specific animals
required for the reconstruction, whereas SVD projects each animal onto every eigenvector.
Therefore PICD is a means of selecting the most informative animals from the reference set.

PCID when used in the kernel regression setting reduces the cost complexity from order 0(r3)
to 0(kr?) (Rasmussen and Williams, 2006). However, within the reference set of GBLUP there
are also observation weightings defined. To allow for all reference set animals to have their
observation weight applied we must derive a subset-of-regressors approximation of (G,, + R)™*
using the Nystrom approximation of G, (Rasmussen and Williams, 2006). The Nystrom
approximation of G, is the approximation of the G,.,. using a subset of rows and can be expressed
as,

a=6,(G,,+R)y and rel

G, = GrkGI:I%Gkr
where the k animals are selected from the reference set using PICD. From this representation of
G,, we can apply the Woodbury matrix identity to gain an approximation of the whole system
inclusive of the observation weights,
(Grr + R)_l ~ (Err + R)_l =R - R_lark(Gkk + GkrR_lark)_lckrR_l

where G, is the covariance between the all reference animals and the core reference animals.
This approximation to GBLUP allows for a selection of core animals from the reference set,
without losing any phenotypic information from the model. Once the solution to the approximate
GBLUP is attained the pre and post multiplication by G, is still required to compute the breeding
values and reliabilities respectively. If no error tolerance is specified the approximation will yield
exactly the same results as solving the system directly. It is suggested that this be treated like a
heritability analysis and run once annually, out of scope of an evaluation.
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PICD is also similar in idea to the sparse inverse of G with the APY algorithm of (Misztal,
2014) however PICD is a reduced rank approximation where as APY is a sparse approximation.
The main advantage of PICD over APY is reducing the size of the entire system required to be
solved through the efficient use of the Woodbury matrix identity above. APY on the other hand
approximates only G or G=! which still requires the addition of observation weights, R, and
solution of the entire system to be computed.

MATERIALS AND METHODS

To evaluate our proposed PICD approximated GBLUP we perform a simple parameter sweep
on the percent error for the PICD algorithm and evaluate three different metrics.

1. The computational elapsed time.

2. The number of animals in the core reference set.

3. The correlation between breeding values and reliabilities as compared to the exact

solutions.

The PICD program was developed in-house and implemented in R using Rcpp and compiled using
the Intel MKL library. The datasets under consideration are the 58961 non-duplicated Holstein
bulls and cows as well as the 11768 non-duplicated Jersey bulls and cows from the December
2016 ABV ADHIS release. Of these animals 32481 Holstein and 8846 Jersey bulls and cows were
found in the full Protein GEBV reference set. The parameter sweep is run between 0 and 50%
allowable error in increments of 5%.

RESULTS AND DISCUSSION
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Figure 1: Holstein parameter screening results. Green line is the correlation between the exact solution and
the PICD algorithm and the blue dots are the average correlation of 10 repeats of randomly selecting rows at
four specified error tolerance.
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Figure 2: Jersey parameter screening results. Green line the correlation between the exact solution and PICD
algorithm and the blue dots are the average correlation of 10 repeats of randomly selecting rows at four
specified error tolerance.

Figure 1 and 2 present the parameter sweep results for the Holstein and Jersey analyses
respectively. The results include the computation of breeding values and reliability for all animals
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in the analysis, including non-reference animals with no phenotype. From left to right, the first
two plots are the correlation between approximate breeding values and reliabilities compared to
exact GBLUP calculation, the dimension of the core reference animal set, k, and the run time.

Both Holstein and Jersey sets share the same profile, where at small amount of acceptable
errors the approximate methods correlate very well (r > 0.99, % error = 0.05) with the exact
solutions. The animals removed are predominantly bulls rather than cows. In of the 7754 cows
and 1092 bulls in the Jersey reference set 2464 (32 %) cows and 591 (54 %) bulls were removed
by PICD at 0.05 error tolerance. Of the 28228 cows and 4253 bulls in the Holstein reference set
13761 (49 %) cows and 3295 (78 %) bulls were removed PICD at 0.05 error tolerance. The
removal of bulls from the reference is likely due to the selection of bulls results in stronger
relationships between them, and therefore they produce more redundant set in terms of genotypic
variation. The surprising result from these parameter sweeps by imposing only a small error the
amount of animals in the core reference set is approximately.

The observed massive reduction in the reference set size is a result of the genomic redundancy
within the reference set created by one-sided selection of animals. Reference set inclusion is based
bulls having more than 10 daughters or cows in specific projects with phenotypic records, not on
how related the animal is to the existing reference set. This approach is likely to select a reference
set with a large number of highly related animals who collectively contribute very little to the
performance of the overall evaluation. Algorithms like PICD are able to parse this redundant set
and capture the key animals required to maintaining accuracy and reliability. The availability of
such algorithms therefore encourages the continued collection of phenotypes and from the ever
increasing pool of reference set animals timely evaluations are still possible.

At larger amounts of acceptable errors we observe that the PICD approximated reliabilities are
significantly closer to the exact reliabilities than those computed from a random sample. However,
the breeding values estimated by PICD are more poorly estimated, in particular within the Jersey
analysis. This drop in performance is because PICD seeks to remove all redundancy within the
genomic relationship matrix, without any knowledge of the phenotype. This style of selection may
inadvertently remove animals with phenotypes that are highly informative for the trait under
analysis because their relatives are already included in core reference set. This reduces the
accuracy of breeding value estimation, but not reliability estimation, as the reliability is a function
only of the relationship matrix (the target of PICD) not the phenotypic importance. This problem is
well known and could potentially be overcome by selecting an animal subset using more complex
objective functions which seek to balance the contributions from both left and right hand side
GBLUP equations (Rasmussen and Williams, 2006).

In conclusion we have shown that it is possible to dramatically decrease the running time of
genomic evaluations, without a significant impact on accuracy or reliability, by defining a smaller
set of core reference animals. The implementation PICD with only small amount of error will
reduce the computational burden on evaluation organisations allowing them to screen more
animals, faster and more often.
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ON BREED COMPOSITION ESTIMATION OF CROSS-BRED ANIMALS USING NON-
LINEAR OPTIMISATION

Vinzent Boerner
Animal Genetics and Breeding Unit, University of New England, Armidale, NSW 2351, Australia

SUMMARY

Genetically admixed animals are common in most quantitative genetic analysis, and usually are
a result of intended crosses between two or more pure breed populations to enhance productivity.
Disregarding the genetic heterogeneous architecture of admixed individuals may lead to poor or
even wrong inference about the quality, quantity and genome location of genetic factors affecting
phenotypes, and it could reduce the accuracy of estimates of genetic merit. In this article a non-
linear optimisation approach (constrained genomic regression, CGR) is presented to describe the
marker genotype of a focus animal as a linear function of marker allele frequencies of possible
populations of origin. The algorithm was tested on a beef cattle data set consisting of 11639
animals from 11 different breeds with marker genotypes of 4022 single nucleotide polymorphisms,
which were used to generate 5000 artificially cross-bred animals. For comparison the data set was
also analysed with the ADMIXTURE software (ADM). CGR outperformed ADM with a
maximum difference between the true and estimated breed proportion of 0.25 and 0.28 for the 5
and 25 cross-over data set respectively. For ADM this parameter was 0.83 and 0.66. The mean
squared estimation error was 15 and 5 times larger for ADM compared to CGR for the 5 and 25
cross-over data set respectively. In addition, CGR always outperformed ADM in terms of speed by
factor 20.

INTRODUCTION

The quantification of pure breed proportions of cross-bred animals’ genomes is of relevance
for genome wide association studies, estimation of population parameters, breeding value
estimation and cross-breeding program optimisation. The most widely used methodology for
marker based breed proportion estimation is likelihood formulation of the animals’ genotype
probability conditional on the pure breed population allele frequencies, where the latter are
estimated in turn from the animals’ genotypes and the assigned breed proportion (Pritchard et al.
2000). The whole system is evaluated using Gibbs Sampling (Pritchard et al. 2000; Raj et al.
2014), expectation maximisation (Tang et al. 2005), or, as a sped-up version, a block relaxation
algorithm (Alexander et al. 2009). Since often the allele frequencies of pure breed populations can
be estimated from animals of known pure breed origin, Alexander et al. (2009) shortcut their
method to facilitate quicker breed proportion estimation for cross bred animals. However, the
likelihood based method has two major shortcomings: a) the likelihood formulation assumes the
absence of linkage disequilibrium between markers and orthogonality of pure breed population
allele frequency vectors, and b) processing time becomes an obstacle if there are many marker
genotypes (e.g. 700k or full genome sequences). This article describes a non-linear optimisation
method (constrained genomic regression, CGR) for the estimation of pure breed proportions of
cross-bred animals’ maker genotypes, which overcomes both the limitations of the likelihood
based method and allows a meaningful interpretation of the results even if the number of possible
pure breeds is huge (see Chiang et al. 2010; Kuehn et al. 2011, for an unconstrained version of this
approach). The algorithm was applied to 4k single nucleotide polymorphisms (SNP) genotypes of
5000 cross-bred animals artificially generated from real genotypes of 11639 animals from 11
different breeds. Result were compared to results from ADMIXTURE (ADM) (Alexander et al.
2009).
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METHODS

Model. The problem to solve can be written as argmin,f(b) =y'y —2y'Xb +
b'X'Xb(1) subject to b; > 0{i =1,..,N}(2) and ) b; = 1(3)where y is the marker
genotype vector of the cross-bred animal, X is a column matrix of pure breed population allele
frequency vectors, and N is the number of pure breeds. Note that equations (2) and (3) comprise
constraints to the solutions of equation (1). Values in vector b are regression coefficients
regressing y on the columns of X. Minimising equation 1 with respect to equation 2 and 3 will
yield a vector b of which values will not only explain the genotype in y as a linear function of
population allele frequencies in X, coefficients also have the straight forward interpretation of
what proportion of Xb is explained by each column in X.

Data. The cattle data set consisted of 11639 animals from 11 different cattle breeds (Brahman
(1492), Angus (1473), Murray Grey (316), Limousin (1395), Charolais (899), Hereford (1500),
Simmental (337), Shorthorn (1126), Wagyu (1497), Santa Gertrudis (1474) and Drought Master
(130)). Since genotypes of these animals were from various SNP panels, the 4022 SNP were
selected which all panels had in common. The SNP genotypes were randomly phased to obtain
haplotypes. Cross-bred animals were generated over five rounds. In round one the sex was
randomly assigned to the 11639 pure-bred animals and 1000 males and 1000 females were
randomly chosen (with replacement) to serve as parents. From each pair of parents one offspring
was generated by joining their gametes generated from their haplotypes assuming 25 or 5
randomly located cross-overs. In the subsequent four rounds the 2000 parents were selected among
previous 1000 offspring implying more than one offspring per parent. Thus, the total number of
artificial admixed offspring was 5000. Table 1 summarises the number of cross-bred animals with
1 to 11 pure breed proportions in their genome.

Table 1: Summary of number of cross-bred animals with genome proportions of 1 to 11 pure
breeds.

Number of
Cross-overs Number of pure breeds contributing to a cross-bred genome

1 2 3 4 5 6 7 8 9 10 11
5 121 970 465 594 424 529 584 618 477 205 13

25 120 968 453 610 394 478 465 559 576 312 65
Note that table rows sum up to 5000, which is the number of cross-bred animals.

Result evaluation. Let bT be the row matrix of true breed proportions, and bE its estimated
equivalent, with row dimension equal to the number of cross-bred animals and column dimension
equal to the number of possible pure breeds. Results were evaluated by a parameter M calculated

as the maximum of |bT — bE|, and by a parameter S calculated as the mean of (bT — bE)?.

Software. CGR was implemented in a FORTRAN program which called the NLopt library
(Johnson 2011). The optimisation solver used the augmented Lagrangian algorithm as global
solver and the method of moving asymptotes as a local solver. All computations were carried out
on a desktop computer with an Intel(R) Core(TM) i7-3770 processor and 32GB of memory.
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RESULTS

Table 2 summarises the results for the cross-bred animals when the number of cross-overs
during gametogenesis was 5 and 25 respectively. Invariably of the number of cross-overs CGR
always performed better than ADM. The greatest absolute difference between the true and
estimated breed proportion estimated by CGR was 0.24 and 0.28 for the 5 and 25 cross-over data
set respectively, whereas for ADM that parameter was 0.85 and 0.67. The parameter S for the
ADM results was 15 times larger than that for CGR results when the 5 cross-over data set was
used. This difference to shrunk to 5 times larger when the 25 cross-over data set was used.

Table 2: Statistics of the breed proportion estimation error subject to the number of cross-
overs when generating cross-bred animals and the used algorithm, where M is the maximum
absolute error across all cross-bred animals and all possible breeds, and S is the mean of the
squared estimation error calculated across all animals and possible breeds.

Number of cross-overs CGR ADM
M S M S
5 0.24691 0.00103 0.85393 0.01578
25 0.28217 0.00107 0.67077 0.00566

CGR needed about 16 real time seconds for estimating the pure breed proportions of all 5000
cross-bred animals, whereas ADM needed 292 and 336 real time seconds for the 5 and 25 cross-
over data set, respectively, which is an increase in processing time by a factor of 20. Note that the
processing time was obtained without exploiting the parallel processing capabilities of both
algorithms.

DISCUSSION

Results show that when pure breed population allele frequencies are known, the less elaborate
modelling approach of CGR performs better than the ADM approach. Both algorithms do not
account for linkage disequilibrium between marker. However, in addition to not assuming any LD
between markers, the likelihood formulation of the ADM algorithm assumes also orthogonality
between pure breed population allele frequency vectors. While this might be the case between very
distant breeds having diverged many generations ago, it is unlikely to be the case for commercial
beef cattle breeds. While CGR in its current formulation is not accounting for LD explicitly, it
accounts for non-orthogonality between pure breed allele frequency vectors which might be one
reason for the better performance. However, CGR could also account for LD by reformulating
formula 1 to a generalised least square problem with the co-variance matrix of vector y reflecting
the LD between markers, although this approach is limited by the number of markers. Beside
better performance CGR generated more accurate results in a processing real time of only 5 % of
that of ADM. This will becoming even more relevant when the number of marker used increases
to 50k or more.

CONCLUSION

The results show that the simple modelling approach implemented in CGR provides accurate
estimations of breed proportions in cross-bred animals. Moreover, CGR proved to be robust
against LD, accounts for non-orthogonality of allele frequency vectors of founder breeds and is
fast enough to deliver results for tens of thousands of animals in a reasonable time.
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SUMMARY

There has been extensive research, particularly in human genetics, devoted to the development
of methods that use genotype data for the identification of distinct genetic sub-populations within
the population of interest. Some of these methods have also been incorporated in the field of
animal breeding in order to improve the accuracy of predicted breeding values through their use as
genetic group effects. In this paper, we compared a method of finding sub-populations based on a
decomposition of a normalised matrix derived from genotype data, to a modified probabilistic
PCA model that took into account the non-normal nature of the genotype data. In an initial study,
where we used a dataset from the New Zealand sheep industry with a known breed composition,
we found that the modified probabilistic PCA model gave equivalent separation between breeds to
EIGENSTRAT.

INTRODUCTION

Livestock programs aim to optimise long-term genetic gain. To do this the ideal is for breeding
values to be as accurate as possible. One method of improving breeding value accuracy is through
the fitting of genetic groups. However in practice, genetic groups often prove difficult to define
(Kuehn et al. 2007).

With the increased availability of genotype data, there has been a move towards replacing
pedigree records with genotype data for the construction of the relationship matrix to improve
breeding value accuracy. In addition there have been attempts to use genotype data to define
structure within the population of interest, which is then fitted in the model, usually as a fixed
effect. An example of this is EIGENSTRAT (Patterson et al. 2006), which in practice is very
similar to the eigen-decomposition of the second genomic relationship matrix proposed in
VanRaden (2008). This method ignores the non-normal nature of the genotype data and has been
shown to reduce across breed accuracy when used as a genetic group (Daetwyler et al. 2012).

To deal with the issues outlined, we propose a probabilistic PCA model that explicitly takes
into account the ideal conditions of binomially distributed genotypes. We then compared the two
methods, focusing on their respective ability to distinguish between genetic groups, which we took
to correspond to the recorded breed.

MATERIALS AND METHODS

Data. The genotype data (5K Illumina SNP Chip) available was from 8,902 animals born from
2000 to 2014, each with up to 5,283 markers recorded. Genotypes which were missing for more
than 1 % of animals or monomorphic for all animals were omitted from analysis. The removal of
animals with any missing genotypes reduced the dataset to 1,672 animals with 5,170 markers
recorded. Breed composition data was obtained from Sheep Improvement Limited (SIL). The
distribution of breeds in the dataset is indicated on Table 1.

EIGENSTRAT. This method of identifying population structure was introduced in Patterson
et al. (2006). It assumes a n X m matrix of genotypes Z with rows corresponding to individuals
and columns to markers and coded 0, 1, 2 where the numbers correspond to the number of copies
of the A allele. Each column j of Z was then normalised by subtracting by twice the allele
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frequency p; and dividing the result by /p;(1 — p;) to form the matrix M. Eigen-decomposition
(Principal Component analysis) was then performed on the matrix iMM’. Determination of
population structure was then made using the resulting eigenvectors (Principal components).

Table 1. Breed distribution of genotyped animals as recorded in SIL

Breed distribution of animals

Breed Number of animals Breed Number of animals
Unknown 11 Perendale 133
Romney 495 Highlander 31
Coopworth 67 Composite 2
Overall distribution of breeds where known
Breed % in population Breed % in population
Romney 48.13 Poll Dorset 1.28
Coopworth 14.87 East Friesian 1.04
Perendale 13.88 Highlander 3.37
Finnish Landrace 1.12 Composite 3.57
Texel 6.70 Other Breeds 2.53
Suffolk 3.51 (less than 1 % of population)

Binomial probabilistic principal component analysis (BPPCA). Under ideal conditions of
Hardy-Weinberg equilibrium and no linkage disequilibrium, each of the markers j observed from
individual i can be regarded as realisations of a binomial random variable.

Z;; ~ Bin(2,p;;) [1]

BPPCA assumes that the individual-marker specific allele frequency p;; can be modelled using
the link function 6;; = log(p;;/(1 —p;;)) as a function of a marker specific intercept u;, f
principal components, where f was pre-determined, and an error term. This results in the following
model for the observed genotype pattern, where 6 is a n x m matrix of link functions, Lan x f
matrix of components, F a f X m matrix of scores, and e isan x m matrix of residuals.

Z; ~Bin(2,(1 + e %)1)
0;; = u;+ Xy LyFy; + ey, Fp; ~N(O,1), e;~N(0,02) [2]
To fit the model, we used Pélya-gamma data augmentation as outlined in Polson et.al (2013)
and previously implemented for a similar model in Klami (2014). This allowed closed form
conditional posteriors to be obtained for all model parameters. Based on the eigenvalue scree plot
obtained from implementing the EIGENSTRAT method, the number of components to fit was
fixed at five. Estimates were obtained from the posterior means found by using a blocked Gibbs
sampler based on the conditional posteriors. The Gibbs sampler was stopped once the relative
change in @ dropped below 1 x 1075, Spectral value decomposition was then applied to the initial
estimates to ensure orthogonal components. This ensured comparability of components to those
extracted using EIGENSTRAT.

RESULTS AND DISCUSSION

Ability to separate breeds based on principal components. Figure 1 plots the first two
principal components obtained from EIGENSTRAT and BPPCA with pure breed animals
highlighted. Both methods were able to distinguish between different pure breed populations.
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Figure 1. First two principal components obtained from EIGENSTRAT and BPPCA.

-06
04

Possible uses of the principal components (PC) to represent population structure. Since it
is established that principal component analysis on normalised genotype data can distinguish
between sub-populations, the fitting of PC has been used extensively to account for population
structure in models. The PC are usually fitted as fixed effects. Since EIGENSTRAT extracts PC
from the decomposition of the genomic relationship matrix, we suggest that it is more appropriate
to fit the PC as random effects. In addition, fitting a decomposition of the genomic relationship
matrix in addition to the genomic relationship matrix could be regarded as over-fitting.

In BPPCA, PC are constructed at the link function level, not directly from the observed data.
This means that the relationship between the PC and the genomic relationship matrix is indirect.
This can be demonstrated by the law of total variance and noting that E(p) and Var(p), where p
is the vector of latent probabilities for each animal, are both functions of the BPPCA PC. It may
also mean representing population structure using PC from the BPPCA maodel is less prone to the
reduction of across breed accuracy seen in Daetwyler et al. (2012).

Var(Z) = E(Var(ZIp)) + Var(E(ZIp)) [3]
= diag{E(2p(1 — p))} + Var(2p) = 2diag{E(p) — E(p)* — Var(p)} + 4Var(p)

If the genotype data can be represented by a low rank matrix factorisation at the link function
level, the correlations between animals implied by the PC would be higher (if correlation is
positive) or lower (if correlation is negative) than the corresponding correlations in the genomic
relationship matrix. However EIGENSTRAT extracts a reduced number of PC, which contain
more information about covariance than variance elements. Therefore the implied correlation
between random structure effects of different animals is similar between the two methods. This is
shown in Figure 2, which shows heat maps of the implied between animal correlation.

Figure 2 shows if PC are used as a classification tool to distinguish between breeds, similar
results were obtained from EIGENSTRAT and BPPCA. In our dataset, both clearly identify each
pure breed population, sub-groups within the Romneys and classify the animals of unknown breed
as Perendale. Corresponding PC extracted by the two methods were highly correlated, except for
component 2 and 3, as seen in Table 2. The high negative correlation seen in component 1 and 5 is
due to the sign invariance property of estimated loadings in latent factor models.
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Figure 2. Heat maps of implied correlations between animals that were either of pure or
unknown breed. (Dark Red: High positive correlation, Dark Blue: High negative correlation)

Table 2. Correlation between EIGENSTRAT and BPPCA principal components

EIGENSTRAT BPPCA component
component 1 2 3 4 5
1 -0.9922 -0.0342 -0.0062 0.0194 0.0537
2 -0.0299 0.7297 0.6536 0.1353 -0.0483
3 0.0159 -0.6636 0.7352 0.0157 -0.0345
4 0.0130 -0.0895 -0.1086 0.9677 -0.1509
5 -0.0509 -0.0023 -0.0406 -0.1534 -0.9683

Conclusions. BPPCA can be shown to successfully distinguish between different breeds and
identify the breed of unknown animals but we did not find substantial differences to
EIGENSTRAT for either property. Currently BPPCA is much slower to implement and the
challenge will be to determine if the method has advantages in populations with different sub-
structure than the example given. In the future, the fitting of principal components from
EIGENSTRAT and BPPCA as random effects in a BLUP model can be compared for their
efficacy in the prediction of breeding values with respect to accuracy and bias.
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SUMMARY

Advanced animal breeding in aquaculture has reached a tipping point where the commercial
implementation of genomic selection to improve productivity and disease resistance is becoming
reality. However, the success of practical implementation of genomic selection depends on the
specific aquaculture species, production system and available phenotyping and genetic resources.
Using the experience learned from commercial programs for pearl oysters and marine shrimp, we
highlight current benefits and options in cost-effective high-throughput genotyping and phenotyping
technologies for genomic selection applications relevant to aquaculture species, followed by
discussion of some of the lessons learnt when dealing with its practical implementation, including
what is needed to build adequate genotype resources for non-model species; confounded breeding
objective verse trait measurements; complex traits and unknown interactions; multi-family breeding
schemes; multi-stage selection schemes, and transition to a genomic selection breeding program
incorporating minimisation of inbreeding.

INTRODUCTION

Classical breeding programs for farmed plant and animal species are based on phenotypic selection
of individuals in conjunction with knowledge on genetic relationships and quantitative genetic
principles. Breeders have enhanced production traits of farmed species by selecting superior
individuals as parents for succeeding generations. However, the efficiency of this method is limited
when traits are difficult-to-measure, can only be measured late in life, are sex limited, or have low
heritability. Over the past two decades, rapid developments in genomics have resulted in breeders
incorporating genetic marker technology in the form of Marker Assisted Selection (MAS) to aid in
the animal selection process. Although this technique can be useful for some simple traits,
application of MAS to improve complex traits controlled by many genes of small effect is limited.
Genetic improvement in these traits can only be achieved through more advanced genomic methods
(Eggen 2014).

With recent advances in molecular biotechnology and quantitative analysis methods, it is now
possible to accurately predict and use genome-wide molecular breeding values for improved animal
selection. This approach is termed Genomic Selection (GS) and was first proposed by Meuwissen
et al. (2001), and has gained significant application within the animal genetics community. In this
approach, animal selection decisions are based on genomic breeding values (GBVSs) predicted from
genome-wide loci. GS is based on the theory that with sufficiently high numbers of loci across the
genome, most quantitative trait loci will be in strong linkage disequilibrium with at least one marker.
GS simultaneously estimates the combined genetic effects of all relevant genes and provides
accurate predictions of genetic merit for a trait. Furthermore, genome wide markers can be directly
use to compute the genomic relationship matrix (GRM), which can then be used to compute genomic
breeding values using standard mixed model equations. GRM, even based on a smaller subset of
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markers, can provide an accurate estimate of the proportion of the genome shared by related
individuals and hence provides higher accuracy of estimation of breeding values as compared to
estimates based on pedigree information alone (Forni et al. 2011).

Integration of GS methods into aquaculture breeding programs promise to rapidly increase
genetic gains through improved accuracy of breeding value estimation. GS has the highest potential
for traits that cannot be directly measured on the selection candidates and can be used to capture
both within- and between-family genetic variances (Nielsen et al. 2009). This makes genomic
selection a powerful approach in aquaculture, since many traits (eg., disease resistance, carcass
quality and pearl quality traits) must be measured on the siblings of the actual selection candidates,
rather than the selected candidates themselves. Furthermore, GS can minimise inbreeding while
maximising genetic gain beyond that of current practices (Daetwyler et al. 2007). This is of
particular benefit to aquaculture where species are often highly fecund and the number of
contributing families reared in closed farms is low, resulting in rapid inbreeding if pedigree is not
tracked (Gjedrem 2005). Despite all of these advantages, a limited number of aquaculture breeding
companies and associated research programs are attempting to implement GS into commercial
operations for long-term genetic gain (eg., Tsai et al. 2017; Khatkar et al. 2017a; Jones et al. 2017).

The success of the practical implementation of GS in aquaculture production systems depends
on the breeding objectives, selection criteria, infrastructure, genomic resources and phenotypic
recording / analysis systems. Each of these aspects can have different challenges depending on the
specific aquaculture species and production system. Here we aim to provide an overview of the
opportunities for the adoption of genomic selection within aquaculture, with particular focus on the
challenges of implementation and long-term use in aquaculture commercial systems.

VALUE OF GENOMIC SELECTION IN AQUACULTURE

The breeding design of aquaculture species is primarily governed by the biology of the animal
and available farm resources. Commercial selective breeding programs have recently expanded to a
diverse range of species (eg., crustaceans such as shrimp, oysters and finfish). Primarily, most
aquaculture selection programs have focused on growth, which can be selected easily based on either
simple individual, or pedigree family-based selection approaches (eg., between, within and
combined). For disease traits or other traits that require destructive sampling, family-based sib-
selection is more commonly practised. Sib-selection, whilst allowing family average breeding values
to be calculated, only exploits half of the available additive genetic variance (ie., exploits the
between family variance), which limits genetic gains, and can also lead to increased inbreeding as
not all families are selected to contribute to the next generation stocks.

In aquaculture, GS has been theoretically shown to simultaneously increase genetic gains, while
decreasing inbreeding by up to 81% when compared with traditional selection programs (Sonesson
and Meuwissen 2009). Although, the monetary value of individual animals of most aquaculture
species is generally low (eg., compared to livestock), they are highly fecund and have a relatively
short generation interval. This not only provides the ability for varied selective breeding strategies,
but also for generating the thousands of phenotypic records required for accurate GS predictions.
Furthermore, with a limited number of discrete broodstock capable of producing offspring for the
entire production system, the farm effective population size is relatively small. This characteristic
enables GS to be implemented on a family-based, or farm-wide basis, utilising a lower density of
genome-wide loci compared to outbred populations (see genomic information section below). In
aquaculture, GS improvement programs can have a rapid impact on genetic improvement
particularly through the use of a structured nucleus breeding scheme. As with traditional selective
breeding programs, the potential of GS will vary across different species depending on differences
in life cycle, fecundity, effective population size and breeding objectives.

To date the successful application of GS in aquaculture has been limited to a handful of research
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projects. For example, sea lice resistance in Atlantic salmon (Tsai et al. 2016), bacterial cold-water
disease resistance in rainbow trout (Vallejo et al. 2017) pasteurellosis resistance in gilthead sea
bream (Palaiokostas et al. 2016) and shell size in scallops (Dou et al. 2016). For commercial
aquaculture applications of GS, there is limited public information available, and progress is
reported here on optimisation and implementation within the authors own programs. Here, GS is
being directly integrated into shrimp breeding programs for multiple production traits (eg., size,
disease resistance, colour, survival, Khatkar et al. 2017a these proceedings), as well as pearl oyster
breeding programs for both host oyster and donor oyster traits (eg., shell size and pearl quality traits,
Jones et al. 2017 these proceedings). Within these programs, the feasibility of successfully applying
GS has relied on the availability of high-quality genomic resources, comprehensive information on
genetic parameters for all traits and extensive trait phenotype records in the reference population.

COST-EFFECTIVE GENOMIC INFORMATION

In aquaculture breeding, the number of individuals to genotype can be large (particularly for
traits with low heritability). Apart from optimising the number of training or selection candidates
for routine genotyping (ie., based on GS modelling and farm breeding scheme, eg., Sonesson and
Meuwissen 2009), reducing the cost or number of genome-wide markers is a viable solution. Our
own data show that derivation of genomic relationships can be achieved with relatively low-density
SNP panels (Figure 1; 1,000-3,000 SNPs;) compared to those derived from medium-to high density
SNP panels (eg., 50,000+ SNPs; see also @degard et al. 2014). However, such accuracies deteriorate
rapidly if very low-density SNP panels are used (<1,000 SNPs).

kinship: two sets of 100 SNPs; samples= 393 kinship: two sets of 3000 SNPs; samples= 393
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Figure 1. Comparison of SNP based kinship estimates (rG) computed using two independent
sets of (a) 100 SNPs and (b) 3,000 SNPs, calculated on 393 shrimp samples.

To our knowledge, there are only a handful of aquaculture species that have commercially
available SNP genotyping arrays available (ie., Affymetrix Axiom Salmon genotyping array,
Affymetrix Axiom Trout genotyping array and lllumina Infinium ShrimpLD-24 genotyping array).
The lack of commercially available genotyping SNP arrays for aquaculture adds significant
additional cost to GS genotyping, as these resources need to be first development and tested.
However, the recent development of high-throughput and cost-effective genotyping by sequencing
(GBS) technologies has significantly reduced both the cost of developing and genotyping SNPs for
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non-model species (eg., Lind et al. 2017). As such, GBS is rapidly becoming the methodology of
choice for aquaculture species (Robledo et al. 2017). Compared to SNP array based genotyping
platforms, GBS requires significantly more quality control (QC) measures to ensure robust genotype
data is produced. This is primarily a result of the molecular technique itself, which can introduce
spurious and missing data when proper control and data filtering methods are not put in place.
Aquaculture species can be particularly sensitive to these anomalies given their sometimes highly
polymorphic and repetitive genome structures, a problem particularly observed for crustaceans and
oysters (eg., Yu et al. 2015; Lal et al. 2016).

Another method to reduce the cost of genotyping is through imputation of genotypes, where most
of the animals can be genotyped with a low-cost, low-density SNP panel. The genotypes of these
animals can be imputed up to high-density by using information on a smaller number of reference
individuals (typically broodstock) genotyped with a larger high-density SNP panel that also captures
the same SNP as represented on smaller arrays. Such imputed in-silico genotypes can then be used
for GS and other genomic analyses. Such strategies have been shown to improve the accuracy of GS
in livestock (Khatkar et al. 2012) and aquaculture species (Tsai et al. 2017).

The number of individuals in the reference panel and number of markers in the low-density panel
depends on the effective population size of the breeding stock and relationship between reference
and test populations. A small effective population size, as present in many aquaculture stocks, will
require smaller number of animals in the reference panel and can be imputed with high accuracy
with smaller number of SNPs in the low density panel. Moreover, if all the contributing broodstock
are genotyped with the high-density panel, the accuracy of imputation in the progeny, genotyped
with even smaller SNP panel, could be quite high using a pedigree based imputation approach
(Hickey et al. 2012). However, accurate imputation requires knowledge about the precise location
of SNPs across the genome. For most aquaculture species genetic linkage maps and / or genome
assemblies are in the early stages of development (Abdelrahman et al. 2017).

NEXT-GENERATION PHENOTYPING

Accurate phenotypes on commercially important traits are critical for any breeding program.
This becomes especially challenging in aquaculture where large numbers of animals need to be
recorded. Any error in the trait recording will reduce effective estimated heritability and hence
realised genetic gain. High-throughput and precise phenotyping strategies are required to supply the
large amount of trait data required for commercial scale GS applications. Within this framework,
the objective is to increase the accuracy, precision and throughput of phenotypic assessment while
reducing costs and minimising labour in an intensive production system. Today, phenotyping is
quickly emerging as the major operational bottleneck limiting the power and speed of commercial
GS programs (eg., Cobb et al. 2013). This problem is compounded in aquaculture where fecundity,
progeny numbers from breeding pairs and variable survival rates create circumstances where
individual phenotypes and traceability are nearly impossible to obtain without new methodologies.
Furthermore, aquaculture does not have the benefit of standardised global phenotyping programs
such as in livestock (eg., dairy cattle). Designing effective on-farm phenotyping strategies requires
integrated solutions incorporating biologists, computer scientists, statisticians and engineers.

More recently, automation, imaging and software developments have paved the way for many
quantitative phenotyping studies. Within these developments, digital imaging has emerged as a
cornerstone to capturing quantitative phenotypic information. Visual imaging has already allowed
many production traits to be measured efficiently and accurately across different production
industries including aquaculture (Cobb et al. 2013; Saberioon et al. 2016). For example, fish length
has been estimated in Rainbow trout (Miranda and Romero 2017) and fish mass in Jade Perch
(Viazzi et al. 2015) with very low residual errors using automated computer vision techniques.
Furthermore, fish skin colour and pearl quality traits (eg., colour, lustre, completion), which
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traditionally are recorded as categorical traits, can now be recorded as highly-reliable continuous
quantitative traits based on UV-Vis spectrophotometry (eg., Kustrin and Morton 2015), which
ultimately will improve GS predictions. Other emerging aquaculture phenotyping techniques are
Near Infra Red (NIR) spectroscopy and Hyperspectral imaging (HIS) which combines spectroscopy
with imaging technology. These techniques are able to quantify and evaluate the chemical (eg., fat,
protein, moisture) and physical (eg., freshness, texture, colour) attributes of aquatic animals with
relatively high accuracies of prediction (r > 0.8, see Liu et al. 2013; Saberioon et al. 2016). All of
these machine vision systems (MVS) are able to extract and analyse quantitative information from
digital images and have the ability to improve the accuracy of the phenotype by electronically
analysing the data at a pixel level across spectral regions not always visible to the human eye.

MVS usually consists of two components, the image acquisition system hardware (ie., UV-Vis,
NIR and HIS) and data extraction system software. The latter typically incorporates computer based
processing and optimised statistical methods and algorithms specific for the trait of interest, which
is often the limiting factor in applying MVS. The development of advanced image analysis software
including artificial neural network (ANN) algorithms based on machine learning approaches has
been an important step forward in the development of analysis systems for automated MVS
phenotyping (eg., Grys et al. 2016).

Figure 2. (a) Oyster net image depicts one of the most difficult tested situations. (b) Oysters
and net have low contrast from the background and lighting is variable. (c) Sliding windows
CNNs correctly identified and measured oysters with >93% accuracy.

Within our own research programs (ie., for marine shrimp and pearl oyster), machine learning
algorithms have allowed precise inexpensive phenotyping across diverse production traits. For
example, MVS systems have been used for pearl oyster growth data as well as pearl quality traits
(eg., colour, size, lustre, completion). Although still in development, sliding window algorithms and
Convolutional Neural Network (CNN) with rule-association based clustering yielded high accuracy
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(exceeding 93%) in Object Character Recognition (OCR) for the oysters in nets within the full
spectrum of commercial situations (Figure 2; P. Toole unpub. data). By definition, CNN learning
algorithms get more precise when presented with more data. This supervised learning approach has
been undertaken with developing methodologies on how to automate the entry of commercial data
into a noSQL or graph-based database.

IMPLEMENTING GENOMIC SELECTION ON FARM — LESSONS LEARNT

Greatest immediate value from genomic selection is realised where genomic breeding values can
be targeted against traits that drive economic returns to commercial farmers. Typically such traits
are based on yields of harvested product. Although this sounds straightforward enough, practical
limitations become immediately apparent in situations where traits under commercial grow-out
conditions vary substantially from performance recording environments in often pathogen-free
central nucleus breeding facilities (as used in specific pathogen free shrimp breeding programs for
instance). For most aquaculture systems the Genotype by Environment (GXE) interactions are
largely unknown and limit the value of GS training data if the genetic correlation between the central
nucleus breeding values and on-farm breeding values is significantly less than unity (ie., < 0.6).
Fortunately, genomic selection platforms allow for field data to be linked to nucleus broodstock
through DNA derived genomic relationships and on-farm phenotyping. Secondly, genomic selection
programs become increasingly more complex when harvest yields are determined by diverse
genomes, as is the case of pearl oyster, with a host recipient seeded with the saibo of a donor. The
need to have accurate breeding values for both host and donor oyster may eventually result in the
need of separate breeding lines for both. Unknown interactions between host and donor further
complicate the application of genomic selection if such epistatic effects are significantly greater than
zero. In the case of pearl oyster the multi-factorial nature of pearl value adds to the complexity of
setting up multi-trait genomic selection. Thirdly, and potentially of greatest commercial appeal for
genomic selection is to build disease resistance into the genetic improvement program as has been
highlighted above. Most central nucleus breeding programs are pathogen free and breeding decisions
are based on family sib-selection, but commercial grow out environments are under constant disease
challenge. It is unlikely that simply screening commercial stocks will yield data of sufficient quality
to obtain genomic breeding values for disease resistance, since most disease field challenges are
uncontrolled, and often resistance to multiple pathogens is of interest. One potential solution is to
expose large mixed-family progeny cohorts to standardised disease challenge and ascertain survival
statistics from pooled genotype data pre- and post-challenge. Finally, it is almost certain that for
most genomic selection programs, there will be a need for ongoing phenotyping to update the
training sets, and cross validate data collected under diverse commercial environments and to
monitor unfavourable genetic correlated responses.

Perhaps one of the greatest advantages offered by application of genomic selection over
conventional breeding programs, is that large-scale multi-family data can be resolved retrospectively
through genomic relationships. This has two immediate and highly significant advantages. Firstly,
the predicted genetic response and realised inbreeding are far superior over the management of
multiple single-family lines. Simple simulation shows that a cohort of 100 families in a single line
outperforms the average of 100 single-family lines and creates long-term sustainable value for the
industry (Khatkar et al. 2017b, these proceeding). Secondly, the enormous costs in establishing and
maintaining single-family mating, spawning and rearing facilities are not required under a genomic
selection program using a large scale multi-family breeding program. In many cases the commercial
infrastructure for propagation is sufficient, and the cost saving outweighs the cost incurred for
genotyping.

In our experience, the transition from existing/traditional selection programs into a genomic
selection program is challenging since most mating and infrastructure designs in central nucleus
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breeding facilities do not capture the advantages offered by genomic selection programs. In the case
where simple mass produced commercial stocks are produced, or where no genetic improvement
programs are in place, imposing a genomic selection program is potentially straightforward. The
main requirement is that the species is domesticated, since lifecycles need to be closed for ongoing
selection and capture of genetic gain. Where source broodstock has been harvested from wild stock,
the base generation needs to be adequately represented in the foundation stocks, and inclusion of
“new” ongoing sampling of wild stocks limited. Once an adequate training data set against
commercially well-defined breeding objectives has been completed, a robust test-set and validation
phase is required to determine the accuracy of the genomic predictions. For easy to measure traits
of moderate to high heritability, this is relatively easy to achieve; however, for most, if not all
diseases, and complex multi-factorial traits, the development of adequate training data sets will
remain a logistical challenge. Of practical concern is also how best to use available information. For
most applications, genotyping potential candidates under selection remains a significant cost. The
use of multi-stage selection, based on simple phenotypic selection as a primary selection, followed
by genomic sampling (DNA sampling genotyping and tracking tagged individuals) and selection is
likely the most cost-effective application of this technology (Khatkar et al. 2017b these proceeding).
Other applications of genomic selection include the genomic management to minimize inbreeding
by candidate selection and mate allocation to maximize genomic diversity. Genomic selection also
offers an additional commercial benefit, to pre-screen females and males in the current generation
for production of commercial animals, given that relatively few females are needed to generate the
many millions of larvae for commercial production. The exact benefits of GS breeding programs
will be dependent on the species and nature of the aquaculture enterprise.
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SUMMARY

Sexual maturation of Atlantic salmon, Salmo salar, is a complicated process that involves many
variables that can act to activate and/or inhibit sexual development. Unwanted early onset of sexual
maturation of Atlantic salmon is a challenge for the salmon aquaculture industry, as it has negative
impacts on growth rate and product quality. Consequently, there has been a significant amount of
research aiming to understand the biological mechanisms driving early salmon maturation. We
present the description of a proposed animal trial, coupled with RNA-Seq based transcriptomics,
designed to elucidate the earliest triggers which commit animals to sexual maturation. Our approach
has two major components. First, animals will be photoperiod manipulated to artificially narrow the
time window during which maturation is initiated. Tissue samples will be collected before, during
and after the initiation event. The second component involves next generation sequencing to obtain
detailed gene expression profiles. We will target the brain, pituitary and gonad tissues as the brain-
pituitary-gonad (BPG) axis is central to regulating sexual maturation. We anticipate our approach
has the potential to both identify the genes involved, and open new approaches to control the timing
of maturation in this important production species.

INTRODUCTION

Sexual maturation is the process by which organisms become mature and are capable of
reproducing. In Atlantic salmon, the development of sexual maturation is complex, with extreme
variability in age and size at maturation (Good and Davidson 2015). Moreover, the variability in
timing of maturation is considered a significant problem to Atlantic salmon aquaculture, specifically
Atlantic salmon that mature at an early age are more susceptible to opportunistic microbes (St-
Hilaire et al. 1998), exhibit decreased feed conversion efficiency and lower than normal growth rate
(McClure et al. 2007), and have reduced product quality (Aksnes et al. 1986). In salmon industry,
photoperiod management is the general practice to control animal maturation. The brain-pituitary-
gonad (BPG) axis is a key regulator of sexual development in vertebrates. Activation of neurons in
the hypothalamus leads to production of gonadotropin releasing hormones (GnRH), which stimulate
the release of gonadotropins such as follicle stimulating hormone (FSH) and luteinising hormone
(LH) from the pituitary gland. In the gonads, gonadotropins induce the production of gonadal
steroids (e.g., testosterone, estrogen and progesterone), which in turn affect various aspects of sex-
related physiology, secondary sexual characteristics and behaviour. Consequently, analysing
transcriptomic changes in the BPG axis during the early stages of sexual maturation in Atlantic
salmon could identify differentially expressed genes and gene co-expression networks operating to
control the process.

It is possible maturation is inhibited during the juvenile life stages until specific
physiological/biochemical thresholds are attained. The thresholds include, for example, levels of
adipose tissue (Rowe et al. 1991) and energy reserves (Kadri et al. 1996), which provide information
about the optimal fitness and triggers a developmental switch towards maturation. These thresholds
are influenced by environmental factors (Taranger et al. 2010) of which photoperiod is considered
an essential determinant for initiating sexual maturation in teleosts including Atlantic salmon
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(Bromage et al. 2001). Photoperiod effects facilitate optimal timing of conditions that favour growth
and survival of young animals. Moreover, those physiological thresholds are genetically determined
to some extent. For example, Barson et al. (2015) identified a single locus in the Atlantic salmon
genome that is associated with age at maturity through a genome wide association study. The causal
gene is likely to be the vestigial-like family member 3 gene (VGLL3), which has a role in adiposity,
however its precise role is yet to be determined.

The mechanisms underlying the onset of maturation are not understood in Atlantic salmon. This
is primarily because it is difficult to sample animals as they commit to the maturation pathway. This
project describes an animal experiment designed to identify the genes, gene expression differences
and gene networks driving initiation of sexual maturation in Atlantic salmon.

MATERIALS AND METHODS

Experimental design. In order to maximise the probability of sampling animals during the earliest
stages of the maturation process, well before the appearance of the phenotypic changes associated
with maturing fish, the decision window for animals to initiate maturation should be as short as
possible. Consequently animals will be managed via photoperiod manipulation to synchronise the
timing of commitment into maturation. We will study a population of female broodstock that will
be approximately 36 months post fertilization in April 2017 (~3.1 to 3.4 yrs at sampling). The
proposed management of the animals and associated timeline is given in Fig.1.
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Figure 1. Induction of maturation through photoperiod manipulation and suggested time
points for tissue sampling and RNA isolation.

Sampling. Activation of the brain-pituitary-gonad axis is central to reproductive development and
prioritises the three target tissues for examination in the experiment. An expanded set of tissues
(liver, spleen and muscle) may be harvested at sampling, however these three are the focus for RNA-
Seq data generation. In order to measure and control for variation between individuals, we propose
to sample 4 fish at each of the T1 — T4 and the C1 time point (total of 20 fish). This will enable
variation within tissues and time points to be evaluated. The maturation status of animals (leading
up to the long day photoperiod initiation) is currently being monitored by ultrasound. Ultrasound
data and update on the T1 samples will be presented at the conference.
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Transcriptomic data generation and high-throughput sequencing. A total of 60 RNA libraries
will be generated arising from 5 (time points) x 3 (tissues; brain, pituitary, ovary) x 4 (biological
replicates). RNA-Seq libraries will be prepared using the Illumina TruSeq RNA Sample Preparation
Kit. RNA-Seq libraries will be sequenced on four lanes on an Illumina HiSeq platform. Sequencing
should produce (at least) 25 million individual 100-bp paired-end reads per library. RNA-Seq data
will be processed and analysed for differential expression in response to the onset of maturation
Fig.2.
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Figure 2. Flow chart of the pipeline for RNA-Seq (transcriptomic) data generation,
identification of differentially expressed genes and subsequent gene co-expression networks
analyses.

RNA-Seq data processing and differential expression analysis. Illumina raw reads will be
checked using FastQC, a quality control tool for NGS data. lllumina universal and indexed adapters
will be removed and data will be filtered based on quality using Trimmomatic software (Bolger et
al. 2014). lllumina reads will be analysed according to the Tuxedo protocol (Trapnell et al. 2012).
Briefly, the processed Illumina reads will be mapped separately against the salmon reference
genome (Lien et al. 2016) using TopHat, a gapped/ spliced mapper, in order to generate alignment
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(accepted_hits.bam) files. Then the Cufflinks suite will be used for differential expression. First
transcripts will be assembled and quantified using cufflinks, then transcripts will be merged into a
single transcriptome using cuffmerge and differential expression will be calculated using cuffdiff.
The R package CummeRbund will be then used to explore the gene expression data and create
volcano plots and heatmaps to visualise the differential expression. The list of differentially
expressed genes (DEGs) will be analysed using GO and KEGG databases for pathway enrichment
among the gene lists.

Gene co-expression network analysis. Gene co-expression networks will be analysed as described
in (Canovas et al. 2014). Briefly, in addition to the list of DEGs, tissue-specific genes (TSGs), genes
harbouring SNPs reported to be associated with maturation traits and key regulators such as
transcription factors (TF) will be used to generate and analyse gene co-expression networks. The
DEGs, TSGs, key TF and SNP harbouring genes will be used as nodes and significant connections
will be identified using the partial correlation and information theory (PCIT) algorithm (Watson-
Haigh et al. 2010) in the R environment. The PCIT ascertains the correlation between genes and
network nodes after taking into account all other genes present in the dataset. The PCIT output will
be viewed with Cytoscape, a software for analysis and visualisation of gene co-expression networks
(Shannon et al. 2003). The highly interconnected gene clusters and significantly overrepresented
Gene Ontology terms will be identified. Those clusters may be of biological significance to
maturation in Atlantic salmon. The analysis flowchart is summarized in Fig.2.

CONCLUSIONS

Execution of the proposed experiment will generate a tissue collection and a large transcriptomic
dataset that has not yet been obtained by the research community. The project is focused to
investigate the biological mechanisms driving the onset of sexual development, with a view to
developing novel approaches to assist management of unwanted early maturation within the Atlantic
salmon industry.
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SUMMARY

The Pacific whiteleg shrimp, Litopenaeus vannamei, is the most farmed shrimp species globally.
The development of high quality genomic resources including a dense array of genetic markers and
genetic maps are pivotal to integrating genomic selection in this species. We describe the
development and utility of an lllumina low-density single nucleotide polymorphism (SNP) array
(Infinium ShrimpLD-24 v1.0) which is now commercially available. These resources set the
foundation for investigating the architecture of complex traits and genomic selection.

INTRODUCTION

The whiteleg shrimp, Litopenaeus vannamei, is an intensively farmed species with global
production exceeding 3 million tonnes annually (GLOBEFISH 2016). Current breeding programs
for L. vannamei use traditional phenotypic selection to produce shrimp with enhanced growth and
that exhibit-lowered susceptibility to various viral pathogens like Taura syndrome virus (TSV) and
White spot syndrome virus (WSSV). While this traditional approach has been moderately successful
in producing more productive shrimp strains, genetic progress using multi-trait phenotypic selection
in L. vannamei is in some cases significantly impeded by an unfavourable genetic correlation
between growth and disease, as well as a poor correlative response in susceptibility to multiple
diseases (Gitterle et al. 2007, Huang et al. 2012, Gjedrem 2015). L. vannamei is an aquaculture
species that would benefit substantially from the integration of genomic information into traditional
breeding programs, particularly for disease and growth traits. Recent increased research effort has
yielded a number of genome-wide SNP and genome map resources for L. vannamei (Ciobanu et al.
2010, Du et al. 2010, Yu et al. 2015). However, none have yet to be made commercially available.
Herein, we present a large transcriptome sequence reference assembly with utility for mining over
26,662 high quality SNP markers and a commercially available Illumina Infinium ShrimpLD-24
v1.0 genotyping array with 8,967 SNPs for L. vannamei.

MATERIALS AND METHODS

Sequencing, assembly and annotation

To enable the identification and development of genome-wide Type | SNPs, high-quality total
RNA was extracted from the pleopod tissue of 30 L. vannamei individuals (provided by Global Gen,
Indonesia) using TRIZOL® Reagent (Life Technologies). Equimolar pooled RNA was converted to
cDNA using the Mint cDNA synthesis kit (Evrogen) and sequenced using an Illumina GA-11X at 76
bp paired-end resulting in approximately 25 gigabases of paired-end EST sequence data (~10x
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genome  coverage). Sequences were screened using the software  Seqclean
(https://sourceforge.net/projects/seqclean/) and MOTHUR (Schloss et al. 2009). The cleaned
sequence data was assembled using Velvet V1.0 (Zerbino et al. 2008) and OASES (Schulz et al.
2012). Transcript assemblies were conducted at kmer lengths of k39, k41, k43, k45, k47, k49, k51
and k53 before being clustered together at a 90% sequence identify threshold using the software
CD-HIT (Li et al. 2006). Assembly of the cleaned-up sequence data produced 76,963 contigs (N50
= 2,375 bp and average contig length = 1,429 bp).

SNP Discovery and Filtering

Genome-wide SNPs were identified within SAMTOOLS (Li et al. 2009). The varFilter option in
SAMTOOLSs was employed to filter SNPs, keeping only the most informative (i.e. minor allele
frequency (MAF) >0.25, read depth >10 reads, minor allele reads >2, SNP mapping quality >25,
flanking sequence quality >25). Any SNP identified within 50 bp of a candidate SNP was excluded
to ensure a conservative flanking region for probe design. SNPs with the highest MAF and read
depth were submitted for assay development analysis using Illumina’s Assay Design Tool (ADT)
and included if their ADT score was greater than 0.7. To ensure no unintentional duplicate SNPs
were included on the array, probes for each SNP were mapped to the initial assembly using
NOVOCRAFT (Novocraft Technologies) and only the probes that mapped uniquely were included.

Infinium Array Genotyping

To validate the performance of the lllumina ShrimpLD-24 v1.0 genotyping array, 1,134 female
and 193 male parents of families (produced by Global Gen, Indonesia) were genotyped. To ensure
all genotype calls were genuine and to identify aberrant SNP and DNA samples, strict data integrity
was undertaken in GenomeStudio V2011.1 following methods outlined in Jones et al. (2013).
Genotype reproducibility between batches was tested using 52 replicate samples and 26 replicate
SNPs. SNPs with a MAF greater than 0.01 were considered polymorphic. SNPs were investigated
for conformation to Hardy-Weinberg Equilibrium (HWE) and Mendelian Inheritance (MI) patterns.

To demonstrate the utility of the SNPs included on the Infinium ShrimpLD-24 v1.0 array, we
generated a preliminary linkage map using 30 grand-maternal and 19 grand-paternal families
containing 15 progeny on average. The linkage map was constructed in Carthagene V1.3 (de Givry
et al. 2005) using an iterative buildfw, annealing, flips 6 and polish method until the best map were
produced. Finally, genomic relationship matrixes (GRMs) were calculated with subsets of SNPs and
the full array to determine the minimum number of SNPs required for genomic selection (GS).

RESULTS AND DISCUSSION

Sequencing and assembly of transcripts

In total, over 25 Gb of sequence data (329 million raw EST sequences, 76 bp paired-end, ~15x
genome coverage) was produced from an Illumina GA-lIx run. After sequence trimming, 19.7 Gb
of high-quality data was retained. Assembly of remaining sequence data produced 76,963 contigs
(N50 = 2,375 bp and the average contig length = 1,429 bp). The average read depth over all contigs
was 210 reads with a median of 29. The assembled contig sequences and mapped raw reads have
been submitted to GenBank (Accession number: SRP094129). This significant genomic resource
enables the mining of over 17,000 additional SNPs not included within any commercial SNP array.

SNP discovery and filtering

From the assembled sequence dataset, 234,452 putative SNPs were identified in-silico before
strict filtering parameters were applied. By filtering out all SNPs with a read depth less than 10 reads
and a MAF of less than 0.25, a total of 26,662 high-quality SNPs were identified. A total of 1,142
SNPs did not return ADT values > 0.7 and 1,006 SNPs did not map to unique contigs and were
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removed. A further 7,003 SNPs were excluded due to being located within the flanking region of
another SNP resulting in a final list of 9,447 high-value SNPs. Of these, the highest scoring 8,967
SNPs [8,616 novel; and 351 developed in Ciobanu et al. (2010) and mapped in Du et al. (2010)]
were incorporated into the Illumina ShrimpLD-24 v1.0 array enabling high throughput, cost
effective and accurate genotyping. The average MAF and ADT score of these high-value SNPs was
0.37 and 0.95 respectively. SNPs included on the custom array have been submitted to dbSNP on
NCBI [ss2137297825-552137306471 (the current study); rs159816077-rs159831399 (Du et al.
2010); and rs142459135-rs142459627 (Ciobanu et al. 2010)]. The ShrimpLD-24 v1.0 array is
available at https://www.illumina.com/products/by-type/microarray-kits/infinium-shrimp-Id.html.

Infinium array genotyping and validation

In total, 1,327 individuals were genotyped on the ShrimpLD-24 v1.0 array. From these samples,
70 (5.3%) individuals produced call rates of less than 90% and were removed from further analysis
leaving 1,257 unique individuals to investigate SNP array performance. Analysis of the resulting
genotypic data revealed that 6.0% of the SNPs did not amplify successfully (probe did not bind to
the DNA) and 13.0% of the SNPs returned ambiguous clusters. From the resulting 7,259 SNPs, the
SNP conversion and validation rates were 80.9% and 95.6% respectively (Table 1). Further filtering
(i.e. excluding SNPs with a MAF < 0.01, SNP duplication, low call rates, or deviations from HWE
or MI expectations) resulted in a final dataset of 6,379 high quality SNPs with an extremely high
call rate (98.9%). The average minor allele frequency of these high-value SNPs was 0.37.

Table 1: SNP array performance indicating the number of SNPs retained throughout filtering.

SNP Exclusion Category # SNPs excluded #SNPs remaining
Total Number of SNPs: 8,967

Probe Didn't Bind 539

Ambiguous Clusters 1169

Number of SNPs producing genotypes (conversion rate): 7,259 (80.95%)
Monomorphic 318

Number Validated SNPs (validation rate): 6,941 (95.62%)
HWE deviations (Heterozygous Excess / Deficit) 163

Mendelian Inheritance Errors 399

Number of SNPs with minimal errors: 6,379 (87.88%)
Mendelian Inheritance Errors (< 0.01), or MAF < 0.01 90

Duplicated SNPs 43

Call rate < 90%, or Only 2 Clusters 190

Number of SNPs with no errors: 6,056 (83.43%)

A total of 52 replicate samples were included to evaluate array performance with concordance
between replicate samples exceeding 99.9%. This provided strong support for highly reliable
genotypic data across all validated SNPs. Furthermore, we reliably constructed a moderate density
linkage map of 44 linkage groups containing 4,370 SNPs. These SNPs span 98.12% of the estimated
genome size of 4619.3 cM at an average interval of 0.97 (map data to be revised and presented in
subsequent publication). The number of markers placed within each linkage group ranged from 22
—169 and linkage group distances ranged from 24.9 — 159.5 cM. By assigning positional information
to these SNPs, not only we demonstrate their utility, but improve their value within ongoing studies.

In the current breeding program, 3,000 highly informative SNPs provided adequate power for
accurate GRM calculations when compared to the 6,379 high quality filtered SNPs [Figure 1;

119



Aquaculture

correlation value of r? = 0.99; see Khatkar et al. 2017 (these proceedings) for GS analysis]. The
minimum number of SNPs for GRM analysis is also supported in similar studies of closed farm
populations including Atlantic Salmon (Tsai et al. 2015).
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Figure 1: GRM comparisons of different subsets of SNPs.

The development and validation of a large EST-derived SNP resource is pivotal for ongoing
research including identifying the major genes underlying important commercial traits, predicting
production performance and developing genetic selective breeding programs for L. vannamei. If
further SNPs are required these can be sourced from the SNP in-silico database. High SNP
conversion rates are anticipated since the observed conversion rate within this array was > 80%.
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SUMMARY

Traditional genetic improvement programs for Pacific white-leg shrimp (Litopenaeus vannamei)
rely on family selection to improve growth and disease resistance traits. DNA technologies can help
in simplifying breeding schemes and increasing genetic gains particularly for complex or difficult to
measure traits. Here we present the results of genome-wide association and whole genomic
prediction analyses using average family allele frequencies and the family mean of a growth trait in a
genetic resource population consisting 1,934 animals and 690 families of L. vannamei genotyped with
8,967 genome-wide SNPs. After correcting for FDR, no significant SNPs were detected for growth.
The accuracy of DGV in mirror prediction is much higher (0.65-0.69) as compared to forward
prediction. A SNP that may be closely linked to the sex locus was identified with the female being the
heterogametic sex.

INTRODUCTION

The Pacific white-leg shrimp (Litopenaeus vannamei) is an important aquaculture species and the
most widely farmed shrimp globally. Traditional genetic improvement programs for L. vannamei rely
on family selection to improve growth and disease resistance traits. Recent advances in high-
throughput genotyping and analytical methods can help to simplify breeding schemes and increase
genetic gain, particularly for complex or difficult to measure traits. In particular the mapping of
quantitative trait loci (QTL), or genes with large effect may have an immediate application in marker
assisted selection (MAS). We conducted a genome-wide association analysis for growth and a sex
associated trait in L. vannamei by genotyping a resource population with a purpose built genome
wide SNP panel and explored the possibility of genomic selection in L. vannamei.

MATERIALS AND METHODS

We built a resource database for L. vannamei by genotyping a total of 1,934 samples with 8,967
genome-wide SNPs on the Illumina Infinium ShrimpLD-24 v1.0 genotyping array (Jones et al. 2017
- these proceedings). These included 1,134 female and 123 male parents along with 677 nauplii
(larval shrimp) pools. Following SNP quality control (QC), 5,893 SNPs were used for all analyses.
An integrated linkage and LODE map was constructed using 631 progeny from 30 grand maternal
and 19 grand paternal traced families (Jones et al 2017 - these proceedings). In total, 4,817 SNPs
were mapped to 44 linkage groups that span a total of 4552.5 cM and cover an estimated 98.12% of
the L. vannamei genome. The average interval, excluding intervals of 0 cM, was 2.67 cM. This map
was utilised for all subsequent GWAS analyses and presenting results as Manhattan plots.

For the GWAS, average family allele frequencies were used for 690 families. For an additional
94 families, the genotype of the parents were available and for these the realised family-mean allele
frequencies were computed as the mean of parental alleles. Out of these, based on the availability of
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genotypic and phenotypic data, family-wise mean frequencies on 416 families were finally used for
conducting SNP association with the traits.

Phenotypic data on the family mean of 416 families on one growth trait G.d2All (Growth rate in
grams per day for all tanks) were used for the current analyses. The family mean value of G.d2All
ranged from 0.16 to 0.45 with a mean and standard deviation of 0.31 and 0.05, respectively. The
overall distribution of G.d2All (Figure 1a) indicated that this trait is normally distributed. Figure 1b
shows batch-wise distribution. In addition, individual genotypes of 1,963 animals and their sex-
status were analysed to detect any sex associated SNP association.

Frequency

Gr2All
H

IEESRE RN NN NN N R EEEEEEE RN}
G.d2Al 136 11 14 18 21 24 27 30 33 36 42

Batch ID
Figure 1. a) Overall distribution of the growth trait, G.d2All, presented as histogram. b)
Batch-wise mean and distribution of the growth trait. The x axis represents batch id in a
chronological order.

Genome-wide association (GWA) analyses. The association analysis was conducted using the
allele frequencies and mean phenotypic value of the traits for the families. A realized additive
relationship matrix (K) (Endelman, 2011) was computed to calculate molecular kinship among all
families using scaled mean allelic frequencies. The regression of the mean family phenotype on SNP
genotypes were conducted by fitting the mean allele frequency as a covariate and adjusting for across
family relationships using the following linear mixed model:
y=Xp+Zu+e

where y is a vector of the phenotypic value (trait), X is the incidence matrix incorporating mean and
SNP allele frequency; B is a vector representing coefficients of the fixed effects, Z is an incidence
matrix mapping phenotype records to families, u is a vector of polygenic genetic effects such that

var(u) = SgK , where K is the kinship matrix as described above, and & is vector of residual

random errors with vVar(g) = s gI . The model was fitted using ASReml (Gilmour, Gogele, Cullis,

& Thompson, 2009). Genome-wide false discovery rate was computed using the g-value package
in R (www.r-project.org).

Accuracy of genomic prediction. Genomic selection uses information from all SNP to derive
Direct Genomic Values (DGV). Accuracy of direct genomic values using SNP genotypes was
investigated by dividing the data on 416 families into a training set and a validation/test set. Three
different sets of training and test sets were investigated by using a different proportion of the families
in validation and test sets viz. 1) 75 % in training and 25 % in test; 2) 67% in training and 33 % in
test; 3) 50 % in training and 50 % in test. In forward prediction, the training set consisted of older
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families and the test set consisted of recent families. In the mirror prediction the families were
allotted randomly to the training and the test sets across all batches.

DGV were estimated using a best linear unbiased prediction (BLUP) method which used a Gaussian
kernel prediction based on the Euclidean distance matrix for K where K is the kinship matrix as
described above. This model is implemented in R package rrBLUP (Endelman, 2011). The accuracy
of DGV prediction was computed as the Pearson’s correlation coefficient between DGV and the
mean phenotypic value of the families in the test set. The bias was computed as the regression
coefficient of DGV on the phenotypic value.

RESULTS AND DISCUSSION

Genome-wide association (GWA) analyses for growth. Genome-wide associations expressed as
log-P value for each marker are presented as a Manhattan plot in Figure 2. The unmapped SNPs are
shown without any chromosome label on right hand side of the plot. There were 83 SNPs significant
at P <0.05. However, after correcting for FDR no significant SNPs were detected for growth. A few
clusters of SNPs with P-value <0.001 were identified, however, due to the high FDR, these could
only be considered as suggestive at best. Overall these GWAS results suggest that no gene of large
effect regulates this growth trait. In order to detect significant SNPs of moderate or small effect, a
substantially larger sample size and a higher SNP density would be required.

-log10(P-value)

12 4 6 8 10 12 14 16 18 20 23 26 29 32 35 39 43

Chromosomes

Figure 2: Genome wide SNPs associations with growth trait, G.d2All, presented as
Manhattan plot.

Sex-associated SNPs. The genome-wide associations of SNPs with sex status of the animals
presented in Figure 3 as Manhattan plot shows one very significant cluster of SNPs on linkage group
44. The most significant SNP was associated with sex status of the animals with -log10 (p)=294 at
the start of LG44. Minor allelic frequency for this SNP was 0.3 indicating that this is a common
SNP. The strong association and frequency of males and females genotypes suggest that this SNP
may be closely linked to the sex locus. Most females (95%) were heterozygous whereas most males
(95%) were homozygous for the major allele of the most significant SNP. These results are in
agreement with earlier studies which suggest that the sex in penaeid species is mainly genetic and
determined by a WZ-ZZ chromosomal system where the female is the heterogametic sex (Staelens
et al., 2008). This also raised possibility of monosex culture. Potentially homogametic females and
males can be used as parents to yield sexually uniform heterogametic female offspring. Monosex
sex culture in prawn has been reported more profitable as compared to rearing of mixed sex animals
(Mohanakumaran Nair, Salin, Raju, & Sebastian, 2006). In addition, monsex culture system can
provide some protection to genetically superior stock.
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Figure 3. Genome-wide associations for sex status of animals.

Accuracy of genomic prediction of growth trait (G.d2All). The data on a growth trait G.d2All on
416 families were analysed for this analysis. The mean of each family was obtained by pooling data
across tanks as described in the methods section. The genotypic data on family-wise mean allelic
frequencies for 4,686 QC SNPs were included in this analysis.

The accuracy of DGV in mirror prediction (randomly dividing families in training and test set, Table
1) is much higher (0.65-0.69) as compared to forward prediction (0.17-0.32) (Table 1). The
prediction accuracies in the mirror prediction indicate the potential level of accuracies of genomic
selection in shrimp. It seems that declining trend with a very large batch effect of G.d2All (Figure
1b) hampered the accuracy of genomic prediction in forward prediction.

Partitioning 50 % families in training and 50 % in test gave higher accuracy as compared to other
partitions in forward prediction (Table 1). Inconsistent accuracies in different partition/sets indicate
that the current sample size for genomic prediction is too small which is further complicated by the
large batch effect confounded with families.

Table 1. Accuracy of genomic prediction for a growth trait (G.d2All).

% in training | Number of families Mirror prediction | Forward prediction
Training Test Accuracy |Bias Accuracy | Bias
75 312 104 0.693 1.256 | 0.168 0.413
67 277 139 0.632 1.039 | 0.279 0.757
50 208 208 0.647 1.478 | 0.315 0.671
CONCLUSION

This study identified a major region associated with sex, and demonstrated that genomic
selection has potential application with moderate number of SNPs, family average phenotypic
records, and based on family DNA pool frequency data for commercially important traits in L.
vannamei.
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SUMMARY

The genetic variance for SRS resistance in Atlantic salmon was estimated based on the challenge
test performed in VESO (Norway). Data was obtained from 1881 juveniles tested at average weight
of 38.7 grams. The juveniles belong to full and half sib mating structure comprising 100 full sib and
100 and paternal half-sibs families. The challenge test, which lasted for 47 days, had a cumulative
mortality of 82%. Two statistical models were used to estimate genetic parameters: test survival
model (TS) and day of death (DD). Estimated heritabilities for the models differ from 0.23 (TS) to
0.41 (DD). A tissue sample was taken from each juvenile for DNA extraction prior to Genotyping-
by-Sequencing (GBS) using Pstl for the restriction digest. Subsequent filtering of GBS SNPs
resulted in 22.917 SNPs (~23k) derived from the diploid region of the genome for further analysis.
Using the Kinship using GBS with Depth adjustment (KGD) method to estimate a genomic
relationship matrix (GRM) allowed a Genomic Best Linear Unbiased Prediction (GBLUP)
evaluation of breeding value for SRS resistance. The results suggest that by using GBS with GBLUP
in genotyped but non-challenged half and full sib candidates, both the accuracy and genetic gain,
would increase 21-22% compared with conventional pedigree based BLUP methodology.

INTRODUCTION

Piscirickettsia salmonis (SRS) is caused by the intracellular Gram-negative
bacterium, Piscirickettsia salmonis, first identified in Chile and later in Canada and several
European countries (Corbeil and Crane 2005). SRS has been reported to infect a wide range of
Salmonidae pink salmon (Oncorhynchus gorbuscha), chinook salmon (Oncorhynchus tshawytscha)
and rainbow trout (Oncorhynchus mykiss) (Corbeil and Crane 2005). Although SRS has wide
geographic range, it has caused larger outbreaks in South America than in Europe.

SRS is epizootic in Chile and losses due to SRS are significant and have severely hit the Chilean
Atlantic salmon and Coho salmon industry (Cvitanich et al. 1991). Mortality rates have been
reported to be 30-90% among Coho salmon (Corbeil and Crane 2005). Treatments with antibiotic
and vaccination have provided some advantage, but do not give control of the disease.

In recent years there has been an increased focus on genetic improvement programs to select
more robust and resistant individuals towards diseases. To date a number of studies have been
conducted to determine additive genetic variation for disease resistance for both bacterial and virus
diseases in Atlantic Salmon (@degard et al. 2011; Gjedrem et al. 2012). For the last ten years these
studies have been supported by extensive genomic research including the use of genomic selection
(GS). Studies in Atlantic salmon breeding have shown that genetic gain and accuracy can be
improved substantially with GS, even with sparse SNPs (4K) (Sonesson and Meuwissen 2009;
Villanueva et al. 2011; @degard et al. 2014). Most of the genotyping in salmon breeding has used
SNP-chips, however, more recently high throughput, low cost GBS genotyping and analysis
methods have been developed (Elshire et al. 2011; Dodds et al. 2015). These methods offer several
advantages albeit at the expense of more complicated bioinformatics analysis.

The aim of this study was to estimate genetic variance of salmon towards SRS resistance. GBS
together with KGD analysis were utilized for SNP filtering and later GBLUP was used to estimate
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breeding values for both challenged and non-challenged test groups, which were compared with
conventional pedigree based BLUP methodology.

MATERIALS AND METHODS

Animals for both challenged and non-challenged test groups were chosen from Stofnfiskur
breeding population and hatched in November 2012, year class 2012-2 (YC12-2). A nested mating
design was used in which, one male was used to fertilize eggs from two females, creating groups of
full-sibs and paternal half-sibs. In total, 100 females were mated with 50 males. Each family was
reared in a one cubic meter tank until the fish were tagged with a PITtag. The average tagging weight
was 15.8 (SD = 6.6) g. After tagging the fish were pooled and reared in a single communal tank for
6 months. The challenge group was then moved to VESO in Norway. In total, 2.400 fish (20 fish
per family) were transported in bags from Stofnfiskur to VESO Vikan by plane. The fish were kept
in two separate tanks until challenge testing. After 4 weeks of acclimatization at 12°C in freshwater,
the fish were acclimatized to 15°C freshwater for one week before the challenge. The challenge
weight was 38.7 (SD = 9.7) g. Out of 2.400 fish, 400 were used as challenge carriers (shedders) and
marked by adipose fin. The cohabitation challenge was performed in one tank by injecting the
shedder fish with Piscirickettsia salmonis and adding these fish directly to the same tank as the
tested fish. Mortality was observed throughout a 47-day period after challenge.

In January 2016, 2.846 fish from were selected from YC12-2 as a non-challenged test group and
future breeding candidates in the Stofnfiskurs breeding nucleus. Fin clips were taken from both
challenged and non-challenged test groups and stored in 96 % ethanol for DNA analyzing. The tissue
samples were sent to AgResearch, New Zealand, for DNA extraction and GBS using Pstl and the
protocol and subsequent processing was as described in Dodds et al. (2015) except that 190 bar-
coded samples were sequenced per lane.

GBLUP and BLUP were fitted in mixed linear models using DMU 6, software package for
animal breeding (Madsen and Jensen 2013). Two models were used for the analysis. Model one was
Test survival (TS) where the individuals are scored O if it dies within challenge test time and 1
otherwise. The second model was Day of death (DD) where individuals were scored at the day of
death in the challenge ranging from day 1- 47 and individuals which survive the challenge test were
considered censored. Non-challenged individuals were given missing values. The model is as
follows: y = Xb + Za + e, where y is the vector of the survivals score either as 0/1 or day of death,
and b is a vector of fixed effects, which included sex and rearing tanks. The vector a is a vector of
random additive genetic effects of individual animals. KGD method was used to estimate a GRM in
GBLUP and pedigree information was used in BLUP.

RESULTS AND DISCUSSION
The mean survival at day 47 of the SRS disease challenge test was 18% and ranged from 0 to 60%
(Figure 1). A total of 29.671putative SNPs were identified using GBS methodology. After filtering
by using the KGD method, the 22.917 remaining SNPs were used to create the GRM for GBLUP
evaluation.

Running the TS and DD models in DMU 6 gave in both cases higher estimate of heritability and
accuracy of the estimated value compared to conventional pedigree based BLUP methodology (see
Table 1).
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Table 1. The estimates of genetic parameters. BLUP refers to pedigree based BLUP
methodology and GBLUP refers to genomic based BLUP methodology.

BLUP methods Models h? Accuracy in Accuracy in non- Increased
challenged group challenged group accuracy
BLUP DD 0.35 0.71 0.56
GBLUP DD 0.41 0.82 0.68 21%
BLUP TS 0.23 0.69 0.54
GBLUP TS 0.26 0.76 0.66 22%
Kaplan-Meier-estimate g(t) with CI Survival among families

08

Surv

04

T il

S

day of challenges Famillies 1 - 100

Figure 1. On the left is the Kaplan—Meier mortality curves for 47 days of challenge, on the right is
the variation among 100 families tested.

This study shows a substantial increase in accuracy by applying GBS with GBLUP where the KGD
method is applied to create the GRM. This is in line with other studies in salmon breeding. @degard
et al. (2014) showed that a considerable improvement can be gained even from sparse SNPs (4k)
but increased accuracy starts to converge rapidly from 22k to 220k, confirming the 23k SNPs from
this present study would be sufficient to utilize the full potential of GBLUP.

Estimated heritabilities indicate that there is moderate additive genetic variance of SRS
resistance. Moreover, heritability of DD model was higher than estimated in the TS model for both
BLUP and GBLUP (Table 1). However, the estimates from the two models give different results in
heritability. It should be noted that traits are defined very differently in these two models. These
heritability estimates are similar to Yafiez et al. (2013). In both models GBLUP gives an increased
accuracy and heritability compared to pedigree based BLUP methodology. Where GRM is created
with SNPs, such as in GBLUP, random deviations from relationships caused by Mendelian sampling
terms can be quantified more accurately.

In salmon, breeding for SRS disease resistance is difficult because breeding companies don’t use
infected challenged fish for breeding. Instead non-challenged sibs are used as breeding candidates
(sib testing). Such evaluation has many drawbacks in relation to the amount of genetic progress that
can be realized within a breeding program when depending only on pedigree information to predict
breeding values by using conventional BLUP. When the predicted breeding values are not based on
an individual’s own performance, selected accuracy would be lower. Moreover, variation of
Mendelian sampling effects within a family cannot be used to select superior animals within the best
family.
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Using genomic information, such as GBLUP, increases the importance of the Mendelian
sampling term, or the within family variance, and reduces the importance of family compared to
traditional BLUP valuation. Thus, breeding programs for traits with low heritability and relatively
few records per trait measured, such as carcass and disease resistance, are those which can benefit
from GS.
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SUMMARY

Shrimp farming is a highly valuable aquaculture industry globally. Domesticated and selectively
bred stocks of Litopenaeus vannamei are farmed throughout Asia and South America, however,
selective breeding in Australian farmed shrimp (Penaeus monodon) is currently severely
underutilised. Disease is the biggest threat to shrimp production globally and selective breeding is
thought to be a more effective long term disease management strategy. Breeding resistant shrimp
has been accomplished for very few diseases using laboratory disease challenge tests, sib-selection
and conventional breeding methodologies. Genomic selection offers the potential to significantly
advance shrimp selective breeding particularly for complex traits like disease resistance through
increased accuracy and selection intensity. In Australia, a breeding program is currently underway
developing and applying new and improved methods for selection for disease resistance in shrimp.

INTRODUCTION

Selective breeding plays an important role in increasing farming productivity and helping to meet
the increasing global demand for animal protein. Aquaculture is the fastest growing primary
production industry, yet less than 10% of world aquaculture production is based on selectively bred
and genetically improved stocks (Gjedrem et al. 2012). Within the global aquaculture industry,
farming of penaeid shrimp is a highly valuable sector, with most production taking place in Asia
and South America using the species Litopenaeus vannamei (Pacific White Shrimp). Domesticated
specific pathogen free (SPF) and recently selectively bred populations have been developed for this
species, largely in response to the widespread disease problems the industry has faced and the
catastrophic losses that result when a disease manifests in a new region (Lightner 2005). However,
in the Australian shrimp farming context, the major species farmed is Penaeus monodon (Black
Tiger Shrimp) and production is based nearly exclusively on unimproved seed derived from wild
caught broodstock (although there are smaller scale domestication and breeding programs currently
being developed).

Disease is perhaps the most significant issue for shrimp production globally (Stentiford et al.
2012) and until recently Australia has been fortunate to remain free of the major pathogens that have
resulted in catastrophic production losses in Asia and Latin America. Over the last decade losses
due to disease are thought to have cost the industry at least $20bn (Shinn 2016). For example, White
Spot Syndrome Virus (WSSV) is estimated to have cost at least $8bn, however, some estimates
make it closer to $15bn since its emergence in South East Asia in the early 1990’s (Lightner et al.
2012). Acute Hepatopancreatic Necrosis Disease (AHPND), a more recent disease impacting shrimp
farming, is estimated to cause losses in production in the Thai shrimp industry alone between $1.7
and $2bn annually (Shinn 2016).

In December 2016 the first outbreak of WSSV was detected in Australia in South East
Queensland and has had a significant immediate impact on production, brought about uncertain
consequences for future production in the area, as well as having ramifications to seafood products
in Australia more broadly. Additionally, an AHPND-like disease was detected in 2 Australian
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shrimp farms in early 2016, which was found to be caused from a similar acting, but different
pathogenic strain of bacteria than that found in Asia (Nick Moody, CSIRO pers. comm.). These
examples highlight how exotic diseases pose a great threat to Australian shrimp farming; however,
Australian farms are also often exposed to endemic pathogens, such as gill-associated virus (GAV),
that have a less devastating, but nonetheless persistent impact on production (Munro et al. 2011).
This is because these viruses are highly prevalent in wild and farmed stocks; prevalence of GAV for
example approaches 100% in some cases of P. monodon populations (Walker & Winton 2010).

As shrimp lack an adaptive immune system, common disease management strategies such as
vaccination are not an option for shrimp. The most common management strategy used in regions
where highly pathogenic diseases are present is the use of specific pathogen free (SPF) stocks that
are tested and certified free of major disease causing pathogens. Whilst not selected for resistance
or tolerance to the pathogen, SPF shrimp have allowed the industry to operate in regions where
pathogens are present through the stocking of “clean” shrimp into ponds. However, SPF shrimp are
still naive to infection with massive losses due to disease continuing to occur and there is evidence
they perform poorly in the presence of disease compared to wild stocks (Moss et al. 2001).
Improving disease resistance through selective breeding is seen to be a more sustainable, long term
strategy for the industry and as a result instigation of selective breeding programs for shrimp that
capitalise on additive genetic variability in disease tolerance within farmed populations are
underway.

MEASURING DISEASE RESISTANCE

The ability to accurately and reliably measure a trait under selection is core to any breeding
program. For shrimp disease, measuring resistance is largely based on survival, either on-farm
during grow out, or in laboratory challenge tests. Laboratory challenges tests are most commonly
used because inoculation of the pathogen and environmental conditions can be more easily
controlled. Challenge methods in shrimp include; injection of the pathogen into abdominal muscle,
ingestion of infected material and waterborne exposure. Breeding programs that utilize disease
challenge tests to measure disease resistance are based on family selection. Here a subset of progeny
from a family are removed from the core breeding nucleus facilities and disease challenged. Family
survival estimates are then calculated after a specified amount of time post inoculation and families
are ranked on their survival performance. Families to perpetuate into the breeding program are then
selected based on the family’s performance. This approach means the breeding candidates
themselves are never exposed to the disease, but rather chosen based on the estimated breeding
values (EBV) of their disease challenged sibs (i.e. sib selection). This allows breeding companies to
not only improve disease tolerance through accumulation of additive genetic variability, but practice
SPF management strategies. One disadvantage of the approach, however, is that family selection
only utilises the between-family genetic variance within a population and ignores 50% of the
available genetic variance that is represented within-family. This, coupled with the phenotypic
performance of the selected candidate having never been evaluated can lead to inaccuracies in EBV,
reduced selection intensity, and therefore can lower the genetic gains realised.

Another characteristic of shrimp disease challenge tests is that resistance is often only measured
as a single trait, survival. However, survivorship is complex, can be influenced by many non-disease
related factors and may not manifest predominantly, or entirely through survivorship, instead
causing issues with growth or deformities (e.g. runt deformity syndrome caused by Infectious
Hypodermal Hematopoietic Necrosis Virus (Lightner 1999)). Therefore, alternative methods such
as measuring viral load, or presence of disease associated genetic markers, may be useful in
evaluating disease resistance.

A large assumption made when using controlled challenge tests in breeding programs is that
resistance measured during challenge testing accurately reflects resistance under grow out farm

130



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:129-132

conditions. This is largely untested for shrimp breeding programs. If there are differences then
significant genotype-by-environment (GxE) interactions may be occurring which will reduce the
efficiency of selection and genetic gains realised. The only known correlation published on this issue
in shrimp was a phenotypic correlation between TSV challenge survival and commercial pond
survival in L. vannamei (Moss et al. 2005). Here moderate positive correlations were reported (0.55
and 0.68), however, phenotypic correlations are insubstantial as there is no inclusion of the genetic
effects; this information is still lacking in shrimp.

LESSONS FROM OVERSEAS GENETIC IMPROVEMENT PROGRAMS

There are few published studies that have investigated the quantitative genetics of disease
resistance in shrimp. However, information on the implementation and success of disease resistance
traits being incorporated into breeding programs is variable and very limited. Nearly all work has
been carried out on L. vannamei and the most well-known success story in shrimp has been selecting
L. vannamei for resistance against Taura Syndrome Virus (TSV). This trait has been incorporated
in several breeding programs (Cock et al. 2009), as it has high phenotypic variation (14.6 - 93.8%)
and genetic variance is moderate to high; heritability estimates across the different breeding
programs range between 0.2 — 0.4 (Argue et al. 2002, Odegard et al. 2011). Response to selection
has also been very good, with survival rates shown to increase by at least 18.4% per generation
(Argue et al. 2002, White et al. 2002). Unfortunately, TSV disease resistance was found to be
negatively correlated with growth (Argue et al. 2002), therefore both growth and resistance to TSV
were incorporated in the breeding programs as separate traits selected for in individual breeding
lines (Argue et al. 2002, Odegard et al. 2011). Despite this impediment, selecting for TSV resistance
has been so successful that TSV resistant shrimp are widely used throughout the shrimp farming
industry and TSV is no longer considered a major threat to production.

Conversely, breeding for resistance to WSSV has had limited success. This can in part be due to
the highly virulent nature of this virus and very small genetic variation often observed both under
field and controlled challenge conditions (>90 % mortality is commonly found). Estimates of
heritability for resistance to WSSV under controlled challenge conditions were found to be <0.1
(Gitterle et al. 2005). Similar to TSV, resistance to WSSV was also negatively correlated (- 0.55 &
- 0.64) with harvest weight (Gitterle et al. 2005). More recently, however, there have been reports
of significant improvement of resistance to WSSV: For example 3 families of L. vannamei from a
Panamanian breeding program had significantly higher survival compared to the unselected “Kona”
shrimp breeding line (Cuellar-Anjel et al. 2011). It is difficult to get a full appreciation of how
successful breeding for resistance to WSSV has been, most likely due to the commercial sensitivities
of genetically improved stocks; however, this virus continues to be a major problem for shrimp
farming worldwide which would suggest breeding for improved resistance has had little success so
far.

OPPORTUNITIES FOR AUSTRALIAN SHRIMP FARMING

Australia has been somewhat fortunate that until recently it has been free of many of the highly
virulent and devastating diseases that have occurred in overseas shrimp farms. The only known
example in Australia whereby a breeding program has directly incorporated disease testing was via
viral screening of wild and domesticated P. monodon broodstock to identify individuals with natural
high GAV loads that were then removed from the spawning group (Coman et al. 2013). It is
unknown how effective this strategy was in reducing the impact of GAV on production and there is
no evidence that the approach leads to significant accumulation of advantageous additive genetic
variance for GAV tolerance. Moving forward, GAV will likely continue to be an important virus
affecting Australian shrimp farms, as this virus is highly prevalent in the wild and in shrimp farms.
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Conventional methods of quantitative genetics used so far for shrimp breeding programs, while
successful at improving growth rate, have been less effective for improving disease resistance as
evidenced by an absence of resistant strains to most virulent diseases. Possibly this lack of progress
is a consequence of the selection models used (i.e. sib selection) and/or laboratory challenge tests
which don’t accurately estimate disease additive genetic variation as it manifests itself on-farm
under complex environmental interactions. Genomic selection, however, offers the potential to
increase the accuracy and selection intensity of complex traits like disease resistance (Castillo-Juarez
et al. 2015), along with more readily accessible integration of on-farm performance. This is because
genomic selection allows individual phenotype data from both laboratory and on-farm performance
trials to be linked with predictive genome-wide markers which can then be applied to select
unchallenged individuals through genotyping only (i.e. thereby maintaining SPF status in the
breeding nucleus). Genomic selection under this model would increase genetic gain as it utilizes
both between and within-family variance and is able to estimate individual EBVs to use for selection
of breeding candidates. Furthermore, the identification of SNPs associated with disease resistance
may also be applied through quantitative trait loci (QTL) and marker assisted selection. All of this
combined should allow for greater accuracy of genetic merit estimates, increased selection intensity
and hence genetic gains for disease resistance traits (Castillo-Juarez et al. 2015). Developing and
applying these new technologies are currently underway for P. monodon in a developing breeding
program in Australia.
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SUMMARY

Ginfo is a large-scale genotyping project to increase the size of the Australian dairy reference
population. In total, there were 32,386 cows from 103 herds with excellent records located across
Australia’s main dairy regions. The increase in the reliabilities of breeding values for young
genomic bulls (without daughters) was between 5% and 7% in Holsteins and between 2% and 3%
in Jerseys. For example, in Holsteins, the reliability of daughter fertility breeding values increased
from 41% to 46%. Incorporating genotypes from herds selected on the quality of their phenotypes
has increased the reliability of genomic breeding values.

INTRODUCTION

Phenotypic data underpins the calculation of both traditional and genomic breeding values. A
reference population of genotyped individuals with phenotypes is required to calculate
associations between genetic markers and phenotypes and form a genomic prediction equation.
Without sufficient data, the relationship between the reference population and the general
population weakens and so does the relevance of the genomic prediction equations.

In Australia, the male reference populations comprise around 4000 Holsteins and 1000 Jerseys.
Previous research investments have already resulted in female populations of approximately
10,000 Holstein 4000 Jersey females being added to the national reference populations of the
respective breeds. These data were from projects that focused on cows with large quantities of
phenotypes. Instead, the aim of Ginfo was to select herds that had high quality phenotypes.

The aim of this study was to quantify the change in reliability of genomic breeding values for
Australian breeding values through adding the Ginfo population to the reference population.

MATERIALS AND METHODS

Herd Selection. To qualify for the reference population, known as Ginfo (Genomic Information
Nucleus), Australian dairy herds were scored according to the quality of the records contributing
to the national database using an index that rewards cows with fertility, conformation, survival,
workability, somatic cell count and milk yield data; in the scoring system, the maximum score was
25 and having complete fertility phenotypes can make up 10 of these points. The highest scoring
herds (n=103) were invited to participate in the project.

The 103 Ginfo herds have been contributing records on 32,386 daughters of 2,917 bulls to the
Ginfo project. Tail hair samples were collected from all the cows in the recruited herds for
genotyping and data on milk production traits, somatic cell count, mating, pregnancy and calving
data for multiple parities were provided to DataGene. First parity cows from Ginfo herds were also
type classified by Holstein Australia. The herds were from across Australia’s main dairy regions
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with an intention to proportionally represent dairy cow populations. For example, two thirds of the
herds were in Victoria aligning with the distribution of dairy cows across Australia.

Genotyping by sequencing (GBS). Genotyping by sequencing (GBS) was used to procure
genotypes. The GBS methodology used has previously been described by Chamberlain et al.
(2015). Briefly, probes were designed to the flanking sequencing of 9,102 target SNP, of which
5,119 were part of the [llumina Infinium Bovine SNP50 beadchip. The HiSeq2000 and HiSeq3000
genome analyser platforms using single read chemistry were used for sequencing.

Quality control steps of sequence reads were as follows: 1) poor quality bases (gscore <20)
were removed using scripts developed in house; 2) alignment was with BWA v0.7.7; 3) Samtools
v0.1.19 (Li et al., 2009) mpileup tool was used to create vcf files and allele counts at the 9,102
target SNPs and 4) Allele counts were used to call genotypes, where the total count was >=6 and a
heterozygote had a minor allele frequency > 0.167. The genotypes in UMD 3.1 forward format
were converted to Illumina’s top-top format. The next step was imputation of GBS genotypes to
those used by DataGene in routine genomic evaluations (Nieuwhof et al., 2010).

All animals were imputed to a 50K evaluation panel using Fimpute (Sargolzaei et al., 2014).
The Ginfo project also enhanced the DataGene evaluation SNP panel to include new variants
which were identified by whole genome sequence (WGS) analysis which were found to be located
near new QTLs for the traits within the evaluation. These WGS variants were added to the
DataGene evaluation panel through the Ginfo GBS genotypes and all other animals were imputed
for these WGS SNPs.

Impact of Ginfo population on reliability of genomic selection. The Ginfo cows and their
associated phenotypes were added to the genomic reference population. In April 2016, when our
comparisons were done, the existing reference populations comprised 4,172 bulls and 10,254 cows
for Holsteins and 1,097 bulls and 4,232 cows for Jerseys. The cows that were already included in
the reference population were selected using similar selection criteria for phenotype quality, as
described already for Ginfo.

Reliabilities were estimated for all traits evaluated by DataGene using software developed in
house for genomic selection (Nieuwhof et al., 2010) implementing the mixed model equations for
genomic selection as described by Garrick (2007). The reliabilities of genomic bulls with no
daughters were compared when estimated with and without Ginfo cows in the reference
population.

RESULTS AND DISCUSSION

The number of Ginfo cows added to the reference population was 17,108 and 3,347 for
Holsteins and Jerseys respectively. At the time the Ginfo population was added to the Australian
national reference population, they represented 54% and 39% of the Holstein and Jersey
populations respectively.

On average the increase in reliability from adding Ginfo to the reference population was 5.8%
and 2.5% for young genotyped Holstein and Jersey bulls respectively (Figure 1). The impact
varied by trait, with gains of between 5% and 7% for Holsteins and between 2% and 3% for
Jerseys. For example, in Holsteins, the reliability of daughter fertility increased from 41% to 46%,
while overall type increased from 42% to 49%. This is similar to approximations derived by
applying the equation of Daetwyler et al. (2008) to predict the reliability of genomic prediction for
varying reference population sizes. The scores for herds that are in Ginfo are on average higher for
Holsteins than Jerseys, which is a consequence of the relative population sizes. This could have
partly contributed to the smaller increase in reliability for Jerseys compared to Holsteins.

One of the main questions in the design of future reference populations is whether to focus on
increasing reliabilities through genotyped bulls with large progeny groups, or on genotyped cows
with their own phenotypes (Gonzalez-Recio et al., 2014; Chesnais et al., 2016). Another
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alternative, discussed by Plieschke et al. (2016) is genotyping and phenotyping a fixed number of
first crop daughters, as this increases the reliability of the sire. The general conclusions of
Chesnais et al. (2016) are that when phenotypes are inexpensive and easy to measure on a large
scale for key traits of interest, bull reference populations are better, while for expensive or difficult
to measure traits, it is preferable to have a reference population of genotyped females. However,
there is also a case for female reference populations, where the usual source of new phenotypes
(i.e. the number of progeny-tested bulls) is in decline. In Australia, the number of bulls with
sufficient daughters with publishable proofs for production traits by year of birth has gradually
been declining, by around 60 per year. Consequently, a genomic reference population that does
not solely rely on progeny-tested sires is important. When large male reference populations are
already available, the impact of adding females on reliabilities is comparatively small; so the value
for these sorts of reference populations is more around the new traits that can be measured in
dedicated reference populations.

80
70
60 . L =
= 50 - |
= u
2 a0 = e = 2"
= |
m -
30
20
10
0
B & -\. 5 & . ol . ) o
& @@ @ & &F -‘«‘}é\\ %&\\*‘ & ‘?Qe“b {L\\\"’\ & &
¢ & & & S
& o P# & @ N
& & ¥ &
\3?3, k)

B HOL mHOL({Improvement) JER  mIJER({Improvement)

Figure 1. Reliabilities of traits with and without the Ginfo population

The Ginfo reference population is projected to encompass approximately 60,000 milking
animals in 200 herds to reflect the genetics, location and farm systems in the broader Australian
dairy population. Ginfo is anticipated to become a primary source for the Australian industry’s
ongoing evaluation of the current suite of genomic Breeding Values. In addition we are also
investigating the collection of emerging and new phenotypes of interest to farmers particularly for
animal health traits and traits associated with resource availability and efficiency (Abdelsayed et
al., 2017).
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One of the philosophies in establishing Ginfo was to develop relationships with Australian
dairy farmers who have a shared interest in the value of high quality phenotypes and genotype
results. Although the model we have used to date included all genotyping costs being covered
through research funding, we envisage that this will change as we move to a model where farmers
pay for a much larger proportion of the genotyping cost themselves. While the genotyping results
(breeding values) of lactating cows may have limited use for decision making, there is
considerable value in genotyping results for heifers, most notably in selecting the best
replacements (Pryce and Hayes, 2012 Calus et al, 2013). Therefore, the investment strategy needs
to balance the benefits to the farmer versus the benefits to the broader dairy industry.
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SUMMARY

The effects of experiencing difficulty at birth on the performance of animals as adult were
estimated using data of Holstein cows that calved over two decades. Calves that experienced
difficulty at birth showed a reduced fertility and fitness relative to those born without difficulty as
expressed by late calving for the first time, longer calving interval and lowered survival from first
to second lactation. However, experiencing difficulty at birth did not reduce the milk yield of the
animal as an adult. Although the effect of birth difficulty on performance of the animal as an adult
is small, relative to subsequent performance of cows that experienced difficulty themselves it
should serve as an additional incentive to improve calving performance and management of calves
born with difficulty.

INTRODUCTION

Calving is a key event in any cattle production operation and is essential for the sustainability
of the herd. In dairy industries where statistics are available, phenotypic dystocia rates appear to
have increased (Mee, 2008) which means that the economic and welfare implication of calving
difficulty (CD) is also increasing. A number of studies have quantified the effect of CD on the
productivity of cows that experienced difficulty. For example, Dematawewa and Berger (1997)
estimated that the financial cost of dystocia to be 41% due to production losses, 31% due to poor
fertility and 25% due to cow and calf morbidity and mortality. Several others have reported that
the effect of CD on subsequent milk yield of cows is insignificant (Rajala and Gréhn, 1998;
McClintock, 2004). On the other hand, the effect of difficult birth on the performance of the calf
over its lifetime is not well documented, although a few studies exist (e.g. Eaglen et al. 2011).
Evidence from other mammalian species including cattle (Lombard et al., 2007, Dwyer, 2008),
shows that experiencing difficulty at birth could affect the health and development of offspring.
The study by Eaglen et al. (2011) based on data from the UK, showed that the production and
fertility of calves born following a difficult birth is reduced. Eaglen et al. (2011) observed that the
milk yield of cows that experienced extreme difficulty at birth with veterinary assistance amounted
to only 91% of those born without any difficulty. They also showed that calves that experienced
difficulty at birth were less fertile as adults, but their estimates were associated with large standard
errors (Eaglen et al. 2011).

Quantifying the effect of birth difficulty is important because it can serve as an additional
incentive to adopt both genetic and non-genetic approaches to improve calving performance.
Therefore the aim of this study is to estimate the effect of experiencing difficulty at birth on
performance traits such as age at first calving, milk yield, fertility and survival in Holstein cows.

MATERIALS AND METHODS

Data on calving difficulty (CD) and other performance traits including fitness and milk yield
traits of cows that calved between 1995 and 2016 were extracted from the national dairy genetics
database operated by DataGene Ltd. First, Holstein cows with valid CD (i.e. single female) and
service sire and date of calving were selected from data extracted for genetic evaluations of CD.
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Then, from the pedigree database, where all births are recorded, animals that were born on the
same date, from the same cow (dam) and mating bull (sires) were selected. For female calves these
data were then matched based on their national identification number to their performance as
adults. The age at first calving for the animals selected for this study varied from 18 to 40 months.
The number of cows with data for age at first calving (AFC), survival (Surv), calving interval (Cl)
and 305-day milk yield (305 MY) by level of birth difficulty is shown in Table 1.

Four levels of difficulty, as suggested by McClintock (2004), were defined. The effect of level
of birth difficulty (i.e. 4 levels) on AFC, CI, Surv and 305 MY was assessed by fitting a model
including herd-year-season of calving as an adult, month and year of birth as a calf and age at first
calving for all traits except AFC. For AFC, herd-year-season of birth instead of calving was fitted.
The effect of level of CD on milk yield traits was also estimated using test-day milk yields in the
first 150-day of lactation. For this analysis the fixed effects fitted were herd-test date and year-
season of calving, instead of herd-year-season. In the test-day model the interaction of days in
milk (DIM) as a covariate with the 4 levels of CD were fitted in addition to cow and sire as
random effects. The random effect of cow was fitted to account for repeated test-day record of
cows and the random effect of sire was fitted to estimate the effect of CD on milk after accounting
for genetic differences among sires. To further explore possible reasons for the effect of CD on
fitness and production traits covariance analyses were performed using multi-trait models. These
analyses provided estimates of correlations between CD levels and MY, CI, Surv and AFC using a
sire model with additive genetic relationships. The pedigree used included sires of animals with
information on CD and performance and their parents going back to 1950s. All data analyses were
performed using ASReml (Gilmour et al. 2009).

Table 1. Number of calves with their level of birth difficulty and their performance
information until the beginning of the second lactation in Holstein

Birth difficulty & Traits
observations
Level Observations (%) Age at first 305-day milk Survival Calving
calving yield interval
Normal 311951(92.98) 311775 291872 281793 216257
Slight 15849 (4.72) 15843 14858 14468 10891
Moderate 7256 (2.16) 7250 6828 6606 4962
Extreme 442 (0.13) 442 384 342 245

RESULTS AND DISCUSSION

Table 2 shows the deviation in AFC, CI, Surv and 305 MY for CD levels from those born with
no difficulty. The effect of CD on AFC, Surv and Cl are significant but small in magnitude. On the
other hand, the effect of CD on 305 MY is insignificant. Table 2 also shows that cows born with
the extreme level of difficulty of 4 produced more milk in absolute terms than those born with no
difficulty but the difference was not statistically significant because the number of cows was
small. The lack of a clear effect of CD on MY was confirmed by analysing the total test-day milk
yield data over the first 150-days. The 150-day milk yield analyses showed that cows that
experienced slight and moderate difficulty produced less than those born normally (Table 2)
suggesting that early milk yield is better suited to estimate the effect of CD. In these data we also
observed that CD did not have significant effect on fertility traits such as pregnancy rate, first
service non return rate and calving to first service interval mainly because the number of cows
with data on these traits was lower than those for AFC and Cl, for example. However, there was a
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trend that in all cases cows experiencing some birth difficulty showed a reduced fertility compared
to calves born normally. The effect of experiencing birth difficulty in later parities were not larger
than those observed in first parity cows, so these results are not tabulated.

Table 2. Effect of birth difficulty on age at first calving, survival, calving interval and 305
and 150 day milk yield as deviations from normal births

Trait Level of birth difficulty

Normal Slight Moderate Extreme
Age at first calving, months  0.0? 2.44+0.79° 1.75+1.17%  10.17+4.36°
Calving interval, days 0.0 2.36+0.68" 4.14+1.01°  4.82+4.17®
Survival (%) 0.0 -0.9240.36° -1.81+0.54° -1.59+2.17%®
305-day milk, Litre 0.0 55.0+18.1° 63.45+26.8° 121.2+98.9%®
150 test-day milk, Litre 0.0 -53.2417.0° -75.3+25.2° 155.4+95,5®

ab Solutions designated with different letters are significantly different (P<0.05) from each
other.

Table 3. Correlations between calving difficulty at birth and subsequent performance as
adults

Traits Genetic correlation  Residual correlation
Age at first calving  0.22+0.10 0.01+0.0

Calving interval 0.30+0.08 0.01+0.0

Survival -0.254+0.08 -0.01+0.0

305-day milk -0.05+0.07 0.01+0.0

150 test-day milk ~ -0.05+0.07 0.01+0.0

The results in Table 2 show that the effect of experiencing CD as a calf on all traits are small
and may have little economic significance. In particular the effect of experiencing difficulty at
birth is small compared to the effect on subsequent fertility and survival of cows that experienced
CD themselves. In the current data, Cl of cows following CD category of 2, 3 and 4 increased by
6.8, 12.3 and 24.4 days, respectively, relative to cows that did have a normal calving. Similarly
survival from 1% to 2" calving was reduced by 2.7, 7.2 and 13.9% when CD increased from
category 2 to 4, respectively, compared to normal calving. On the other hand, the subsequent milk
yield of cows was not affected by CD level of cows. Our results on the effect of CD on the
subsequent performance of cows agree with those reported by McClintock (2004) who, using part
of these data, observed that survival and fertility of cows was reduced following CD but that MY
was not affected. Further analyses using test-day data also showed that the effect of CD on
subsequent milk yield of cows that experienced difficulty is small even when observed in the first
150-days of lactation. Cows that had extreme CD produced 77 litres less milk over the first 150-
days than cows that calved without difficulty. This limited or no losses of MY following difficulty
agrees with some studies (Rajala and Gréhn, 1998) but disagrees with others (Dematawewa and
Berger, 1997; Eaglen et al. 2011).

The effect of CD on subsequent performance of cows that experience CD is well documented
but the effect on calves born with difficulty is less well known (Eaglen et al. 2011). A few studies
have looked at the effect of experiencing CD on the health and development of calves (Lombard et
al. 2007; Lundborg et al. 2003). The effect of experiencing difficulty at birth on performance (e.g.
growth) up to first calving age could not be established in the current study because we do not
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have information on decisions after birth until age at 1% calving. Obviously a large part of the
economic loss due to birth difficulty is the death of calves around calving. Calf deaths at about
birth time in these data were 3%, 11%, 34% and 49%, respectively, in female calves that were
born without, with slight, moderate and extreme difficulty, suggesting that a large number of
animals that experienced moderate to severe CD ended up being excluded from this study. The
selected nature the data that is available for this sort of analysis means that economic losses of
difficulty at birth are hard to measure and cannot be compared to performance in cows that
experienced CD.

Eaglen et al. (2011) observed MY and fertility of animals that experienced difficulty at birth
was reduced. Their results with regard to fertility traits were confirmed by our analyses and we
also found that both fitness and AFC was affected by CD, suggesting the possible long-term effect
of CD at birth on performance to at least second calving. A bigger effect of CD on AFC (Heinrichs
et al. 2005) and MY (Heinrichs and Heinrichs, 2011) was observed in US Holsteins where
imputation techniques were used to avoid bias due to missing data. The reasons for such long-term
effects of CD at birth on the performance of as adult was related to epigenetic processes or other
so-called developmental programming (Eaglen et al. 2011). Heinrichs et al. (2005) suggests that
calves that experienced CD are likely to grow slower and calve at an older age than those born
with no difficulty. The implication of this is that, if calves born with CD are to be used as
replacements, they should perhaps be provided with better management.

The results in Table 3 on correlations agree with those in Table 2 and they show that there is a
significant genetic component to the observed reduction in fertility and survival with the increase
in level of CD.

CONCLUSIONS

Although the effect of birth difficulty on the performance of the animal as an adult is small, it
should serve as an additional incentive to improve calving performance and management of calves
born with difficulty. However, both quantifying the effect of events such as CD and developing an
overall herd improvement strategy requires data from birth to 1% calving age, including
information on recruitment of replacements from dairy herds, which is currently unavailable.
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SUMMARY

Genomic prediction (GP) in farm livestock generally exploits SNP array genotypes. Now it is
possible to impute from SNP chip genotypes to whole genome sequence. However, in an industry
setting it is impractical to implement GP using millions of sequence variants. Livestock industries
are therefore keen to leverage sequence data by selecting subsets of variants to develop custom
SNP arrays. In this study we demonstrate that there are potential pitfalls in this approach that can
lead to considerable bias in GP and can underestimate the potential advantages of sequence.

INTRODUCTION

Genomic prediction is becoming a popular tool for livestock breeding, and in commercial
settings generally exploits SNP array genotypes. Recently, large numbers of animals have been
sequenced, enabling imputation to whole-genome sequence for any animal with SNP array
genotypes. In theory all imputed sequence variants (> 20 million) could be used for genomic
prediction and this should include the causal mutations. However, in practice this is
computationally impractical for livestock industries. Furthermore, prediction models that include
many millions of imputed sequence variants have not yet increased genomic prediction accuracy
relative to SNP array genotypes (van Binsbergen et al. 2015; Calus et al. 2016). This may be a
result of: 1) exacerbated “large p small n” problem leading to an over-saturated model, 2)
difficulty in precisely estimating SNP effects due to long distance linkage disequilibrium (LD) and
3) imputation errors. A practical solution is to discover important sequence variants associated
with key traits and then design custom SNP arrays that combine the selected variants with SNP
from existing commercial arrays (e.g. Wiggans et al. 2016). This reduces industry problems
associated with large genotype data sets, reduces the “large p small n” analytical issue and
increases genotyping accuracy of important sequence variants.

In dairy cattle, several studies have attempted to gain advantage from imputed whole-genome
sequence by running a single SNP regression analysis (GWAS) to identify a subset of the most
significant sequence variants, and then combining these with lower density SNP array genotypes
for genomic prediction (Brendum et al. 2015; van den Berg et al. 2016; Veerkamp et al. 2016).
Similarly, Wiggans et al. (2016) demonstrated a small advantage in genomic prediction accuracy
by pre-selecting the most informative SNP from high density SNP array genotypes and then using
this SNP subset to train the prediction equations. In all these studies, the analysis to select the top
variants and their subsequent analysis to train the genomic prediction equations was carried out
with the same reference population.

Here, we demonstrate that when pre-selected variants are discovered in the same reference
population that is used to train subsequent genomic predictions, this approach can result in
significant bias in the predictions. Furthermore, our results suggest that this approach may
underestimate potential gains from using subsets of sequence variants in both accuracy and
persistency of genomic prediction. We demonstrate that these pitfalls can be avoided by pre-
selecting sequence SNP from a population that is independent from the reference population used
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to train the genomic prediction equations.

MATERIALS AND METHODS
We chose a data set of 21,879 dairy cattle with real genotypes and simulated phenotypes from
the same data described in MacLeod et al.(2016). Briefly, the genotypes included 2.785 million
imputed sequence variants and Illumina 800K Bovine HD beadChip genotypes. Sequence variants
included only those in gene coding regions or in putative regulatory regions 5 Kb up- and
downstream of genes. After pruning out one of all SNP pairs in perfect LD and SNP with minor
allele frequency < 0.002, a total of 994,019 variants remained (“SEQ”). Three trait phenotypes
were simulated for all animals by selecting 4000 of these variants to be causal mutations (QTN)
with three different genetic architectures and a heritability of 0.6 (details in MacLeod et al. 2016).
For each trait 3485, 500 and 15 additive QTN effects were sampled from three different normal
distributions with a mean of zero and variances of 0.0001a¢?, 0.001 a¢? and 0.01 o respectively,
where o is the additive genetic variance. Breeding values (BV) for all animals were calculated
4000

as: BV; = Z X;a; , where g; is the i" QTL effect and x;; represents the i genotype (coded 0, 1 or
i=1

2 for genotypes aa, Aa and AA) of animal j.

The animals included 16,133 Holstein, 4861 Jersey and 885 Australian Red breed. The 885
Australian Red and the youngest 584 Holstein were used as two separate validation populations
(one distantly related and one closely related). The remaining animals were divided into two
separate mixed breed reference sets: Refl with 7991 Holstein and 2323 Jersey, and Ref2 with
7558 Holstein and 2538 Jersey. Pedigree records were available for both Refl and Ref2. We
applied two methods of genomic prediction: GBLUP and BayesR, with the standard model
described in MacLeod et al. (2016). In the BayesR analyses, variant effects were sampled from
four normal distributions with mean of zero and variances as described above for simulated QTN
effects. BayesR is a useful method for QTN discovery (e.g. MacLeod et al. 2016) so we used
BayesR rather than GWAS to identify a subset of putative QTN.

First we undertook QTN discovery separately in Refl and Ref2 using the SEQ genotypes
(included the surrogate QTN) and then chose the top 500 putative QTN from each analysis. Then
we created two custom SNP chips: the first combined the top putative QTN from Reflwith the
50K Illumina BovineSNP50 chip genotypes (Chip_Refl) and the second combined the top 500
putative QTN from Ref2 with the 50K set (Chip_Ref2). These custom chips were then used for
genomic prediction in reference population Refl. Thus genomic prediction with Chip_ Refl
mimics the approach taken by several recent studies mentioned above: i.e. the QTN discovery
population (Refl) was not independent of the reference population used to train the genomic
predictions. In contrast, for Chip_Ref2 the selected putative QTN were discovered in a population
(Ref2) that was independent of the one used to train the genomic prediction equations (Refl).
Finally, the two validation populations were used to test accuracy and bias of prediction equations
derived from Refl with the custom SNP chips as well as the full SEQ, 800K and 50K genotypes.
BayesR results are presented as the average of five MCMC chains and results for both GBLUP
and BayesR were averaged across the three trait phenotypes (trends being similar). The accuracy
of genomic prediction was calculated as the correlation between predicted and true breeding
values, and bias was assessed by the regression of the true breeding value on the predicted value.

RESULTS AND DISCUSSION

The accuracy of genomic prediction was highest for SEQ genotypes (Fig 1) as expected
because SEQ included all surrogate QTN variants. The relative advantage of SEQ was greater for
the Australian Red validation compared to the Holsteins. This reflects the extra precision of the
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prediction which is only apparent when validation animals are not strongly related to the reference
set (Aust. Red breed animals were not in Refl or Ref2). The BayesR accuracy was always higher
than GBLUP. This was not surprising because we simulated a mixture model with many small
effects and a few large effects and Bayesian models are generally superior to GBLUP for this
scenario. For BayesR and GBLUP there was an increase in accuracy using either Chip_Refl or
Chip_Ref2 compared to 50K only. However, for BayesR this advantage was greater for
Chip_Ref2 where the putative QTN were discovered in a population that was independent of the
reference population that was subsequently used to train the genomic prediction equation. For
Chip_Ref2 the accuracy of prediction exceeded the accuracy of the HD 800K and the relative
increase was higher for Australian Reds than Holsteins. For GBLUP there was little difference in
the accuracy from the two custom chips. However, when we created custom chips by combining
the top 5000 SNP from the SEQ analyses with the 50K set, the accuracy of GBLUP markedly
improved with Chip_Ref2 compared to Chip_Ref1 (results not shown).

10 + m@BayesRAustRed [OGBLUPAustRed M BayesRHol B GBLUP Hol
0.8

0.6

0.4

0.2

Accuracy of Prediction

0.0

50K HD 800K SEQ Chip_Refl Chip_Ref2

Figure 1. Accuracy of genomic prediction equations trained in Refl using a range of SNP
genotypes and validated in Holsteins and Australian Reds. SEQ represents ~1million sequence
variants, including the SNP chosen as surrogate QTN. Chip_Refl is a custom chip of 50K + 500
top putative QTN discovered in the same Refl, while Chip_Ref2 is a custom chip with 50K + 500
top putative QTN discovered independently in Ref2.

Overall, the bias of genomic prediction (Fig 2) was largest for Chip_Refl where the top SNP
were discovered in the same set as subsequently used to train the genomic predictions (Refl). The
regression was < 1 which indicates that genomic breeding values were over-predicted. This over-
prediction can cause problems for the industry because genomic breeding values would be biased
upwards compared to traditional breeding values. We were able to correct the bias (BayesR and
GBLUP) in hoth validation sets, by using custom Chip_Ref2. We also investigated the proportion
of variance explained by SNP in each analysis, and found that this variance was considerably over-
estimated in the case of Chip_Refl, compared to Chip_Ref2 where the variance was more
accurately estimated.

This indicates that the bias is mainly due to a form of the “winner’s curse” or “Beavis effect”.
That is, a proportion of the selected putative QTN from Refl were estimated to have a larger effect
than the real effect, and when Chip_Refl was used for genomic prediction in the same Refl set,
these effects are again overestimated. In BayesR the bias was more serious than GBLUP possibly
because the BayesR mixture model allows for some large QTN effects, while GBLUP assumes all
SNP effects are sampled from a single distribution so that larger effects are regressed more
towards the mean. This phenomenon of bias was also reported by Veerkamp et al. (2016) using

143



Dairy

dairy cattle data. However, in the studies by Brendum et al. (2015) and van den Berg et al. (2016)
the bias was less apparent, most likely because their putative QTN discovery population did not
exactly overlap with the genomic prediction reference populations. Wiggans et al. (2016) did not
test for bias in their study. It might be expected that bias and reduced accuracy may be exacerbated
if a GWAS is used to select the top putative variants because the Beavis effect is likely to be more
pronounced with SNP effects fitted as fixed effects.

In conclusion, it is important to recognise the pitfalls of pre-selecting subsets of SNP for
genomic prediction and to take steps to mitigate them, such as using independent reference
populations for QTN discovery and genomic prediction. A potential alternative which does not
require two independent populations is a new analytical approach (van den Berg et al 2017 - these
proceedings) derived from a hybrid method of Expectation-Maximisation with BayesR (HyB_BR)
developed by Wang et al. (2016).

@ BayesR Aust Red O GBLUP Aust Red M BayesR Hol B GBLUP Hol

1

Bias

50K HD 800K SEQ Chip_Refl  Chip_Ref2

Figure 2. Bias of genomic prediction equations trained in Refl and validated in Holsteins or
Australian Reds using a range of SNP genotypes. SEQ represents ~1million sequence variants
and includes the SNP chosen as surrogate QTN. Chip_Refl is a custom chip of 50K + 500 top
putative QTN discovered in the same Refl, while Chip_Ref2 is a custom chip with 50K + 500 top
putative QTN discovered independently in Ref2.
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SUMMARY

Selection should favour alleles which increase profitability considering their effects across all
important traits. Therefore, understanding pleiotropy is an important aim. Obviously if traits are
genetically correlated they must share some causal variants but it is possible that even uncorrelated
traits share some causal variants. Here we analyse 25 traits on Australian dairy cattle. The 25 raw
traits (RTs), covering milk production, fertility, behaviour, somatic cell count and conformation,
of 2841 bulls were used to calculate uncorrelated principal components (PCs) and Cholesky
transformation traits (CT). Multi-trait meta-analyses of single-trait genome-wide association
studies (GWAS) for RT, PC and CT in these bulls were validated in 6821 cows. We observed a
positive relationship between heritability estimates and the number significant SNPs detected in
RTs and CTs. However, there was no relationship between the phenotypic importance of PCs and
the number of significant SNPs detected. The major dairy cattle locus DGAT1 not only affected
dairy production traits, also had validated small effects on fertility, milk speed and temperament.
Our results highlight the importance of using genetic information of all traits to maximise
pleiotropy detection and prioritise multi-trait genetic markers for the dairy industry.

INTRODUCTION

The profitability of dairy farming depends on many traits including milk production, fertility,
diseases, workability and conformation or type traits (Byrne et al., 2015). Therefore, genomic
selection should target genetic variants that increase an economic combination of traits such as the
balanced performance index (BPI). When identifying genetic markers, such as single nucleotide
polymorphisms (SNPs), associated with economic traits, we need to know the effect of the marker
on all economic traits not just those where the marker has the biggest effect. That is, we would like
to understand the pleiotropic effects of genes across all important traits.

Widespread pleiotropic effects of SNPs have been observed in beef cattle (Bolormaa et al.,
2014) and sheep (Bolormaa et al., 2016). If traits are genetically correlated there must be some
genes that affect both traits. However, it is also possible that uncorrelated traits share some causal
variants. Principal component (PC) analysis, producing a small number of uncorrelated traits, has
been proposed for conducting multi-trait genetic analysis (Klei, Luca, Devlin, & Roeder, 2008). If
genes act through a limited number of physiological pathways, principle component analysis
might capture the most important pathways in the first few PCs leading to a simple picture of
pleiotropy.

To further understand pleiotropy in the dairy cattle population, a dataset from the Australian
Dairy Herd Improvement Scheme (ADHIS) with 25 traits recorded on 9662 animals was retrieved.
These 25 raw traits (RTs), including milk production, survival, fertility, temperament and linear
type traits, were used to construct uncorrelated PCs and Cholesky transformed traits (CTs) (Golub
& Van Loan, 2012). RTs and generated PCs and CTs were analysed with multi-trait genome-wide
association studies (GWAS).
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MATERIALS AND METHODS

Analyses included genotype of 2841 bulls as the discovery population and 6821 cows as the
validation population from the breeds Holstein, Jersey and Australian Red. The distribution of
genomic relatedness of bulls and cows in three breeds were shown in Figure 1. SNPs were
genotyped by Illumina BovineLD BeadChip (7K), lllumina Bovine SNP array (54K) and Illumina
Bovine HD genotypes (777 K). All animals were imputed to HD genotypes using Fimpute
(Sargolzaei, Chesnais, & Schenkel, 2014) and in total, 632,002 SNPs were used. SNPs with minor
allele frequency <0.01 or significant departure from Hardy-Weinberg equilibrium (p<0.001) were
filtered out. The 25 phenotypic traits of these animals (trait deviations for cows and daughter trait
deviations for bulls) were from the April 2016 genetic evaluations from the DataGene. Daughter
trait deviations were the average trait deviations of a bull’s daughters and all phenotypes were pre-
corrected for known fixed effects.

The generation of PCs for the n' animal (u,) was based on eigen-decomposition of k=25 RTs
(9n): u, =T'g, ; Where u, was a k x 1 vector of PC scores for the animal n; T was an k x k matrix

of eigenvectors such that the variance matrix of the PC Var(T’g) = D, a diagonal matrix of
eigenvalues; g, was an k x 1 vector of RT for animal n. The CT scores for the nth animal (c,) were

calculated based on the Cholesky decomposition: ¢, = L‘lgn ; where; L was the k x k matrix of the

Cholesky factors which satisfied LL'= V/(g), the k x k covariance matrix (Golub & Van Loan,
2012); gn was a k x 1 vector of RT for the animal n. Single-trait GWAS was performed in
GEMMA (Zhou & Stephens, 2014) wusing data from the discovery population:
y = mean + fixed effects + SNP, + GRM +e ; where y = vector of k RTs, PCs or CTs for bulls; fixed

effects= breeds; SNP; = that each SNP genotype was fitted as a covariate one at a time; a polygenic
random effect described by the GRM= genomic relatedness matrix calculated from GEMMA
based on all SNPs; e =error. A multi-trait meta-analysis based on either the 25 RTs, 25 PCs or 25
CTs followed previous procedures (Bolormaa et al., 2016; Bolormaa et al., 2014). SNPs that were
significant in the discovery sample were tested in the validation sample using an index of traits
that maximises the effect of the SNP (Bolormaa et al., 2016; Bolormaa et al., 2014). Single-trait
GWAS in the validation population was also used to confirm SNP effects on individual RTs.

Breeds

D Aus Red
[ Hotstein
I:lJersey

Density

Relatedness between bulls and cows

Figure 1. Density plot of the genomic rela